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η > 1

Start by applying the reduction rule.

Then, add the roots of the treedepth decomposition of each component of G ′ − X , to X .

X ′ is now a treedepth-(η − 1) modulator. Obtain a kernel of size poly(|X ′|) by induction. Since
|X ′| is polynomial in |X |, this gives the desired kernel.

Problem

We will study the F-minor free deletion problem, where F is a set of connected graphs.
Input A graph G and an integer k .
Question Is it possible to remove at most k vertices from G , such that G no longer has any
graph in F as a minor?

F-minor free deletion generalizes many problems:

Problem Choice for F
Vertex Cover {K2}
Feedback Vertex Set {K3}
Graph planarizition (by vertex deletions) {K3,3,K5}

Parameter

We want to give a preprocessing algorithm, with a guarantee on the size of the reduced instance.
To bound the size, an additional parameter is used to measure the complexity of the problem.
Often, the solution size is used as the parameter, c.f. [2]. However, the
solution size can be very large. We want to obtain usable preprocessing
algorithms even in this situation. Therefore, we use the following
structural parameter:

Modulator to treedepth η
• Set of vertices X such that td(G − X ) = η,

the parameter is |X |.

Main result

F-minor free deletion parameterized by a treedepth-η modulator has a polynomial kernel:
There exists a polynomial-time algorithm that is given an instance G with budget k and modulator
X , and outputs an equivalent instance G ′, k ′ such that |G ′| = poly(|X |).
The kernelization procedure we obtain is constructive, and does not rely on techniques like pro-
trusion replacement and well-quasi ordering.

Proof strategy

We will give a reduction rule to reduce the number of connected components of G − X to
polynomially many. Then, we use the next lemma.

Lemma

Given such a reduction rule, that reduces the number of connected components outside X to
a polynomial in |X |, we can show that F-minor free deletion has a polynomial kernel. We can
prove this by induction on η (the treedepth of G − X ).

η = 1

In this case, G − X has treedepth 1. Thereby, every component of G − X has size one by the
definition of treedepth.

(G ′, k ′) is a kernel of size poly(|X |)

Example of a safe reduction rule (2)

Correctness

Let S be a FVS in G ′, we show that S ∪FVS(C ) is a FVS in G . Suppose not, then the connection
between u and v introduced by C − FVS(C ) creates a cycle:
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Example of a safe reduction rule (1)

Removing connected components of G− X

We will reduce the number of connected components in G −X . Let us use Feedback Vertex
Set (FVS) as an example. It is important to note that any optimal FVS in G , is in fact locally
optimal in all but ≤ |X | components of G − X . Otherwise, a better solution can be obtained by
removing X and removing an optimal FVS from each component of G − X .
Using this observation, we analyze the behavior of optimal solutions in each component of G −X .
We will show that there are not too many different “types” of behavior. For each such type, we
mark a (small) number of representative components. Then, all unmarked components can be
safely removed.

Examples of interesting behavior for FVS

We study what happens when removing a local optimum from a component of G−X , and whether
this could form a cycle in combination with the rest of the graph.

Main lemma for FVS (sketch)

Let L be a set of u, v -pairs for u, v ∈ X and let C be a component of G − X . If there is no
optimal FVS in C that separates all u, v -pairs in L, then there is a constant-size set L′ ⊆ L, such
that no optimal FVS in C separates all u, v -pairs in L′.

Usage of main lemma

The main lemma shows that the number of types of behavior that a component may have is
limited. In particular, it allows us to only mark components for lists L of constant size.

Background and preliminaries

The goal of this research is to investigate polynomial-time preprocessing algorithms (also known
as kernels). Such an algorithm takes an input instance X , and outputs an equivalent input
instance X ′ that is hopefully small. We want to bound the size of X ′ in terms of some complexity
measure for X , also known as the parameter.
The aim of this research is to find a good preprocessing algorithm that is applicable in as many
situations as possible. Therefore, we want to study a very general problem. A possible candidate
problem would be the set of problems expressible in some sort of logic. Unfortunately, the
Dominating Set problem is often easy to express, but does not allow for good preprocessing
even when using Vertex Cover as the parameter [1]. Therefore, we study a more restricted class
of problems, called F-minor free deletion.

Graph minors

H is a minor of G , if H can be obtained from a subgraph of G by a sequence of edge contractions.

Treedepth

The treedepth td(G ) of a graph G is defined as the minimum depth of a treedepth decomposition.
A treedepth decomposition of G is a tree T on the vertex set of G , that satisfies
• For each edge {u, v} ∈ V (G ), u and v are in ancestor/child relation in T .
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