
Optimal Sparsification for Some
Binary CSPs Using Low-Degree
Polynomials

Bart M. P. Jansen and Astrid Pieterse

August 23, 2016

Sparsification

I Polynomial-time preprocessing
I Making a graph or logical structure less “dense”
I Graph problems

• Reduce the number of edges
I Satisfiability

• Reducing the number of clauses
• Keeping the yes/no-answer (x∨y)∧(∨. . .∨)∧. . .

Sparsification

Reduce the size of an input instance, before solving the problem.

Sparsification of satisfaction problems

I Algorithm mapping formula F on n variables to F ′

• The running time is polynomial
• |F ′|, n ′ are bounded by f(n)
• F ′ is a YES-instance if and only if
F is a YES-instance

I f(n) is the size

F

F ′ n
′

n

Previous results

No polynomial-time sparsification maintaining the solution
(unlessNP ⊆ coNP/poly)

I d-CNF-SAT toO(nd−ε)
• Dell, van Melkebeek (J ACM14, STOC10)

I TREEWIDTH toO(n2−ε)
• Jansen (Algorithmica 15, IPEC13)

I HAMILTONIAN CYCLE toO(n2−ε)
• And a number of other graph problems
• Jansen, Pieterse (IPEC15)

But d-NAE-SAT has a sparsification of size Õ(nd−1)!
I Jansen, Pieterse (IPEC15)

Another variation: EXACT SATISFIABILITY

Previous results

No polynomial-time sparsification maintaining the solution
(unlessNP ⊆ coNP/poly)

I d-CNF-SAT toO(nd−ε)
• Dell, van Melkebeek (J ACM14, STOC10)

I TREEWIDTH toO(n2−ε)
• Jansen (Algorithmica 15, IPEC13)

I HAMILTONIAN CYCLE toO(n2−ε)
• And a number of other graph problems
• Jansen, Pieterse (IPEC15)

But d-NAE-SAT has a sparsification of size Õ(nd−1)!
I Jansen, Pieterse (IPEC15)

Another variation: EXACT SATISFIABILITY

Previous results

No polynomial-time sparsification maintaining the solution
(unlessNP ⊆ coNP/poly)

I d-CNF-SAT toO(nd−ε)
• Dell, van Melkebeek (J ACM14, STOC10)

I TREEWIDTH toO(n2−ε)
• Jansen (Algorithmica 15, IPEC13)

I HAMILTONIAN CYCLE toO(n2−ε)
• And a number of other graph problems
• Jansen, Pieterse (IPEC15)

But d-NAE-SAT has a sparsification of size Õ(nd−1)!
I Jansen, Pieterse (IPEC15)

Another variation: EXACT SATISFIABILITY

Exact Satisfiability

Input A formula in CNF form, consisting of clauses, each consisting of a
number of literals.

{¬x,¬y}︸ ︷︷ ︸
clause

∧{¬y, z} ∧ {x, z}

Parameter The number of variables n.

Question Does there exists an assignment to the variables, such that each
clause contains exactly one true literal?

Sparsification for Exact Satisfiability

Example
Let x, y, z ∈ {0, 1} (where 0 is false, 1 is true), then

{¬x,¬y} ∧ {¬y, z} ∧ {x, z}

is exact-satisfiable ⇔
(1 − x) + (1 − y) = 1
(1− y) + z = 1
x+ z = 1

⇔
x+ y = 1
z− y = 0
x+ z = 1

+

I Clause {x, z} is satisfied if the other two clauses are satisfied.

Sparsification for Exact Satisfiability

Example
Let x, y, z ∈ {0, 1} (where 0 is false, 1 is true), then

{¬x,¬y} ∧ {¬y, z} ∧ {x, z}

is exact-satisfiable ⇔
(1 − x) + (1 − y) = 1
(1− y) + z = 1
x+ z = 1

⇔
x+ y = 1
z− y = 0
x+ z = 1

+

I Clause {x, z} is satisfied if the other two clauses are satisfied.

