Sparsification Upper and Lower Bounds for Graph Problems and Not-All-Equal SAT

Bart M.P. Jansen and Astrid Pieterse

e Technische Universiteit Eindhoven University of Technology

September 16, 2015

Sparsification

Kernelization

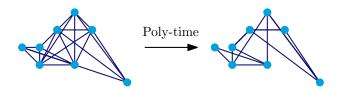
In polynomial time reduce the size of an instance

Size depends only on the parameter

Sparsification

In polynomial time, create an instance that is less dense

- Has sub-quadratic number of edges
- Use kernelization framework
- Parameter: n = |V|



Background

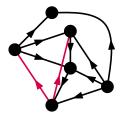
Graph problems: trivial kernel of size $O(n^2)$. Can we do better? Use generalized kernel for lower bounds

- Unless NP \subseteq coNP/poly:
 - VERTEX COVER, no generalized kernel of size O(n^{2-ε})
 d-CNF-SAT, no generalized kernel of size O(n^{d-ε})
 - Dell, van Melkebeek (J ACM14)
 - TREEWIDTH, no generalized kernel of size $O(n^{2-\epsilon})$
 - Jansen (IPEC13)

Do other graph and logic problems allow polynomial time sparsification?

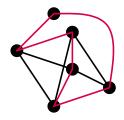
Problems without a generalized kernel of size $O(n^{2-\epsilon})$ for any $\epsilon > 0$, unless $NP \subseteq coNP/poly$.

FEEDBACK ARC SET

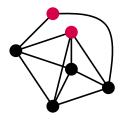


- FEEDBACK ARC SET
- 4-Coloring
 - And thereby $k\text{-}\mathsf{COLORING}$ for $k\geqslant 4$

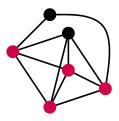
- FEEDBACK ARC SET
- 4-COLORING
 - And thereby $k\text{-}\mathsf{COLORING}$ for $k\geqslant 4$
- HAMILTONIAN CYCLE



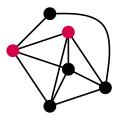
- FEEDBACK ARC SET
- 4-COLORING
 - And thereby $k\text{-}\mathsf{COLORING}$ for $k\geqslant 4$
- HAMILTONIAN CYCLE
- DOMINATING SET



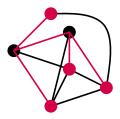
- FEEDBACK ARC SET
- 4-COLORING
 - And thereby $k\text{-}\mathsf{COLORING}$ for $k\geqslant 4$
- HAMILTONIAN CYCLE
- DOMINATING SET
- NON BLOCKER
 - Kernel with O(k) vertices by Dehne et al. (SOFSEM06)



- FEEDBACK ARC SET
- 4-COLORING
 - And thereby $k\text{-}\mathsf{COLORING}$ for $k\geqslant 4$
- HAMILTONIAN CYCLE
- DOMINATING SET
- NON BLOCKER
 - Kernel with O(k) vertices by Dehne et al. (SOFSEM06)
- CONNECTED DOMINATING SET



- FEEDBACK ARC SET
- 4-COLORING
 - And thereby $k\text{-}\mathsf{COLORING}$ for $k\geqslant 4$
- HAMILTONIAN CYCLE
- DOMINATING SET
- NON BLOCKER
 - Kernel with O(k) vertices by Dehne et al. (SOFSEM06)
- CONNECTED DOMINATING SET
- MAXIMUM LEAF SPANNING TREE
 - Kernel with O(k) vertices by Estivill-Castro et al. (ACiD05)



(Non)-sparsifiability of CNF-formulas

- d-NAE-SAT has a generalized kernel of size $O(n^{d-1})$
 - Matches known lower bound

(Non)-sparsifiability of CNF-formulas

- ▶ d-NAE-SAT has a generalized kernel of size O(n^{d-1})
 - Matches known lower bound

Compare to d-CNF-SAT, $O(n^{d-\epsilon})$ kernel unlikely

Not-All-Equal satisfiability

d-NAE-SAT

▶ Input: CNF-formula 𝓕, each clause contains at most d literals.

$$\mathcal{F} = \underbrace{(x \lor \neg y \lor \ldots \lor z)}_{\mathsf{Clause, } \leqslant \mathsf{d} \text{ literals}} \land (\neg x \lor \neg z \lor \ldots \lor \neg y) \land \ldots$$

- Parameter: The number of variables n.
- Question: Find a truth assignment such that every clause contains a true and a false literal?

