Parameterized Complexity of Conflict-free Graph Coloring

Hans L. Bodlaender¹, Sudeshna Kolay², and <u>Astrid Pieterse³</u>

¹ Utrecht University, The Netherlands

- ² Ben Gurion University of Negev, Israel
- ³ Eindhoven University of Technology, The Netherlands

Conflict-free graph coloring

q-Closed Neighborhood Conflict-Free Coloring
q-CNCF-Coloring

Input: A graph *G* (with vertex cover *S*)

Parameter: k = |S|

Question: Is it possible to assign every vertex in G a color from $\{1, ..., q\}$, such that for all v, there is a color occurring exactly once in N[v]?

Related: *q*-ONCF-Coloring

 Considers open neighborhoods instead

How many colors do we need to CNCF-color

- A clique on k vertices? 2
- A bipartite graph?

- A clique on k vertices? 2
- A bipartite graph?

- A clique on k vertices? 2
- A bipartite graph?

- A clique on k vertices? 2
- A bipartite graph? 2

- A clique on k vertices? 2
- A bipartite graph? 2
- An odd cycle?

- A clique on k vertices? 2
- A bipartite graph? 2
- An odd cycle?

2

2

- A clique on k vertices? 2
- A bipartite graph?
- An odd cycle?

2

2

- A clique on k vertices? 2
- A bipartite graph?
- An odd cycle?
- Petersen graph

2

2

- A clique on k vertices? 2
- A bipartite graph?
- An odd cycle?
- Petersen graph

- A clique on k vertices? 2
- A bipartite graph?
- An odd cycle?
- Petersen graph

2

- A clique on k vertices? 2
- A bipartite graph? 2
- An odd cycle? 2
- Petersen graph
- A *k*-colorable graph?

How many colors do we need to CNCF-color

- A clique on k vertices? 2
- A bipartite graph? 2
- An odd cycle? 2
- Petersen graph 2
- A *k*-colorable graph? k

Observation

Any proper coloring is a CNCF-Coloring

• Each vertex is the uniquely colored vertex in its closed neighborhood

How many colors do we need to CNCF-color

- A clique on k vertices? 2 $\leq k$
- A bipartite graph? $2 \leq 2$
- An odd cycle? $2 \leq 3$
- Petersen graph $2 \leq 4$
- A k-colorable graph? k $\leq k$

Observation

Any proper coloring is a CNCF-Coloring

• Each vertex is the uniquely colored vertex in its closed neighborhood

Background

- Special case of conflict-free coloring set systems
 - Sets given by closed (or open) neighborhoods
- Frequency assignment problems

Studied from a combinatorial perspective

- CNCF-coloring *n*-vertex graph takes O(log² n) colors
 [Pach, Tardos 2009]
 - Tight [Glebov, Szabó, Tardos, 2014]

Background

NP-hard for $q \ge 2$ [Gargano and Rescigno, TCS, 2015]

- Study parameterized complexity and kernelizability
 - FPT parameterized by [Gargano and Rescigno, TCS, 2015]
 - Vertex Cover
 - Neighborhood diversity
 - Treewidth
 - In this talk: kernels!

Results

Kernelization parameterized by Vertex Cover

- 2-CNCF-Coloring has a polynomial kernel (up next)
- q-CNCF-Coloring has no polynomial kernel¹ for $q \ge 3$
- q-ONCF-Coloring has no polynomial kernel¹ for $q \ge 2$
 - Both results proven by cross-composition
 - See https://arxiv.org/pdf/1905.00305

¹Unless $NP \subseteq coNP$ /poly

A general reduction rule

For *q*-CNCF-Coloring

[Based on Gargano and Rescigno, TCS 2015, Lemma 6]

Reducing number of twins

Let $S' \subseteq S$. Suppose there are > q + 1 vertices $v \notin S$ with N(v) = S'. Mark q + 1, remove the others.

$$q = 3$$

Let G' be the resulting graph

- Suppose *G* is *q*-CNCF-Colorable
 - Color G' similarly, ensuring that each vertex in S keeps its conflict-free neighbor (if any)

Let G' be the resulting graph

- Suppose *G* is *q*-CNCF-Colorable
 - Color G' similarly, ensuring that each vertex in S keeps its conflict-free neighbor (if any)

Let G' be the resulting graph

- Suppose *G* is *q*-CNCF-Colorable
 - Color G' similarly, ensuring that each vertex in S keeps its conflict-free neighbor (if any)

- Suppose G' is q-CNCF-Colorable
 - Use the same coloring on *G*
 - Let v be a removed vertex, color v using a color already used twice in N(v)
 - Observe that such a color exists!

