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The q-Coloring problem

Can the vertices of a graph be colored with at most q colors?

I NP-hard, use a parameterized approach

Which parameter(s)?
I Number of colors

I Uninteresting

I Structural parameters
I In this talk: Vertex Cover

I Number of vertices (sparsification)



Previous work

I Fiala et al.: coloring problems parameterized by
I Vertex Cover vs. Treewidth

I Jansen and Kratsch: parameter hierarchy for graph coloring

Jansen and Kratsch [Inf Comput. 2013] showed that

I q-Coloring parameterized by VC has a kernel of bitsize O(kq)

I But no kernel of size O(kq−1−ε) for q ≥ 4 unless NP ⊆ coNP/poly

Jansen and P. [Algorithmica 2017]

I q-Coloring for q ≥ 4 has no non-trivial sparsification

Open problems

I Factor k-gap between upper- and lower bound

I Sparsification bound for q = 3
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Our results

Theorem

q-Coloring parameterized by Vertex Cover has a kernel with
O(kq−1) vertices and bitsize O(kq−1 log k).

Theorem

3-Coloring with n vertices has no kernel of bitsize O(n2−ε),
unless NP ⊆ coNP/poly.

Consequently,

I 3-Coloring has no kernel of bitsize O(k2−ε)

I q-Coloring has no kernel of bitsize O(kq−1−ε), for q ≥ 3

Matching upper and lower bound, up to ko(1) factors



Our results

Theorem

q-Coloring parameterized by Vertex Cover has a kernel with
O(kq−1) vertices and bitsize O(kq−1 log k).

Theorem

3-Coloring with n vertices has no kernel of bitsize O(n2−ε),
unless NP ⊆ coNP/poly.

Consequently,

I 3-Coloring has no kernel of bitsize O(k2−ε)

I q-Coloring has no kernel of bitsize O(kq−1−ε), for q ≥ 3

Matching upper and lower bound, up to ko(1) factors



Our results

Theorem

q-Coloring parameterized by Vertex Cover has a kernel with
O(kq−1) vertices and bitsize O(kq−1 log k).

Theorem

3-Coloring with n vertices has no kernel of bitsize O(n2−ε),
unless NP ⊆ coNP/poly.

Consequently,

I 3-Coloring has no kernel of bitsize O(k2−ε)

I q-Coloring has no kernel of bitsize O(kq−1−ε), for q ≥ 3

Matching upper and lower bound, up to ko(1) factors



Our results

Theorem

q-Coloring parameterized by Vertex Cover has a kernel with
O(kq−1) vertices and bitsize O(kq−1 log k).

Theorem

3-Coloring with n vertices has no kernel of bitsize O(n2−ε),
unless NP ⊆ coNP/poly.

Consequently,

I 3-Coloring has no kernel of bitsize O(k2−ε)

I q-Coloring has no kernel of bitsize O(kq−1−ε), for q ≥ 3

Matching upper and lower bound, up to ko(1) factors



Kernel for q-Coloring



Kernel: general idea

We have graph G , with vertex cover vc
The remaining vertices form independent set is

I is may be large compared to vc

I Find redundant vertices in is
I Any coloring of G − u can be

extended to G

I Example for 3-coloring: u and w
I Degree smaller than q

I Similarly, find redundant edges
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Kernel: general idea

Vertices in is can be colored independently

I Each vertex in is corresponds to a constraint
I Neighborhood does not use all q colors

I Gives constraints on the coloring of vc
I If some coloring of vc satisfies all constraints, it

can be extended to is

Alternatively, if for all S ⊆ N(v) with |S | = q

Some color is used twice for S

m

coloring can be extended to v

I Proof by contradiction
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Finding redundant constraints

Let L be a set of polynomial equalities of degree at most d ,
over n boolean variables.

L = {
x1x2 + x2x3 + x4 ≡2 0

x1 + 1 ≡2 0

x3x1 + 1 ≡2 0

...