Not-All-Equal Satisfiability: kernel bounds

No generalized kernel of size $O(n^{d-1-\epsilon})$, unless $NP \subseteq coNP/poly$.

- ► Linear parameter transformation d-CNF-SAT to (d + 1)-NAE-SAT
 - Shown by Jansen et al. (InformComput13)
- Is this a tight lower bound?
 - Not trivial.
- Provide a generalized kernel via d-Hypergraph 2-Colorability

d-Hypergraph 2-Colorability

d-Hypergraph 2-Colorability

- ► Input: Hypergraph, every edge contains at most d vertices.
- Parameter: The number of vertices n.
- Question: Color each vertex with red/blue such that every edge contains a red and a blue vertex?

Kernel

d-Hypergraph 2-Colorability has a kernel with $O(n^{d-1})$ edges.

d-Hypergraph 2-Colorability: Kernel

Construction

- Let every edge have exactly d vertices
- ► Edges e₁,..., e_m
- ► Enumerate all size d − 1 subsets of V as S₁, S₂,..., S_ℓ
- Create (0, 1)-matrix M

- Compute a base of the columns of this matrix.
- This results in a subset of the edges of G

d-Hypergraph 2-Colorability: Kernel

Size

- Matrix M has at most $\binom{n}{d-1} \leq n^{d-1}$ rows
- ► Any base of M contains at most n^{d-1} edges

Correctness

- ► If G is 2-colorable, so is the reduced graph
- Edges in the base are split implies removed edges split
 - Proof uses a lemma by Lovász (1976)
 - Critical 3-chromatic hypergraphs have at most $O(n^{d-1}) \mbox{ edges}$
 - Transferred proof idea into kernel

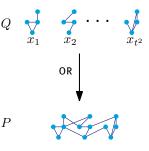
Degree-2 cross-composition

Degree-2 cross-composition to P gives kernel lower bound $O(n^2)$

Degree-2 cross-composition

By Bodlaender et al. (SIDMA14)

- Start from any NP-hard problem Q
- Give a polynomial time algorithm
- Input: t² similar instances of Q
- Output: An instance (y, k) of P, where
 - $k = O(t \cdot \max |x_i|^c)$
 - (y,k) is a logical OR of the inputs



Goal

Prove that there is no kernel of size $O(n^{2-\varepsilon})$ for 4-Coloring.

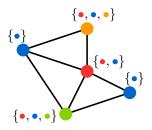
Goal

Prove that there is no kernel of size $O(n^{2-\epsilon})$ for 4-Coloring.

4-LIST COLORING

We use list coloring with 4 colors in total, instead of 4-COLORING.

- Vertex has list of allowed colors
 - Subset of $\{\bullet, \bullet, \bullet, \bullet\}$



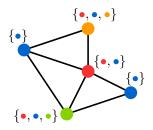
Goal

Prove that there is no kernel of size $O(n^{2-\epsilon})$ for 4-Coloring.

4-LIST COLORING

We use list coloring with 4 colors in total, instead of 4-COLORING.

- Vertex has list of allowed colors
 - Subset of {•, •, •, •}
- Transform back to 4-COLORING



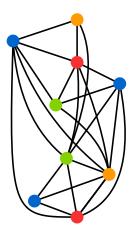
Goal

Prove that there is no kernel of size $O(n^{2-\epsilon})$ for 4-Coloring.

4-LIST COLORING

We use list coloring with 4 colors in total, instead of 4-COLORING.

