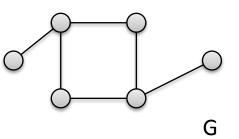
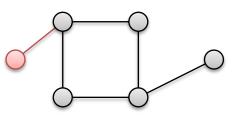
Polynomial Kernels for Hitting Forbidden Minors under Structural Parameterizations

Bart M.P. Jansen and <u>Astrid Pieterse</u>



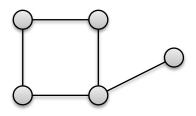
F is a finite set of connected graphs

F-minor free deletion


Given undirected graph *G* and budget *b*, can we remove *b* vertices from *G* such that it no longer has *F*-minors?

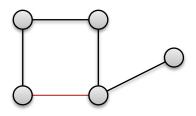
F is a finite set of connected graphs

F-minor free deletion


Given undirected graph *G* and budget *b*, can we remove *b* vertices from *G* such that it no longer has *F*-minors?

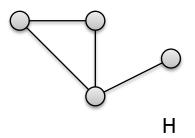
F is a finite set of connected graphs

F-minor free deletion


Given undirected graph *G* and budget *b*, can we remove *b* vertices from *G* such that it no longer has *F*-minors?

F is a finite set of connected graphs

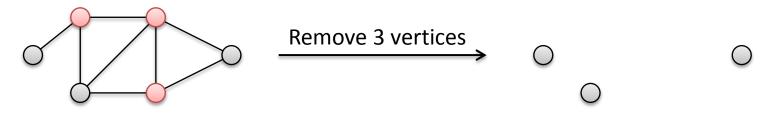
F-minor free deletion


Given undirected graph *G* and budget *b*, can we remove *b* vertices from *G* such that it no longer has *F*-minors?

F is a finite set of connected graphs

F-minor free deletion

Given undirected graph *G* and budget *b*, can we remove *b* vertices from *G* such that it no longer has *F*-minors?

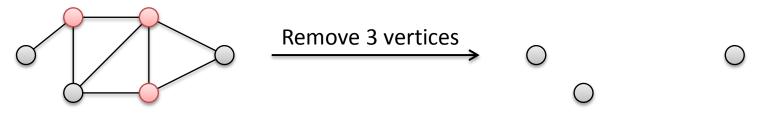


F-minor free deletion

Generalizes many known problems

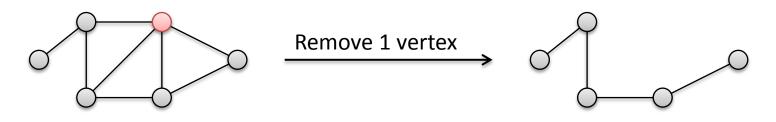
Vertex Cover for $F = \{K_2\}$

Can we remove *b* vertices, such that *G* becomes edgeless?



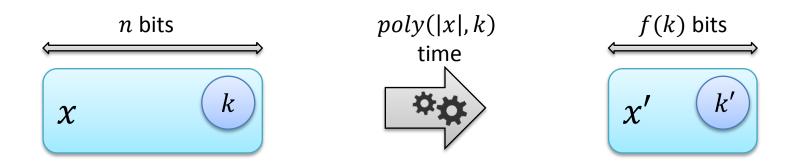
F-minor free deletion

Generalizes many known problems


Vertex Cover for $F = \{K_2\}$

Can we remove *b* vertices, such that *G* becomes edgeless?

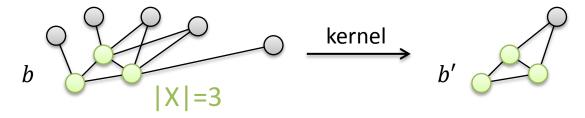
Feedback Vertex Set for $F = \{K_3\}$


Can we remove *b* vertices, such that *G* becomes acyclic?

Kernelization

F-minor free deletion is NP-hard

- Do preprocessing
- Use an additional parameter k to measure complexity


For which complexity measure, is good preprocessing possible?

• f(k) polynomial in k

Previous work

General problem [Fomin, Jansen, Pilipczuk, J. Comput. Syst. Sci.'12]

Let X be a vertex cover of G, there is a kernel of size poly(|X|) for F-minor free deletion

General parameter [Bougeret, Sau, IPEC'17]

modulator to treedepth 1 = vertex cover

Let X be a modulator to treedepth η , there is a kernel of size poly(|X|) for vertex cover

vertex cover = $\{K_2\}$ -minor free deletion

Main result

We generalize both existing results, resolving an open question by Bougeret and Sau on FVS

Theorem *F*-minor free deletion parameterized by a modulator to treedepth η has a polynomial kernel

For more information & interesting proof techniques Come see the poster!