Sparsification for Exact Satisfiability

Example
Let x, y, z ∈ {0, 1} (where 0 is false, 1 is true), then

{¬x,¬y} ∧ {¬y, z} ∧ {x, z}

is exact-satisfiable ⇔
(1 − x) + (1 − y) = 1
(1− y) + z = 1
x+ z = 1

⇔
x+ y = 1
z− y = 0
x+ z = 1

+

I Clause {x, z} is satisfied if the other two clauses are satisfied.

Sparsification for Exact Satisfiability

Example
Let x, y, z ∈ {0, 1} (where 0 is false, 1 is true), then

{¬x,¬y} ∧ {¬y, z} ∧ {x, z}

is exact-satisfiable ⇔
(1 − x) + (1 − y) = 1
(1− y) + z = 1
x+ z = 1

⇔
x+ y = 1
z− y = 0
x+ z = 1

+

I Clause {x, z} is satisfied if the other two clauses are satisfied.

Sparsification for Exact Satisfiability

Example
Let x, y, z ∈ {0, 1} (where 0 is false, 1 is true), then

{¬x,¬y} ∧ {¬y, z} ∧ {x, z}

is exact-satisfiable ⇔
(1 − x) + (1 − y) = 1
(1− y) + z = 1
x+ z = 1

⇔
x+ y = 1
z− y = 0
x+ z = 1

+

I Clause {x, z} is satisfied if the other two clauses are satisfied.

Sparsification for Exact Satisfiability

Algorithm

I Given formula F
I Rewrite by giving an linear equation for each clause
I Find a basis of the row-space

• Use Gaussian elimination

I Remove constraints not in the basis


1 0 ... 1

1 1 ... 0

...

...

0 −1 ... 1


 x1

...
xn

 =


1

1
...
...
0



Sparsification for Exact Satisfiability

Algorithm

I Given formula F
I Rewrite by giving an linear equation for each clause
I Find a basis of the row-space

• Use Gaussian elimination

I Remove constraints not in the basis


1 0 ... 1

1 1 ... 0

...

...

0 −1 ... 1


 x1

...
xn

 =


1

1
...
...
0



Sparsification for Exact Satisfiability

Algorithm

I Given formula F
I Rewrite by giving an linear equation for each clause
I Find a basis of the row-space

• Use Gaussian elimination

I Remove constraints not in the basis


1 0 ... 1 1

1 1 ... 0 1

...

...

0 −1 ... 1 0



Sparsification for Exact Satisfiability

Algorithm

I Given formula F
I Rewrite by giving an linear equation for each clause
I Find a basis of the row-space

• Use Gaussian elimination

I Remove constraints not in the basis


1 0 ... 1 1

1 1 ... 0 1

...

...

0 −1 ... 1 0



Sparsification for Exact Satisfiability

Algorithm

I Given formula F
I Rewrite by giving an linear equation for each clause
I Find a basis of the row-space

• Use Gaussian elimination

I Remove constraints not in the basis

 1 0 ... 1 1

1 1 ... 0 1

...



Sparsification for Exact Satisfiability

Correctness

I Polynomial time
I yes-instance after removing constraints⇒ F is a yes-instance

Size

I Matrix size (#clauses)× (n+ 1)

I At most n+ 1 clauses remaining
I For bounded clause Õ(n) bits, else Õ(n2)

Constraint Satisfaction Problems

Constraints over set of variables V
I We consider 0/1-variables
I Constraint R(x1, . . . , xk) applies relation R to variables x1, . . . , xk ∈ V

Schaefer’s dichotomy theorem
I Depending on the properties of used relations R

• Polynomial time solvable
• or NP-hard

Can we get a similar classification for sparsification bounds?

Constraint Satisfaction Problems

Constraints over set of variables V
I We consider 0/1-variables
I Constraint R(x1, . . . , xk) applies relation R to variables x1, . . . , xk ∈ V

Schaefer’s dichotomy theorem
I Depending on the properties of used relations R

• Polynomial time solvable
• or NP-hard

Can we get a similar classification for sparsification bounds?

