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Conflict-free graph coloring

g-Closed Neighborhood Conflict-Free Coloring
q-CNCF-Coloring

Input: A graph G (with vertex cover S)
Parameter: k = |S]|

Question: Is it possible to assign every vertex in G a color
from {1, ..., q}, such that for all v, there is a color
occurring exactly once in N[v]?

Related: g-ONCF-Coloring
« Considers open
neighborhoods instead
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Background

« Special case of conflict-free coloring set systems
» Sets given by closed (or open) neighborhoods
* Frequency assignment problems

Studied from a combinatorial perspective

e CNCF-coloring n-vertex graph takes 0 (log” n) colors
[Pach, Tardos 2009]

e Ti g ht [Glebov, Szabo, Tardos, 2014]



Background

NP-hard for g = 2 (cargano and Rescigno, Tcs, 2015]
« Study parameterized complexity and kernelizability
« FPT parameterized by (cargano and Rescigno, Tcs, 2015]
* Vertex Cover
* Neighborhood diversity
« Treewidth
* In this talk: kernels!



Results

Kernelization parameterized by Vertex Cover
« 2-CNCF-Coloring has a polynomial kernel (up next)

« g-CNCF-Coloring has no polynomial kernel' for g > 3
« g-ONCF-Coloring has no polynomial kernel' for g > 2
« Both results proven by cross-composition
 See https://arxiv.org/pdf/1905.00305

"Unless NP < coNP/poly


https://arxiv.org/pdf/1905.00305

A general reduction rule

For g-CNCF-Coloring

[Based on Gargano and Rescigno, TCS 2015, Lemma 6]



Reducing number of twins

Let S’ € S. Suppose there are > g + 1 vertices v ¢ S with
N(v) = S'. Mark g + 1, remove the others.
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Correctness

Let G’ be the resulting graph
« Suppose G is g-CNCF-Colorable

« Color G’ similarly, ensuring that each vertexin S
keeps its conflict-free neighbor (if any)
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Correctness

« Suppose G' is g-CNCF-Colorable
« Use the same coloringon G

« Let v be a removed vertex, color v using a color
already used twice in N(v)

« Observe that such a color exists!
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Effectiveness

Suppose we apply this rule exhaustively, forall S’ € S

Number of verticesin S

* k by definition

Number of vertices not in S

 Number of degree-d verticesnotin S

+ Atmost (¢ + (') = 0(k%)
 Total 0(2%)

Exponential, unless we can somehow bound the number
of high-degree vertices



Polynomial kernel for
2-CNCF-Coloring
Extension

Parameterized by Vertex Cover size



The extension problem

2-CNCF-Coloring Extension

Input: A graph G, with vertex cover S and partial coloring
c:S - {red,blue}

Parameter: |S|
Question: Can ¢ be extended to a 2-CNCF-coloring of G?

S

?

.< —0 This is a yes-instance!
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Trivial reduction rule

If at any point there is a vertex v whose neighborhood
contains at least two red and two blue vertices under ¢

 Output NO




Removing low-degree vertices

Apply known reduction rule:
For every S’ € S of size at most 2
« Mark 3 verticesu ¢ S such that N(u) = S’
* If there are less than three, mark all
Delete all unmarked vertices of degree 1 and 2

Number of vertices in S

 k (by definition)

Number of degree-<2 verticesnotin S
» At most 3k + 3(%) = 0(k?)

Number of degree-=3 vertices not in S
« Possibly many ®



Removing high-degree vertices

Forall v ¢ S of degree at least 3 do the following.
« Extend c by coloring v such that N[v] is conflict-free
* This uniquely determines c(v)
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Marking procedure

For every x € S, mark 2 red and 2 blue neighbors in V(G) \ S

 If there are no two red/blue neighbors, mark all red/blue
neighbors

Delete all unmarked vertices
of degree > 3
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Correctness

Suppose G’ is CNCF-colorable

« Color G the same, color removed vertices as they were
before removal

« Forv ¢ S, this conflict-free colors N[v] by definition

« For v € S, this never destroys the conflict-free
coloring of N[v]

Suppose G is CNCF-colorable
« Use the same coloring for G’



Kernel size

We mark at most 4 vertices for each vertexin S
« At most 4k high-degree vertices not in S remain

Combined with removing low-degree vertices
« kverticesin S

e 0(k?) degree-<2 verticesnotin§

* 0(k) degree-=3 verticesnotinS

« Total of 0(k?) vertices

Theorem
2-CNCF-Coloring Extension parameterized by |S| has a kernel
of size 0(k?logk), and no kernel' of size 0(k?~¢)

TUnless NP < coNP /poly



Polynomial kernel for
2-CNCF-Coloring

Parameterized by Vertex Cover size



A generalized kernel

We give a generalized kernel to d-Polynomial root CSP

Input: A set L of equalities over variables X, where each
equality is of the form p(x4, ...,x,,) = 0, wherepisa
polynomial of degree at most d

Parameter: The number of variables n

Question: Does there exist an assignment 7: X - {0,1}
satisfying all equalities in L?

