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Conflict-free graph coloring

𝑞-CNCF-Coloring
Input: A graph 𝐺 (with vertex cover 𝑆)
Parameter: 𝑘 = 𝑆

Question: Is it possible to assign every vertex in 𝐺 a color 
from {1,… , 𝑞}, such that for all 𝑣, there is a color 
occurring exactly once in 𝑁[𝑣]?

Related: 𝑞-ONCF-Coloring
• Considers open 

neighborhoods instead
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𝑞-Closed Neighborhood Conflict-Free Coloring



CNCF-Coloring

How many colors do we need to CNCF-color
• A clique on 𝑘 vertices?
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How many colors do we need to CNCF-color
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CNCF-Coloring

How many colors do we need to CNCF-color
• A clique on 𝑘 vertices?
• A bipartite graph?
• An odd cycle?
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How many colors do we need to CNCF-color
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CNCF-Coloring

How many colors do we need to CNCF-color
• A clique on 𝑘 vertices?
• A bipartite graph?
• An odd cycle?
• Petersen graph
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CNCF-Coloring

How many colors do we need to CNCF-color
• A clique on 𝑘 vertices?
• A bipartite graph?
• An odd cycle?
• Petersen graph
• A 𝑘-colorable graph?
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CNCF-Coloring

How many colors do we need to CNCF-color
• A clique on 𝑘 vertices?
• A bipartite graph?
• An odd cycle?
• Petersen graph
• A 𝑘-colorable graph?

Observation
Any proper coloring is a CNCF-Coloring
• Each vertex is the uniquely colored vertex in its closed 

neighborhood
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Background

• Special case of conflict-free coloring set systems
• Sets given by closed (or open) neighborhoods

• Frequency assignment problems

Studied from a combinatorial perspective
• CNCF-coloring 𝑛-vertex graph takes 𝑂(log2 𝑛) colors

[Pach, Tardos 2009]

• Tight [Glebov, Szabó, Tardos, 2014]



Background

NP-hard for 𝑞 ≥ 2 [Gargano and Rescigno, TCS, 2015]

• Study parameterized complexity and kernelizability
• FPT parameterized by  [Gargano and Rescigno, TCS, 2015]

• Vertex Cover
• Neighborhood diversity
• Treewidth

• In this talk: kernels!



Results

Kernelization parameterized by Vertex Cover
• 2-CNCF-Coloring has a polynomial kernel (up next)

• 𝑞-CNCF-Coloring has no polynomial kernel1 for 𝑞 ≥ 3
• 𝑞-ONCF-Coloring has no polynomial kernel1 for 𝑞 ≥ 2

• Both results proven by cross-composition 
• See https://arxiv.org/pdf/1905.00305

1Unless 𝑁𝑃 ⊆ 𝑐𝑜𝑁𝑃/poly

https://arxiv.org/pdf/1905.00305


A general reduction rule

For 𝑞-CNCF-Coloring

[Based on  Gargano and  Rescigno, TCS 2015, Lemma 6]



s

Reducing number of twins

Let 𝑆′ ⊆ 𝑆. Suppose there are > 𝑞 + 1 vertices 𝑣 ∉ 𝑆 with 
𝑁 𝑣 = 𝑆′. Mark 𝑞 + 1, remove the others.

𝑞 = 3

𝑆’ 








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Correctness

Let 𝐺′ be the resulting graph
• Suppose 𝐺 is 𝑞-CNCF-Colorable

• Color 𝐺′ similarly, ensuring that each vertex in 𝑆
keeps its conflict-free neighbor (if any)

𝑆
𝑆’

𝐺
𝑆

𝑆’

𝐺′
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Correctness

• Suppose 𝐺′ is 𝑞-CNCF-Colorable
• Use the same coloring on 𝐺
• Let 𝑣 be a removed vertex, color 𝑣 using a color 

already used twice in 𝑁(𝑣)
• Observe that such a color exists!
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Effectiveness

Suppose we apply this rule exhaustively, for all 𝑆′ ⊆ 𝑆

Number of vertices in 𝑆
• 𝑘 by definition
Number of vertices not in 𝑆
• Number of degree-𝑑 vertices not in 𝑆

• At most 𝑞 + 1 𝑆
𝑑

= 𝑂(𝑘𝑑)

• Total 𝑂(2𝑘)

Exponential, unless we can somehow bound the number 
of high-degree vertices



Polynomial kernel for 
2-CNCF-Coloring

Extension
Parameterized by Vertex Cover size



The extension problem

2-CNCF-Coloring Extension
Input: A graph 𝐺, with vertex cover 𝑆 and partial coloring 
𝑐 ∶ 𝑆 → {𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒}

Parameter: |𝑆|
Question: Can 𝑐 be extended to a 2-CNCF-coloring of 𝐺?