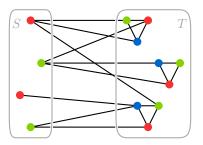
- Vertex has list of allowed colors
 - Subset of {•, •, •, •}
- Transform back to 4-COLORING



NP-hard starting problem

2-3-COLORING ON TRIANGLE-SPLIT GRAPHS

- ► Input: Graph G = (S ∪ T, E) where S is an independent set and T consists of disjoint triangles.
- Question: Does G have a proper 3-coloring, such that S is colored using only 2 colors?
 - We call this a 2-3-coloring of G.



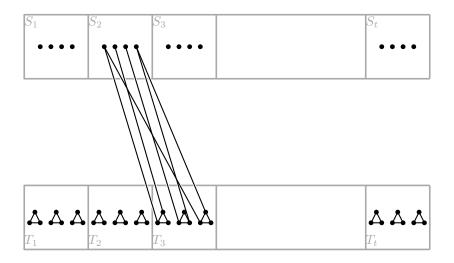
- Assume we have t² instances
- Let |S| = n and |T| = 3m for all instances
- Construct a cross-composition
 - At most $O(t \cdot (n+m))$ vertices
- We cannot copy all vertices
 - But we can keep all edges
 - Method introduced by Dell and Marx (SODA12)
- Enumerate instances as X_{ij} , where $i = 1, \dots, t$

S_1	S_2	S_3	S_t
••••	• • • •	• • • •	• • • •

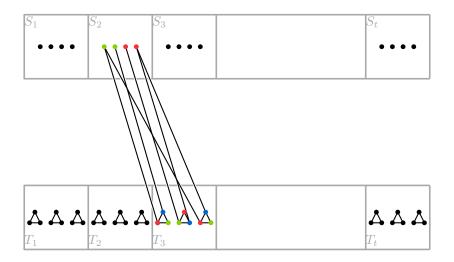
	ممم	۵۵۵	ممم
T_1	T_2	T_3	T_t

Instance X_{23} ?

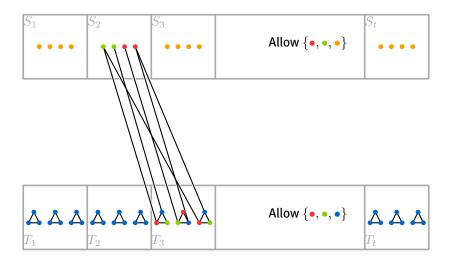
۵۵۵	۵۵۵	۵۵۵	۵۵۵	
T_1	T_2	T_3	T_t	



15/25

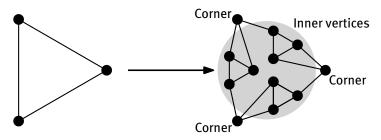


15/25



4-Coloring: Triangular gadget

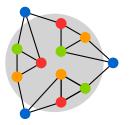
This is not a valid coloring of the triangles. Replace them:



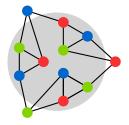
Allow the new vertices to be red, green, orange, or blue.

Useful properties

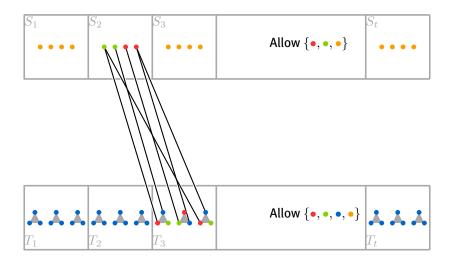
We can color all corners blue



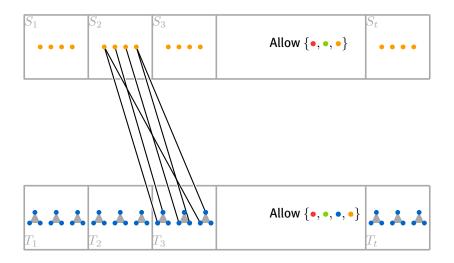
If 3-colored: ordinary triangle



4-Coloring: Improved



4-Coloring: Improved

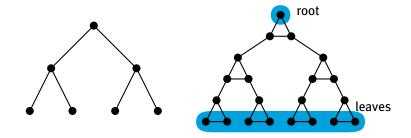


18/25

Ensure one $S_{\mathfrak{i}}$ and one $T_{\mathfrak{j}}$ are colored without orange

