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The g-Coloring problem

Can the vertices of a graph be colored with at most g colors?

» NP-hard, use a parameterized approach

Which parameter(s)?
» Number of colors
» Uninteresting

» Structural parameters

» In this talk: Vertex Cover

» Number of vertices (sparsification)



Previous work

» Fiala et al.: coloring problems parameterized by
» Vertex Cover vs. Treewidth

» Jansen and Kratsch: parameter hierarchy for graph coloring

Jansen and Kratsch [inf comput. 2013] showed that
» g-Coloring parameterized by VC has a kernel of bitsize O(k9)

» But no kernel of size O(kq_l_a) for @ > 4 unless NP C coNP /poly

Jansen and P. [Algorithmica 2017]

» g-Coloring for g > 4 has no non-trivial sparsification
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» But no kernel of size O(kq_l_e) for @ > 4 unless NP C coNP /poly

Jansen and P. [Algorithmica 2017]

» g-Coloring for g > 4 has no non-trivial sparsification

Open problems
» Factor k-gap between upper- and lower bound

» Sparsification bound for g = 3
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Our results

Theorem

g-Coloring parameterized by Vertex Cover has a kernel with
O(k9~1) vertices and bitsize O(k9~ log k).

Theorem
3-Coloring with n vertices has no kernel of bitsize O(n*~¢),
unless NP C coNP /poly.
Consequently,
» 3-Coloring has no kernel of bitsize O(k>~¢)
» g-Coloring has no kernel of bitsize O(k9717¢), for g > 3

Matching upper and lower bound, up to k°(1) factors
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Kernel: general idea

We have graph G, with vertex cover vC
The remaining vertices form independent set 1S

> IS may be large compared to vC
» Find redundant vertices in IS

» Any coloring of G — u can be
extended to G

» Example for 3-coloring: u and w
» Degree smaller than g

» Similarly, find redundant edges
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Vertices in 1S can be colored independently

» Each vertex in IS corresponds to a constraint
» Neighborhood does not use all g colors
» Gives constraints on the coloring of vC /@

» |If some coloring of VC satisfies all constraints, it
can be extended to 1S

®

Alternatively, if for all S C N(v) with |S| =gq

@

Some color is used twice for S

0

coloring can be extended to v

» Proof by contradiction



Finding redundant constraints

Let L be a set of polynomial equalities of degree at most d,
over n boolean variables.

L={
X1X2 + Xox3 + X4 =2 0
x1+1=,0
x3x1+1=50

Theorem (ansen and P. MFCS 2016]

There is a polynomial-time algorithm that outputs L' C L, s.t.
» An assignment satisfies L if and only if it satisfies L' and
» || <nd+1



Modeling vertices as constraints

Polynomial equalities

> Create g boolean variables for each vertex in vC.

» C,,; denotes whether vertex v has color i
» For each vertex v in1s, S C N(v) with |S| = ¢
» Constraint: S does not use all g colors.
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Modeling vertices as constraints

Polynomial equalities
> Create g boolean variables for each vertex in vC.
» C,,; denotes whether vertex v has color i
» For each vertex v in1s, S C N(v) with |S| = ¢
» Constraint: S does not use all g colors.

®

Which polynomial to use? ®
> Needs to have degree < g—1
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Polynomial equalities for 3-Coloring

» 3 variables for each v € vC ..@

Let v €15, foreach S C N(v) : |S| =¢q
» Polynomial equality of degree 2
» For S ={a, d, e}:

@0 @0 @O+
@0 00 @O
@00+ @@ +@®-=1

» Expresses: a,d, and e do not use all 3 colors

» Three equal colors gives 3 =, 1
» Two equal colors gives 1
» Three different colors gives 0

> Also exists for g-Coloring
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Kernel for g-Coloring

» Model vertices in IS by constraints
» Use Theorem to find subset L’ of relevant constraints

» Keep only vertices and edges used for relevant constraints
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Kernel size

v

Number of constraints O(# vars?esree)

> q - k variables
> degree g — 1

Number of constraints O((qk)9~?!)
» Constraint corresponds to < 1 vertex and < g edges
Encode graph in O(k9~!log k) bits for g fixed

v

v

Theorem

g-Coloring parameterized by Vertex Cover has a kernel with
O(k9~1) vertices and bitsize O(k9~ log k).



Sparsification lower bound



Lower bound

We show that 3-Coloring has no kernel of size O(|V/(G)|?>~¢)

Degree-2 cross-composition

» Start from NP-hard problem @ é '§: \}
» Choose Q carefully DA Xe2

> Give a polynomial-time algorithm: on

» Input: t? similar instances of Q l

» Output: Instance G s.t. G
> |V(G)[ = O(t - max|xi|) A
» G is 3-colorable if and only if at least
one of the inputs a yes-instance



Starting problem

Restricted Coloring with Triangle Split Decomposition

[Jansen and P. Algorithmica 2017]

Input: graph G with partitioning of the vertices V(G) =SU T
» S is an independent set in G
» G[T] is a disjoint union of triangles

Question: |s there a proper 3-coloring of G (using red,green,blue),
such that no vertex in S is colored blue?

We call this a restricted coloring



Cross-composition: General strategy

Combine t* = 16 instances of size n into one of size O(t - no(l))
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Polynomial for g-Coloring

For 3-Coloring:
@0 @00 @O+
@0 00 ©0=

Formula:
Y11 Y22 +y11-Y32+y21- Y12+ Y2132+ Y3112+ y31-y2,2 =20
In general:

g—1
Z H Yigk =20

i,....ilq—1€[q] k=1
distinct