S

This is a yes-instance!



Trivial reduction rule

If at any point there is a vertex 𝑣 whose neighborhood 
contains at least two red and two blue vertices under 𝑐
• Output NO

𝑣 𝑣



Removing low-degree vertices

Apply known reduction rule:
For every 𝑆′ ⊆ 𝑆 of size at most 2
• Mark 3 vertices 𝑢 ∉ 𝑆 such that 𝑁 𝑢 = 𝑆′

• If there are less than three, mark all
Delete all unmarked vertices of degree 1 and 2

Number of vertices in 𝑆
• 𝑘 (by definition)
Number of degree-≤2 vertices not in 𝑆

• At most 3k + 3 𝑘
2
= 𝑂(𝑘2)

Number of degree-≥3 vertices not in 𝑆
• Possibly many 



SSSS

Removing high-degree vertices

For all 𝑣 ∉ 𝑆 of degree at least 3 do the following.
• Extend 𝑐 by coloring 𝑣 such that 𝑁[𝑣] is conflict-free

• This uniquely determines 𝑐(𝑣)



Marking procedure

For every 𝑥 ∈ 𝑆, mark 2 red and 2 blue neighbors in 𝑉 𝐺 ∖ 𝑆

• If there are no two red/blue neighbors, mark all red/blue 
neighbors

Delete all unmarked vertices 
of degree ≥ 3

𝑆



Marking procedure
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Correctness

Suppose 𝐺′ is CNCF-colorable
• Color 𝐺 the same, color removed vertices as they were 

before removal
• For 𝑣 ∉ 𝑆, this conflict-free colors N[𝑣] by definition
• For 𝑣 ∈ 𝑆, this never destroys the conflict-free 

coloring of 𝑁[𝑣]

Suppose 𝐺 is CNCF-colorable
• Use the same coloring for 𝐺′



Kernel size

We mark at most 4 vertices for each vertex in 𝑆
• At most 4𝑘 high-degree vertices not in 𝑆 remain

Combined with removing low-degree vertices
• 𝑘 vertices in 𝑆
• 𝑂(𝑘2) degree-≤2 vertices not in 𝑆
• 𝑂(𝑘) degree-≥3 vertices not in 𝑆
• Total of 𝑂 𝑘2 vertices

1 Unless 𝑁𝑃 ⊆ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦

Theorem 
2-CNCF-Coloring Extension parameterized by |𝑆| has a kernel 
of size 𝑂(𝑘2 log 𝑘), and no kernel1 of size 𝑂 𝑘2−𝜀



Polynomial kernel for 
2-CNCF-Coloring

Parameterized by Vertex Cover size



A generalized kernel

We give a generalized kernel to 𝑑-Polynomial root CSP
Input: A set 𝐿 of equalities over variables 𝑋, where each 
equality is of the form 𝑝 𝑥1, … , 𝑥𝑛 = 0, where 𝑝 is a 
polynomial of degree at most 𝑑
Parameter: The number of variables 𝑛
Question: Does there exist an assignment 𝜏: 𝑋 → {0,1}
satisfying all equalities in 𝐿?

Example of 2-Poly root CSP:
{𝑥1 + 𝑥2 − 1 = 0, 𝑥1 ∗ 𝑥2 + 𝑥2 ∗ 𝑥3 = 0}

Satisfied by 
𝜏 𝑥1 = 𝜏 𝑥3 = 0, 𝜏 𝑥2 = 1
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Theorem [more on this tomorrow, Jansen and Pieterse, MFCS 2016]

𝑑-Polynomial root CSP has a kernel with 𝑂(𝑛𝑑) equalities, 
where 𝑛 is the number of variables
• That is a subset of the original set of equalities!