Constraint Satisfaction Problems

Constraints over set of variables V
I We consider 0/1-variables
I Constraint R(x1, . . . , xk) applies relation R to variables x1, . . . , xk ∈ V

Schaefer’s dichotomy theorem
I Depending on the properties of used relations R

• Polynomial time solvable
• or NP-hard

Can we get a similar classification for sparsification bounds?

Relating results so far

Õ(nd) d-CNF-SAT is d-OPTIONS SAT use S := {1, 2, . . . , d}

Õ(nd−1) d-NAE-SAT is (d− 1)-OPTIONS SAT use S := {1, 2, . . . , d− 1}

Õ(n) d-EXACT-SAT is 1-OPTIONS SAT use S := {1}

c-Options Sat
Input A set of clauses over variables V and set Si ⊂ N with |Si| 6 c.

Parameter The number of variables n.

Question Does there exists an assignment to the variables, such the num-
ber of true literals in clause i lies in Si?

Relating results so far

Õ(nd) d-CNF-SAT is d-OPTIONS SAT use S := {1, 2, . . . , d}

Õ(nd−1) d-NAE-SAT is (d− 1)-OPTIONS SAT use S := {1, 2, . . . , d− 1}

Õ(n) d-EXACT-SAT is 1-OPTIONS SAT use S := {1}

c-Options Sat
Input A set of clauses over variables V and set Si ⊂ N with |Si| 6 c.

Parameter The number of variables n.

Question Does there exists an assignment to the variables, such the num-
ber of true literals in clause i lies in Si?

Relating results so far

Õ(nd) d-CNF-SAT is d-OPTIONS SAT use S := {1, 2, . . . , d}

Õ(nd−1) d-NAE-SAT is (d− 1)-OPTIONS SAT use S := {1, 2, . . . , d− 1}

Õ(n) d-EXACT-SAT is 1-OPTIONS SAT use S := {1}

c-Options Sat
Input A set of clauses over variables V and set Si ⊂ N with |Si| 6 c.

Parameter The number of variables n.

Question Does there exists an assignment to the variables, such the num-
ber of true literals in clause i lies in Si?

c-Options Sat: Results

c-OPTIONS SAT has a sparsification withO(nc) clauses
I Bitsize Õ(nc+1) if no bound on clause size

c-Options Sat represented by polynomials

Given Si we can find a polynomial f of degree c

f(x1, . . . , xk) = 0⇔ clause (x1, . . . , xk) is satisfied

Example S := {1, 3}, c = 2, clause (w, x, y, z)

I Satisfied ifw+ x+ y+ z = a ∈ {1, 3}

I LetG(a) = (a− 1) · (a− 3)
• G(1) = G(3) = 0

I Let f(w, x, y, z) := G(w+ x+ y+ z)

c-Options Sat represented by polynomials

Given Si we can find a polynomial f of degree c

f(x1, . . . , xk) = 0⇔ clause (x1, . . . , xk) is satisfied

Example S := {1, 3}, c = 2, clause (w, x, y, z)

I Satisfied ifw+ x+ y+ z = a ∈ {1, 3}

I LetG(a) = (a− 1) · (a− 3)
• G(1) = G(3) = 0

I Let f(w, x, y, z) := G(w+ x+ y+ z)

c-Polynomial root CSP

Input A list of polynomial equalities of the form f(x1, . . . , xk) = 0

where f has degree at most c.

Parameter The number of variables n.

Question Does there exists an assignment to the variables, such that all
equalities are satisfied?

c-Polynomial non-root CSP

Input A list of polynomial inequalities f(x1, . . . , xn) 6= 0 where f has
degree at most c.

Parameter The number of variables n.

Question Does there exists an assignment to the variables, such that all
inequalities are satisfied?

Our results

c-Polynomial - over R Z mod p Z modm

root CSP UB1 Õ(nc+1) Õ(nc+1) ?

LB2 Ω(nc+1−ε) Ω(nc+1−ε) Ω(nc+1−ε)

non-root CSP UB1 - Õ(nc(p−1)+1) ?

