Optimal Sparsification for Some Binary CSPs Using Low-Degree Polynomials

Bart M. P. Jansen and Astrid Pieterse

TU/e

Technische Universiteit Eindhoven University of Technology

August 23, 2016

- Polynomial-time preprocessing
- Making a graph or logical structure less "dense"
- Graph problems
 - Reduce the number of edges
- Satisfiability
 - Reducing the number of clauses
 - Keeping the yes/no-answer

 $(x \lor y) \land (\lor \ldots \lor) \land \ldots$

Sparsification

Reduce the size of an input instance, before solving the problem.

Sparsification of satisfaction problems

- Algorithm mapping formula F on n variables to F'
 - The running time is polynomial
 - $|\mathsf{F}'|, n'$ are bounded by $\mathsf{f}(n)$
 - F' is a YES-instance if and only if F is a YES-instance
- f(n) is the size

Previous results

No polynomial-time sparsification maintaining the solution (unless NP $\subseteq coNP/poly)$

- d-CNF-SAT to $O(n^{d-\epsilon})$
 - Dell, van Melkebeek (J ACM14, STOC10)
- Treewidth to $O(n^{2-\epsilon})$
 - Jansen (Algorithmica 15, IPEC13)
- Hamiltonian Cycle to $O(n^{2-\epsilon})$
 - And a number of other graph problems
 - Jansen, Pieterse (IPEC15)

But d-NAE-SAT has a sparsification of size $\widetilde{O}(n^{d-1})!$

Jansen, Pieterse (IPEC15)

Another variation: EXACT SATISFIABILITY

Previous results

No polynomial-time sparsification maintaining the solution (unless NP $\subseteq coNP/poly)$

- d-CNF-SAT to $O(n^{d-\epsilon})$
 - Dell, van Melkebeek (J ACM14, STOC10)
- Treewidth to $O(n^{2-\epsilon})$
 - Jansen (Algorithmica 15, IPEC13)
- Hamiltonian Cycle to $O(n^{2-\epsilon})$
 - And a number of other graph problems
 - Jansen, Pieterse (IPEC15)

But d-nae-sat has a sparsification of size $\widetilde{O}(n^{d-1})!$

Jansen, Pieterse (IPEC15)

Previous results

No polynomial-time sparsification maintaining the solution (unless NP $\subseteq coNP/poly)$

- d-CNF-SAT to $O(n^{d-\epsilon})$
 - Dell, van Melkebeek (J ACM14, STOC10)
- TREEWIDTH to $O(n^{2-\epsilon})$
 - Jansen (Algorithmica 15, IPEC13)
- Hamiltonian Cycle to $O(n^{2-\epsilon})$
 - And a number of other graph problems
 - Jansen, Pieterse (IPEC15)

But d-nae-sat has a sparsification of size $\widetilde{O}(n^{d-1})!$

Jansen, Pieterse (IPEC15)

Another variation: EXACT SATISFIABILITY

Input A formula in CNF form, consisting of clauses, each consisting of a number of literals.

$$\underbrace{\{\neg x, \neg y\}}_{\mathsf{clause}} \land \{\neg y, z\} \land \{x, z\}$$

Parameter The number of variables n.

Question Does there exists an assignment to the variables, such that each clause contains exactly one *true* literal?

Let $x, y, z \in \{0, 1\}$ (where 0 is false, 1 is true), then

 $\begin{array}{ll} \{\neg \mathbf{x}, \neg \mathbf{y}\} \land \{\neg \mathbf{y}, \mathbf{z}\} \land \{\mathbf{x}, \mathbf{z}\} & (1 - \mathbf{x}) + (1 - \mathbf{y}) = 1 & \mathbf{x} + \mathbf{y} = 1 \\ \text{is exact-satisfiable} & (1 - \mathbf{y}) + \mathbf{z} & = 1 & \Leftrightarrow & \mathbf{z} - \mathbf{y} = 0 \\ & \mathbf{x} + \mathbf{z} & = 1 & \mathbf{x} + \mathbf{z} = 1 \end{array}$

▶ Clause {*x*, *z*} is satisfied if the other two clauses are satisfied.

Let $x, y, z \in \{0, 1\}$ (where 0 is false, 1 is true), then

$$\{\neg x, \neg y\} \land \{\neg y, z\} \land \{x, z\} \qquad (1 - x) + (1 - y) = 1 \qquad x + y = 1 \\ \Leftrightarrow \qquad (1 - y) + z \qquad = 1 \qquad \Leftrightarrow \qquad z - y = 0 \\ x + z \qquad = 1 \qquad x + z = 1$$

Clause {x, z} is satisfied if the other two clauses are satisfied.

Let $x, y, z \in \{0, 1\}$ (where 0 is false, 1 is true), then

$$\begin{array}{lll} \{\neg x, \neg y\} \land \{\neg y, z\} \land \{x, z\} & (1 - x) + (1 - y) = 1 & x + y = 1 \\ \text{is exact-satisfiable} & \Leftrightarrow & (1 - y) + z & = 1 & \Leftrightarrow & z - y = 0 \\ & & x + z & = 1 & x + z = 1 \end{array}$$

Clause {x, z} is satisfied if the other two clauses are satisfied.