Kernelization: General idea

Three steps
1. Reduce the number of low-degree vertices 
2. Rewrite the problem to an instance of 𝑑-Poly root CSP

• For some constant 𝑑
• Using not too many variables

• Tricky!
3. Apply (known) kernelization result for 𝑑-Poly root CSP

• 𝑑-Polynomial root CSP has a kernel with 𝑂(#𝑣𝑎𝑟𝑠𝑑)
equalities 



Removing low-degree vertices

• Same as before: marking procedure to reduce the 
number of degree-1 and 2 vertices outside 𝑆

• Reduces their number to 𝑂(𝑘2)
• Add these to 𝑆

• Technically, this increases |𝑆| to 𝑂(𝑘2), but we 
ignore this for simplicity



Rewriting: Basics

Creating an instance of 𝑑-Poly root CSP (for some 𝑑)
• For each vertex 𝑣, create variables 𝑟𝑣 and 𝑏𝑣

• 𝑟𝑣 = 1 means 𝑣 is red, 𝑏𝑣 = 1 means it is blue
• Add the constraint that 𝑟𝑣 + 𝑏𝑣 = 1

• A constraint on the coloring of 𝑁[𝑣] for all 𝑣
• Exactly one blue, or exactly one red vertex

• Thus,  𝑢∈𝑁[𝑣] 𝑟𝑢 = 1, or  𝑢∈𝑁[𝑣]𝑏𝑢 = 1

• For all 𝑣 add the constraint

• 1 −  𝑢∈𝑁 𝑣 𝑟𝑢 1 −  𝑢∈𝑁 𝑣 𝑏𝑢 = 0



Rewriting: Continued

So far, variables 𝑟𝑣 , 𝑏𝑣 𝑣 ∈ 𝑉 𝐺 , constraints
• For all 𝑣: 𝑟𝑣 + 𝑏𝑣 = 1
• For all 𝑣: 1 −  𝑢∈𝑁 𝑣 𝑟𝑢 1 −  𝑢∈𝑁 𝑣 𝑏𝑢 = 0

Hereby
• The two problem instances are equivalent
• We use low-degree polynomials (degree-2)
• As many variables as vertices

• Using the known kernel for 𝑑-Poly root CSP gives a 
kernel of size 𝑂(𝑛2) (useless)

Plan: reduce the number of variables to O(𝑘)?



Reducing the number of variables

Recall, each vertex 𝑣 ∉ 𝑆 has degree at least 3
• Its coloring is precisely determined by the colors of 𝑁(𝑣)

Idea: write 𝑟𝑣 as 𝑓 𝑟𝑢1 , … , 𝑟𝑢𝑘 , 𝑏𝑢1 , … , 𝑏𝑢𝑘 if 𝑁 𝑣 = {𝑢1,… , 𝑢𝑘}

• For low-degree polynomial 𝑓
• Then 𝑏𝑣 = 1 − 𝑟𝑣 = 1 − 𝑓(…)
• Substituting 𝑟𝑣 by 𝑓(… ), reduces the number of variables 

to 2 𝑆 = 2𝑘

SSSS

𝑣 𝑣 𝑣 𝑣



Reducing the number of variables

First, ensure that the neighborhood of 𝑣 ∉ 𝑆 is “ok”
• All blue, all red, one red, or one blue
• Done by an additional equality of degree 4 for 𝑣 ∉ 𝑆

• ( 𝑢∈𝑁 𝑣 𝑟𝑢)( 𝑢∈𝑁 𝑣 𝑏𝑢)(1 −  𝑢∈𝑁 𝑣 𝑟𝑢)(1 −  𝑢∈𝑁 𝑣 𝑏𝑢 ) = 0

Defining 𝑓
• 𝑟𝑤 + 𝑟𝑥 + 𝑟𝑦 + 𝑟𝑧 = 4 implies 𝑟𝑣 = 0
• 𝑟𝑤 + 𝑟𝑥 + 𝑟𝑦 + 𝑟𝑧 = 3 implies 𝑟𝑣 = 1
• 𝑟𝑤 + 𝑟𝑥 + 𝑟𝑦 + 𝑟𝑧 = 1 implies 𝑟𝑣 = 0
• 𝑟𝑤 + 𝑟𝑥 + 𝑟𝑦 + 𝑟𝑧 = 0 implies 𝑟𝑣 = 1