- Suppose G' is q-CNCF-Colorable
 - Use the same coloring on *G*
 - Let v be a removed vertex, color v using a color already used twice in N(v)
 - Observe that such a color exists!

- Suppose G' is q-CNCF-Colorable
 - Use the same coloring on *G*
 - Let v be a removed vertex, color v using a color already used twice in N(v)
 - Observe that such a color exists!

Effectiveness

Suppose we apply this rule exhaustively, for all $S' \subseteq S$

Number of vertices in S

• *k* by definition

Number of vertices not in S

• Number of degree-*d* vertices not in *S*

• At most
$$(q+1)\binom{|S|}{d} = O(k^d)$$

• Total $O(2^k)$

Exponential, unless we can somehow bound the number of high-degree vertices

Polynomial kernel for 2-CNCF-Coloring Extension

Parameterized by Vertex Cover size

The extension problem

2-CNCF-Coloring Extension **Input:** A graph G, with vertex cover S and partial coloring $c: S \rightarrow \{red, blue\}$

Parameter: |*S*|

Question: Can c be extended to a 2-CNCF-coloring of G?

This is a yes-instance!

Trivial reduction rule

If at any point there is a vertex *v* whose neighborhood contains at least two red and two blue vertices under *c*

• Output **NO**

Removing low-degree vertices

Apply known reduction rule: For every $S' \subseteq S$ of size at most 2

- Mark 3 vertices $u \notin S$ such that N(u) = S'
 - If there are less than three, mark all

Delete all unmarked vertices of degree 1 and 2

Number of vertices in S

• *k* (by definition)

Number of degree- ≤ 2 vertices not in S

• At most
$$3k + 3\binom{k}{2} = O(k^2)$$

Number of degree- \geq 3 vertices not in *S*

• Possibly many ⊗

Removing high-degree vertices

For all $v \notin S$ of degree at least 3 do the following.

- Extend c by coloring v such that N[v] is conflict-free
 - This uniquely determines c(v)

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

For every $x \in S$, mark 2 red and 2 blue neighbors in $V(G) \setminus S$

If there are no two red/blue neighbors, mark all red/blue neighbors

Correctness

Suppose G' is CNCF-colorable

- Color *G* the same, color removed vertices as they were before removal
 - For $v \notin S$, this conflict-free colors N[v] by definition
 - For v ∈ S, this never destroys the conflict-free coloring of N[v]

Suppose *G* is CNCF-colorable

• Use the same coloring for *G'*

Kernel size

We mark at most 4 vertices for each vertex in S

• At most 4k high-degree vertices not in S remain

Combined with removing low-degree vertices

- k vertices in S
- $O(k^2)$ degree- ≤ 2 vertices not in S
- O(k) degree- \geq 3 vertices not in S
- Total of $O(k^2)$ vertices

Theorem

2-CNCF-Coloring Extension parameterized by |S| has a kernel of size $O(k^2 \log k)$, and no kernel¹ of size $O(k^{2-\varepsilon})$

¹ Unless $NP \subseteq coNP/poly$

Polynomial kernel for 2-CNCF-Coloring

Parameterized by Vertex Cover size

A generalized kernel

We give a generalized kernel to *d*-Polynomial root CSP **Input:** A set *L* of equalities over variables *X*, where each equality is of the form $p(x_1, ..., x_n) = 0$, where *p* is a polynomial of degree at most *d*

Parameter: The number of variables *n*

Question: Does there exist an assignment $\tau: X \to \{0,1\}$ satisfying all equalities in *L*?

Example of 2-Poly root CSP: $\{x_1 + x_2 - 1 = 0, \quad x_1 * x_2 + x_2 * x_3 = 0\}$ Satisfied by $\tau(x_1) = \tau(x_3) = 0, \tau(x_2) = 1$

A generalized kernel

We give a generalized kernel to *d*-Polynomial root CSP **Input:** A set *L* of equalities over variables *X*, where each equality is of the form $p(x_1, ..., x_n) = 0$, where *p* is a polynomial of degree at most *d*

Parameter: The number of variables n

Question: Does there exist an assignment $\tau: X \to \{0,1\}$ satisfying all equalities in *L*?

Theorem [more on this tomorrow, Jansen and Pieterse, MFCS 2016] d-Polynomial root CSP has a kernel with $O(n^d)$ equalities, where n is the number of variables

• That is a subset of the original set of equalities!