Example of 2-Poly root CSP:
{x;+x,—1=0, X1 * Xy + Xy x X3 = 0}
Satisfied by
T(x1) = 1(x3) = 0,7(xy) =1



A generalized kernel

We give a generalized kernel to d-Polynomial root CSP

Input: A set L of equalities over variables X, where each
equality is of the form p(x4, ...,x,,) = 0, wherepisa
polynomial of degree at most d

Parameter: The number of variables n

Question: Does there exist an assignment 7: X - {0,1}
satisfying all equalities in L?

Theorem [more on this tomorrow, Jansen and Pieterse, MFCS 2016]

d-Polynomial root CSP has a kernel with 0(n%) equalities,
where n is the number of variables

« That is a subset of the original set of equalities!



Kernelization: General idea

Three steps

1.
2.

Reduce the number of low-degree vertices
Rewrite the problem to an instance of d-Poly root CSP
* For some constant d
« Using not too many variables
 Tricky!
Apply (known) kernelization result for d-Poly root CSP

» d-Polynomial root CSP has a kernel with 0(#vars?%)
equalities



Removing low-degree vertices

« Same as before: marking procedure to reduce the
number of degree-1and 2 vertices outside S

« Reduces their number to 0(k?)
 Addtheseto S

 Technically, this increases |S| to 0(k?), but we
ignore this for simplicity



Rewriting: Basics

Creating an instance of d-Poly root CSP (for some d)
« For each vertex v, create variables r, and b,
 r,=1means visred, b, =1 means itis blue
« Add the constraintthatr, + b, =1
« A constraint on the coloring of N[v] for all v
« Exactly one blue, or exactly one red vertex
* Thus, XyenpiTe = 1, OF 2yenpy bu =1
 For all v add the constraint

* (1 o ZuEN[v] Tu)(l o ZuEN[v] bu) =0



Rewriting: Continued

So far, variables {r,, b, | v € V(G) }, constraints
« Forallvir,+b,=1

 Forall v: (1 — ZUEN[U] Tu)(l — ZuEN[v] bu) =0

Hereby

« The two problem instances are equivalent
« We use low-degree polynomials (degree-2)
« As many variables as vertices

« Using the known kernel for d-Poly root CSP gives a
kernel of size 0(n?) (useless)

Plan: reduce the number of variables to O(k)?



Reducing the number of variables

Recall, each vertex v ¢ S has degree at least 3
« |ts coloring is precisely determined by the colors of N(v)
S S S S

<o e K| <

Idea: write 7, as f(rul, s T Doy ...,buk) fNwW) = {uq, ..., uy}
* For low-degree polynomial f
« Thenb, =1 —1n,=1-f(..)
« Substituting r, by f(...), reduces the number of variables
to 2|S| = 2k

e
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Reducing the number of variables

First, ensure that the neighborhood of v ¢ S is “ok”
« All blue, all red, one red, or one blue
« Done by an additional equality of degree 4 forv ¢ S

* (ZueN(v) ru)(zuav(v) bu) (1 - ZueN(v) ru)(l - ZuEN(v) bu ) =0

Defining f /(FV\
* Ly +1n+1n+r,=4impliesr, =0 _OX
* Ly +1n+n+1r,=3impliesr, =1 vcé\oy
* Ty t+nrtn +1,=1impliesr, =0 @

* Ly +1t+nr,+1r,=0impliesr, =1

Let g suchthat g(x) =01ifx € {1,4}and g(x) = 1 if x € {0,3}
o Substitute r, = f(fy, 7, 1y, 7)) =gty + 1 + 13 + 1)
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Reducing the number of variables

In general, for v ¢ S, find polynomial g s.t.
+ glx)=01ifx € {1,|N(v)[}

¢« glx)=11fx€{0,|N(v)| — 1}

Use interpolating polynomial for

(1,05 {IN(v)], 0}, 10,1} {IN(v)| — 1,1}

« Has degree 3

Let N(1,) = {uq, ..., Uy, }
- Substitute r, by g(r,, + 7, + - +mn, ) inall equalities.



Size and correctness

Now: variables {r,, b, | v € V(G) }, constraints
Forallv:rn, +b, =1

For a“. V. (1 — ZuEN[v] Tu)(]. - ZuEN[v] bu) =0
« With for v & S r, substituted by g(...), b, by 1 — g(...)
Forall v ¢ S:

(ZuEN(U) rU)(ZuEN(v) by)(1 - ZuEN(v) n)(1 = ZuEN(v) b,)=0
Polynomials have degree< 6

Replacing r,, by g(...) Is safe

 One direction, obvious

« Other direction: additional constraint ensures
* 1y, +1, t+n,_ €{0,L[NW|—-1],|N@w)|}
« g chosensuchthatit g(...) =,



Kernelization

We obtained a d-Poly root CSP instance
e d=6
« On 2k variables (actually, k variables suffices)
That is equivalent to the original instance
« Apply kernel for 6-Poly root CSP
- Instance with O(#vars?) = 0(k®) equalities
 Can be encoded in 0(k'?) bits

Theorem

2-CNCF-Coloring parameterized by Vertex Cover has a
generalized kernel of size 0(k?)
« Can be turned into normal kernel of polynomial size



Conclusion

« 2-CNCF-Coloring parameterized by vertex cover has a
polynomial kernel

« q-CNCF-Coloring for g = 3 and q-ONCF-Coloring do not
« Not even for the extension problem

Open questions

* Isthe 0(k'Y) bound tight for 2-CNCF-Coloring?
* Probably not

 Is there an “easier” kernel?
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