}

Theorem [Jansen and P. MFCS 2016]

There is a polynomial-time algorithm that outputs L′ ⊆ L, s.t.

I An assignment satisfies L if and only if it satisfies L′ and

I |L′| ≤ nd + 1



Modeling vertices as constraints

Polynomial equalities
I Create q boolean variables for each vertex in vc.

I Cv ,i denotes whether vertex v has color i

I For each vertex v in is, S ⊆ N(v) with |S | = q
I Constraint: S does not use all q colors.

Which polynomial to use?

I Needs to have degree ≤ q − 1
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Polynomial equalities for 3-Coloring

I 3 variables for each v ∈ vc v v v

Let v ∈ is, for each S ⊆ N(v) : |S | = q
I Polynomial equality of degree 2

I For S = {a, d , e}:

a ∧ d + a ∧ e + d ∧ e +

a ∧ + ∧ + ∧d a e d e

∧ + ∧ + ∧a d a e d e +

≡2 1

I Expresses: a,d , and e do not use all 3 colors
I Three equal colors gives 3 ≡2 1
I Two equal colors gives 1
I Three different colors gives 0

I Also exists for q-Coloring
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Kernel for q-Coloring

I Model vertices in is by constraints
I Use Theorem to find subset L′ of relevant constraints
I Keep only vertices and edges used for relevant constraints
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Kernel size

I Number of constraints O(#varsdegree)
I q · k variables
I degree q − 1

I Number of constraints O((qk)q−1)

I Constraint corresponds to ≤ 1 vertex and ≤ q edges

I Encode graph in O(kq−1 log k) bits for q fixed

Theorem

q-Coloring parameterized by Vertex Cover has a kernel with
O(kq−1) vertices and bitsize O(kq−1 log k).



Sparsification lower bound



Lower bound

We show that 3-Coloring has no kernel of size O(|V (G )|2−ε)

Degree-2 cross-composition

I Start from NP-hard problem Q
I Choose Q carefully

I Give a polynomial-time algorithm:

I Input: t2 similar instances of Q
I Output: Instance G s.t.

I |V (G )| = O(t ·max |xi |c)
I G is 3-colorable if and only if at least

one of the inputs a yes-instance

G

or

...
x1 x2 xt2



Starting problem

Restricted Coloring with Triangle Split Decomposition
[Jansen and P. Algorithmica 2017]

Input: graph G with partitioning of the vertices V (G ) = S ∪ T

I S is an independent set in G

I G [T ] is a disjoint union of triangles

Question: Is there a proper 3-coloring of G (using red,green,blue),
such that no vertex in S is colored blue?

We call this a restricted coloring



Cross-composition: General strategy
Combine t2 = 16 instances of size n into one of size O(t · nO(1))

X1,1

X2,1

X3,1

X4,1

X1,4

X2,4

X3,4

X4,4

X1,2
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X3,2
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Ensuring or-property
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Conclusion

q-Coloring has

I a kernel with bitsize O(kq−1 log k)

I no kernel with bitsize O(kq−1−ε) unless NP ⊆ coNP/poly

3-Coloring

I has no kernel with bitsize O(n2−ε) unless NP ⊆ coNP/poly

Techniques

I Finding redundant constraints applied to graph problem

I Method of copying vertices for cross-composition

Future work
I Exact kernel bounds for q-Coloring with other parameters

I Modulator to cograph

Thank you!
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Polynomial for q-Coloring

For 3-Coloring:

∧ + ∧ + ∧ ≡2 0

∧ d + ∧ + ∧ +a ea ed

ad ae de

Formula:

y1,1 ·y2,2+y1,1 ·y3,2+y2,1 ·y1,2+y2,1 ·y3,2+y3,1 ·y1,2+y3,1 ·y2,2 ≡2 0

In general: ∑
i1,...,iq−1∈[q]

distinct

q−1∏
k=1

yik ,k ≡2 0