Kernelization: General idea

Three steps

- 1. Reduce the number of low-degree vertices
- 2. Rewrite the problem to an instance of d-Poly root CSP
 - For some constant *d*
 - Using not too many variables
 - Tricky!
- 3. Apply (known) kernelization result for d-Poly root CSP
 - d-Polynomial root CSP has a kernel with O(#vars^d) equalities

Removing low-degree vertices

- Same as before: marking procedure to reduce the number of degree-1 and 2 vertices outside *S*
- Reduces their number to $O(k^2)$
- Add these to S
 - Technically, this increases |S| to $O(k^2)$, but we ignore this for simplicity

Rewriting: Basics

Creating an instance of *d*-Poly root CSP (for some *d*)

- For each vertex v, create variables r_v and b_v
 - $r_v = 1$ means v is red, $b_v = 1$ means it is blue
 - Add the constraint that $r_v + b_v = 1$
- A constraint on the coloring of N[v] for all v
 - Exactly one blue, or exactly one red vertex
 - Thus, $\sum_{u \in N[v]} r_u = 1$, or $\sum_{u \in N[v]} b_u = 1$
 - For all *v* add the constraint

•
$$(1 - \sum_{u \in N[v]} r_u) (1 - \sum_{u \in N[v]} b_u) = 0$$

Rewriting: Continued

So far, variables $\{r_v, b_v \mid v \in V(G)\}$, constraints

- For all $v: r_v + b_v = 1$
- For all $v: (1 \sum_{u \in N[v]} r_u) (1 \sum_{u \in N[v]} b_u) = 0$

Hereby

- The two problem instances are equivalent
- We use low-degree polynomials (degree-2)
- As many variables as vertices
 - Using the known kernel for d-Poly root CSP gives a kernel of size $O(n^2)$ (useless)

Plan: reduce the number of variables to O(k)?

Recall, each vertex $v \notin S$ has degree at least 3

• Its coloring is precisely determined by the colors of N(v)

Idea: write r_v as $f(r_{u_1}, ..., r_{u_k}, b_{u_1}, ..., b_{u_k})$ if $N(v) = \{u_1, ..., u_k\}$

- For low-degree polynomial f
- Then $b_v = 1 r_v = 1 f(...)$
- Substituting r_v by f(...), reduces the number of variables
 to 2|S| = 2k

First, ensure that the neighborhood of $v \notin S$ is "ok"

- All blue, all red, one red, or one blue
- Done by an additional equality of degree 4 for $v \notin S$
 - $(\sum_{u \in N(v)} r_u)(\sum_{u \in N(v)} b_u)(1 \sum_{u \in N(v)} r_u)(1 \sum_{u \in N(v)} b_u) = 0$

Defining *f*

- $r_w + r_x + r_y + r_z = 4$ implies $r_v = 0$
- $r_w + r_x + r_y + r_z = 3$ implies $r_v = 1$
- $r_w + r_x + r_y + r_z = 1$ implies $r_v = 0$
- $r_w + r_x + r_y + r_z = 0$ implies $r_v = 1$

Let *g* such that g(x) = 0 if $x \in \{1,4\}$ and g(x) = 1 if $x \in \{0,3\}$

First, ensure that the neighborhood of $v \notin S$ is "ok"

- All blue, all red, one red, or one blue
- Done by an additional equality of degree 4 for $v \notin S$
 - $(\sum_{u \in N(v)} r_u)(\sum_{u \in N(v)} b_u)(1 \sum_{u \in N(v)} r_u)(1 \sum_{u \in N(v)} b_u) = 0$

Defining *f*

- $r_w + r_x + r_y + r_z = 4$ implies $r_v = 0$
- $r_w + r_x + r_y + r_z = 3$ implies $r_v = 1$
- $r_w + r_x + r_y + r_z = 1$ implies $r_v = 0$
- $r_w + r_x + r_y + r_z = 0$ implies $r_v = 1$

Let *g* such that g(x) = 0 if $x \in \{1,4\}$ and g(x) = 1 if $x \in \{0,3\}$

First, ensure that the neighborhood of $v \notin S$ is "ok"

- All blue, all red, one red, or one blue
- Done by an additional equality of degree 4 for $v \notin S$
 - $(\sum_{u \in N(v)} r_u)(\sum_{u \in N(v)} b_u)(1 \sum_{u \in N(v)} r_u)(1 \sum_{u \in N(v)} b_u) = 0$

Defining *f*

- $r_w + r_x + r_y + r_z = 4$ implies $r_v = 0$
- $r_w + r_x + r_y + r_z = 3$ implies $r_v = 1$
- $r_w + r_x + r_y + r_z = 1$ implies $r_v = 0$
- $r_w + r_x + r_y + r_z = 0$ implies $r_v = 1$