Let 𝑔 such that 𝑔 𝑥 = 0 if 𝑥 ∈ {1,4} and 𝑔 𝑥 = 1 if 𝑥 ∈ {0,3}
• Substitute 𝑟𝑣 = 𝑓 𝑟𝑤 , 𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧 = 𝑔(𝑟𝑤 + 𝑟𝑥 + 𝑟𝑦 + 𝑟𝑧)

𝑣

𝑤

𝑥

𝑦

𝑧
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• 𝑟𝑤 + 𝑟𝑥 + 𝑟𝑦 + 𝑟𝑧 = 0 implies 𝑟𝑣 = 1

Let 𝑔 such that 𝑔 𝑥 = 0 if 𝑥 ∈ {1,4} and 𝑔 𝑥 = 1 if 𝑥 ∈ {0,3}
• Substitute 𝑟𝑣 = 𝑓 𝑟𝑤 , 𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧 = 𝑔(𝑟𝑤 + 𝑟𝑥 + 𝑟𝑦 + 𝑟𝑧)
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Reducing the number of variables

First, ensure that the neighborhood of 𝑣 ∉ 𝑆 is “ok”
• All blue, all red, one red, or one blue
• Done by an additional equality of degree 4 for 𝑣 ∉ 𝑆
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𝑣

𝑤

𝑥

𝑦

𝑧



Reducing the number of variables

In general, for 𝑣 ∉ 𝑆, find polynomial 𝑔 s.t.
• 𝑔 𝑥 = 0 if 𝑥 ∈ {1, |𝑁 𝑣 |}

• 𝑔 𝑥 = 1 if 𝑥 ∈ {0, |𝑁 𝑣 | − 1}

Use interpolating polynomial for 
1,0 , 𝑁 𝑣 , 0 , 0,1 , { 𝑁 𝑣 − 1,1}

• Has degree 3

Let 𝑁 𝑟𝑣 = {𝑢1, … , 𝑢𝑚}

• Substitute 𝑟𝑣 by 𝑔 𝑟𝑢1 + 𝑟𝑢2 +⋯+ 𝑟𝑢𝑚 in all equalities.



Size and correctness

Now: variables 𝑟𝑣, 𝑏𝑣 𝑣 ∈ 𝑉 𝐺 , constraints
• For all 𝑣: 𝑟𝑣 + 𝑏𝑣 = 1
• For all 𝑣: 1 −  𝑢∈𝑁 𝑣 𝑟𝑢 1 −  𝑢∈𝑁 𝑣 𝑏𝑢 = 0

• With for 𝑣 ∉ 𝑆 𝑟𝑣 substituted by g(… ), 𝑏𝑣 by 1 − 𝑔(… )
• For all 𝑣 ∉ 𝑆: 
( 𝑢∈𝑁 𝑣 𝑟𝑢)( 𝑢∈𝑁 𝑣 𝑏𝑢)(1 −  𝑢∈𝑁 𝑣 𝑟𝑢)(1 −  𝑢∈𝑁 𝑣 𝑏𝑢 ) = 0

Polynomials have degree≤ 6

Replacing 𝑟𝑣 by 𝑔(… ) is safe
• One direction, obvious
• Other direction: additional constraint ensures 

• 𝑟𝑢1 + 𝑟𝑢2 +⋯+ 𝑟𝑢𝑚 ∈ {0,1, 𝑁 𝑣 | − 1 , |𝑁 𝑣 |}

• 𝑔 chosen such that it 𝑔 … = 𝑟𝑣



Kernelization

We obtained a 𝑑-Poly root CSP instance
• 𝑑 = 6

• On 2𝑘 variables (actually, 𝑘 variables suffices)
That is equivalent to the original instance
• Apply kernel for 6-Poly root CSP

• Instance with 𝑂 #𝑣𝑎𝑟𝑠𝑑 = 𝑂(𝑘6) equalities

• Can be encoded in 𝑂(𝑘10) bits

Theorem
2-CNCF-Coloring parameterized by Vertex Cover has a 
generalized kernel of size 𝑂(𝑘10)
• Can be turned into normal kernel of polynomial size



Conclusion

• 2-CNCF-Coloring parameterized by vertex cover has a 
polynomial kernel

• 𝑞-CNCF-Coloring for 𝑞 ≥ 3 and 𝑞-ONCF-Coloring do not
• Not even for the extension problem

Open questions
• Is the 𝑂(𝑘10) bound tight for 2-CNCF-Coloring?

• Probably not
• Is there an “easier” kernel?
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