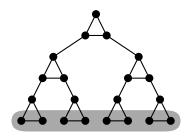
Treegadget

Complete binary tree where every vertex is replaced by a triangle:



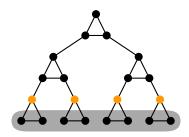
Suppose we want to 3-color a gadget, using red, green and orange.

Property 1



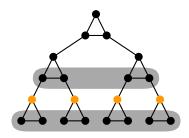
Suppose we want to 3-color a gadget, using red, green and orange.

Property 1



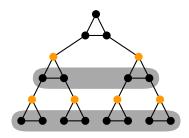
Suppose we want to 3-color a gadget, using red, green and orange.

Property 1



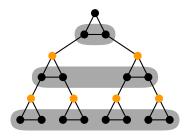
Suppose we want to 3-color a gadget, using red, green and orange.

Property 1



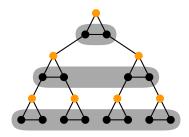
Suppose we want to 3-color a gadget, using red, green and orange.

Property 1



Suppose we want to 3-color a gadget, using red, green and orange.

Property 1

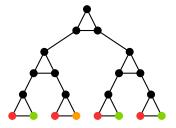


Suppose we want to 3-color a gadget, using red, green and orange.

Property 2

We can extend a coloring of the leaves, to color the entire tree.

▶ If at least one of the leaves is orange, the root can be red or green.

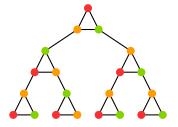


Suppose we want to 3-color a gadget, using red, green and orange.

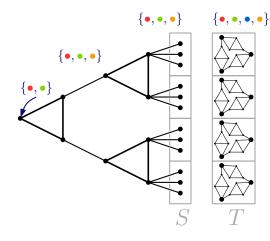
Property 2

We can extend a coloring of the leaves, to color the entire tree.

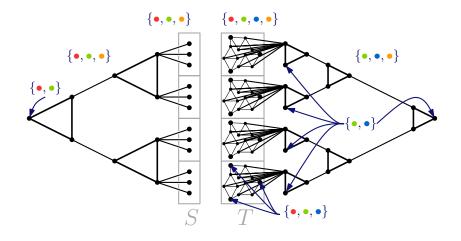
▶ If at least one of the leaves is orange, the root can be red or green.



Ensure one group in S is colored with red and green.



Ensure one group in T is colored with red, green and orange.



- ✓ The number of vertices of G is allowed: $O(t \cdot max |X_{ij}|)$.
- Can be done in polynomial time.
- ✓ If some X_{ij} is 2-3-colorable, G is 4-colorable.
- ✓ If G is 4-colorable, there exists an X_{ij} that is 2-3-colorable.

Theorem

4-COLORING does not have a generalized kernel of size $O(n^{2-\epsilon})$ for $\epsilon>0$, unless $NP\subseteq coNP/poly.$

Conclusion

- Non-sparsifiability of several classic graph problems
 - Implications for k-Non blocker and k-Max leaf spanning tree
- Generalized kernel for NAE-SAT
 - One of the first non-trivial sparsifications.

Open problems

- Does 3-COLORING allow sparsification?
- Sparsification of NP-hard problem on general graphs
- Sparsification of edge-based problems
 - Max Cut

Conclusion

- Non-sparsifiability of several classic graph problems
 - Implications for k-Non blocker and k-Max leaf spanning tree
- Generalized kernel for NAE-SAT
 - One of the first non-trivial sparsifications.

Open problems

- Does 3-COLORING allow sparsification?
- Sparsification of NP-hard problem on general graphs
- Sparsification of edge-based problems
 - Max Cut

Thank you for your attention