LB2 Exp Ω(nc(p−1)−ε) Ω(ndr/2−ε)

1Assuming clauses of size 6 n are encoded in Õ(n) bits.
2∀ε > 0, assumingNP 6⊆ coNP/poly

A sparsification for c-Polynomial root CSP

Algorithm

I Given input F
I One matrix row for each polynomial equality

• f(x, y) = α0 + α1x+ α2y+ α3xy+ . . .
• g(x, y) = β0 + β1x+ β2y+ β3xy+ . . .


1 x y xy ...

f α0 α1 α2 α3 ...
g β0 β1 β2 β3 ...
...


I Find redundant constraints

• Do Gaussian elimination to find a basis of the row-space of the matrix

I Remove them

A sparsification for c-Polynomial root CSP

Correctness
Removed constraints are a linear combination of remaining constraints.

Size
I One column for each coefficient

• O(nc) multilinear monomials givesO(nc) columns

I At mostO(nc) remaining constraints

Generalizations
Works with polynomial equalities over any field

I For example, Z/pZ

A sparsification for c-Polynomial root CSP

Correctness
Removed constraints are a linear combination of remaining constraints.

Size
I One column for each coefficient

• O(nc) multilinear monomials givesO(nc) columns

I At mostO(nc) remaining constraints

Generalizations
Works with polynomial equalities over any field

I For example, Z/pZ

A sparsification for c-Polynomial root CSP

Correctness
Removed constraints are a linear combination of remaining constraints.

Size
I One column for each coefficient

• O(nc) multilinear monomials givesO(nc) columns

I At mostO(nc) remaining constraints

Generalizations
Works with polynomial equalities over any field

I For example, Z/pZ

Lower bound

Is the given sparsification “optimal”?
I O(nc) remaining constraints
I Sparsification size Õ(nc+1)

I We showed that the problem has no sparsification of sizeO(nc+1−ε), if
NP 6⊆ coNP/poly

• “Simple” polynomials
• Using cross-composition, details in the paper

c-Polynomial non-root CSP over R

1-Polynomial non-root CSP can express CNF-SAT

I Clause (x∨ y∨ z) is equivalent to

x+ y+ z 6= 0

d-CNF-SAT does not have a (more general type of) sparsification of sizeO(nd−ε)

I UnlessNP ⊆ coNP/poly
No polynomial sparsification for 1-Polynomial non-root CSP

c-Polynomial non-root CSP mod p

Use the sparsification for c-Polynomial root CSP
I Consider f(x1, . . . , xk) 6= 0 (mod p)
I Equivalent to f(x1, . . . , xk) ∈ {1, 2, . . . , p− 1} (mod p)
I LetG(x) := (x− 1) · (x− 2) · · · (x− p+ 1)
I f(x1, . . . , xk) 6= 0 (mod p)⇔ G(f(x1, . . . , xk)) = 0 (mod p)

• has degree c(p− 1)

Instance for c(p− 1)-Polynomial root CSP, constraints replaced byG ◦ f
I O(nc(p−1)) constraints remain
I LB: no sparsification of sizeO(nc(p−1)−ε)

Strategy fails when p is not prime!

Lower bound: c-Polynomial non-root CSP modm

Why does our strategy fail modulo a non-prime?
I Counter example form not prime
I m = 6, c = 3, procedure would giveO(nc(m−1)) = O(n15) clauses
I But, there is a degree-3 polynomial f such that

f(x1, x2, . . . , x27) 6= 0 (mod 6)⇔ (x1 ∨ x2 ∨ . . .∨ x27)

I No sparsification of sizeO(n27−ε) possible
• UnlessNP ⊆ coNP/poly

Conclusion

I Optimal sparsifications for two types of CSPs
I Relates existing results
I Open problems:

• CSPs represented by polynomial (in)equalities over non-field
• “the number of satisfied literals is one or two, modulo six”

Thank you!

Conclusion

I Optimal sparsifications for two types of CSPs
I Relates existing results
I Open problems:

• CSPs represented by polynomial (in)equalities over non-field
• “the number of satisfied literals is one or two, modulo six”

Thank you!