Let *g* such that g(x) = 0 if $x \in \{1,4\}$ and g(x) = 1 if $x \in \{0,3\}$

First, ensure that the neighborhood of $v \notin S$ is "ok"

- All blue, all red, one red, or one blue
- Done by an additional equality of degree 4 for $v \notin S$
 - $(\sum_{u \in N(v)} r_u)(\sum_{u \in N(v)} b_u)(1 \sum_{u \in N(v)} r_u)(1 \sum_{u \in N(v)} b_u) = 0$

Defining *f*

- $r_w + r_x + r_y + r_z = 4$ implies $r_v = 0$
- $r_w + r_x + r_y + r_z = 3$ implies $r_v = 1$
- $r_w + r_x + r_y + r_z = 1$ implies $r_v = 0$
- $r_w + r_x + r_y + r_z = 0$ implies $r_v = 1$

Let *g* such that g(x) = 0 if $x \in \{1,4\}$ and g(x) = 1 if $x \in \{0,3\}$

First, ensure that the neighborhood of $v \notin S$ is "ok"

- All blue, all red, one red, or one blue
- Done by an additional equality of degree 4 for $v \notin S$
 - $(\sum_{u \in N(v)} r_u)(\sum_{u \in N(v)} b_u)(1 \sum_{u \in N(v)} r_u)(1 \sum_{u \in N(v)} b_u) = 0$

Defining *f*

- $r_w + r_x + r_y + r_z = 4$ implies $r_v = 0$
- $r_w + r_x + r_y + r_z = 3$ implies $r_v = 1$
- $r_w + r_x + r_y + r_z = 1$ implies $r_v = 0$
- $r_w + r_x + r_y + r_z = 0$ implies $r_v = 1$

Let g such that g(x) = 0 if $x \in \{1,4\}$ and g(x) = 1 if $x \in \{0,3\}$

In general, for $v \notin S$, find polynomial g s.t.

- g(x) = 0 if $x \in \{1, |N(v)|\}$
- g(x) = 1 if $x \in \{0, |N(v)| 1\}$

Use interpolating polynomial for $\{1,0\}, \{|N(v)|, 0\}, \{0,1\}, \{|N(v)| - 1,1\}$

• Has degree 3

Let $N(r_v) = \{u_1, ..., u_m\}$

• Substitute r_v by $g(r_{u_1} + r_{u_2} + \dots + r_{u_m})$ in all equalities.

Size and correctness

Now: variables { r_v , $b_v | v \in V(G)$ }, constraints

- For all $v: r_v + b_v = 1$
- For all $v: (1 \sum_{u \in N[v]} r_u) (1 \sum_{u \in N[v]} b_u) = 0$
 - With for $v \notin S r_v$ substituted by g(...), b_v by 1 g(...)
- For all $v \notin S$:

 $(\sum_{u \in N(v)} r_u) (\sum_{u \in N(v)} b_u) (1 - \sum_{u \in N(v)} r_u) (1 - \sum_{u \in N(v)} b_u) = 0$

Polynomials have degree ≤ 6

Replacing r_v by g(...) is safe

- One direction, obvious
- Other direction: additional constraint ensures
 - $r_{u_1} + r_{u_2} + \dots + r_{u_m} \in \{0, 1, |N(v)| 1|, |N(v)|\}$
 - g chosen such that it $g(...) = r_v$

Kernelization

We obtained a *d*-Poly root CSP instance

- d = 6
- On 2*k* variables (actually, *k* variables suffices) That is equivalent to the original instance
- Apply kernel for 6-Poly root CSP
 - Instance with $O(\#vars^d) = O(k^6)$ equalities
 - Can be encoded in $O(k^{10})$ bits

Theorem

2-CNCF-Coloring parameterized by Vertex Cover has a generalized kernel of size $O(k^{10})$

• Can be turned into normal kernel of polynomial size

Conclusion

- 2-CNCF-Coloring parameterized by vertex cover has a polynomial kernel
- q-CNCF-Coloring for $q \ge 3$ and q-ONCF-Coloring do not
 - Not even for the extension problem

Open questions

- Is the $O(k^{10})$ bound tight for 2-CNCF-Coloring?
 - Probably not
- Is there an "easier" kernel?

Conclusion

- 2-CNCF-Coloring parameterized by vertex cover has a polynomial kernel
- q-CNCF-Coloring for $q \ge 3$ and q-ONCF-Coloring do not
 - Not even for the extension problem

Open questions

- Is the $O(k^{10})$ bound tight for 2-CNCF-Coloring?
 - Probably not
- Is there an "easier" kernel?

THANK YOU