Let $x, y, z \in \{0, 1\}$ (where 0 is false, 1 is true), then

$$\{\neg x, \neg y\} \land \{\neg y, z\} \land \{x, z\} \qquad (1 - x) + (1 - y) = 1 \qquad x + y = 1 \\ \text{is exact-satisfiable} \qquad \Leftrightarrow \qquad (1 - y) + z \qquad = 1 \qquad \Leftrightarrow \qquad \frac{z - y = 0}{x + z = 1} +$$

Clause {x, z} is satisfied if the other two clauses are satisfied.

Let $x, y, z \in \{0, 1\}$ (where 0 is false, 1 is true), then

$$\{\neg x, \neg y\} \land \{\neg y, z\} \land \{x, z\} \qquad (1 - x) + (1 - y) = 1 \qquad x + y = 1 \\ \text{is exact-satisfiable} \qquad \Leftrightarrow \qquad (1 - y) + z \qquad = 1 \qquad \Leftrightarrow \qquad \frac{z - y = 0}{x + z = 1} +$$

► Clause {x, z} is satisfied if the other two clauses are satisfied.

- Given formula F
- Rewrite by giving an linear equation for each clause
- Find a basis of the row-space
 - Use Gaussian elimination
- Remove constraints not in the basis

$$\begin{pmatrix} 1 & 0 & \dots & 1 \\ 1 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & -1 & \dots & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$

- Given formula F
- Rewrite by giving an linear equation for each clause
- Find a basis of the row-space
 - Use Gaussian elimination
- Remove constraints not in the basis

$$\begin{pmatrix} 1 & 0 & \dots & 1 \\ 1 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & -1 & \dots & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$

- Given formula F
- Rewrite by giving an linear equation for each clause
- Find a basis of the row-space
 - Use Gaussian elimination
- Remove constraints not in the basis

$$\begin{pmatrix} 1 & 0 & \dots & 1 & | & 1 \\ 1 & 1 & \dots & 0 & | & 1 \\ \dots & \dots & \dots & \dots & | \\ \dots & \dots & \dots & \dots & \dots \\ 0 & -1 & \dots & 1 & | & 0 \end{pmatrix}$$

- Given formula F
- Rewrite by giving an linear equation for each clause
- Find a basis of the row-space
 - Use Gaussian elimination
- Remove constraints not in the basis

- Given formula F
- Rewrite by giving an linear equation for each clause
- Find a basis of the row-space
 - Use Gaussian elimination
- Remove constraints not in the basis

$$\begin{pmatrix} 1 & 0 & \dots & 1 & | & 1 \\ 1 & 1 & \dots & 0 & | & 1 \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

Correctness

- Polynomial time
- yes-instance after removing constraints \Rightarrow F is a yes-instance

Size

- Matrix size (#clauses) \times (n + 1)
- At most n + 1 clauses remaining
- ▶ For bounded clause $\widetilde{O}(n)$ bits, else $\widetilde{O}(n^2)$

Constraint Satisfaction Problems

Constraints over set of variables V

- We consider 0/1-variables
- Constraint $R(x_1,\ldots,x_k)$ applies relation R to variables $x_1,\ldots,x_k\in V$

Schaefer's dichotomy theorem

- Depending on the properties of used relations R
 - Polynomial time solvable
 - or NP-hard

Can we get a similar classification for sparsification bounds?

Constraint Satisfaction Problems

Constraints over set of variables V

- We consider 0/1-variables
- Constraint $R(x_1, \ldots, x_k)$ applies relation R to variables $x_1, \ldots, x_k \in V$

Schaefer's dichotomy theorem

- Depending on the properties of used relations R
 - Polynomial time solvable
 - or NP-hard

Can we get a similar classification for sparsification bounds?

Constraint Satisfaction Problems

Constraints over set of variables V

- We consider 0/1-variables
- Constraint $R(x_1, \ldots, x_k)$ applies relation R to variables $x_1, \ldots, x_k \in V$

Schaefer's dichotomy theorem

- Depending on the properties of used relations R
 - Polynomial time solvable
 - or NP-hard

Can we get a similar classification for sparsification bounds?

$\begin{array}{c|c} \widetilde{O}(n^d) & d\text{-CNF-SAT} & \text{is } d\text{-Options sat use } S := \{1, 2, \ldots, d\} \\ \widetilde{O}(n^{d-1}) & d\text{-NAE-SAT} & \text{is } (d-1)\text{-Options sat use } S := \{1, 2, \ldots, d-1\} \\ \widetilde{O}(n) & d\text{-Exact-sat} & \text{is } 1\text{-Options sat use } S := \{1\} \end{array}$

c-Options Sat

- Input A set of clauses over variables V and set $S_i \subset \mathbb{N}$ with $|S_i| \leqslant c.$
- **Parameter** The number of variables n.
- Question Does there exists an assignment to the variables, such the number of *true* literals in clause i lies in S_i ?

$\begin{array}{c|c} \widetilde{O}(n^d) & d\text{-CNF-SAT} & \text{is } d\text{-Options sat use } S := \{1, 2, \ldots, d\} \\ \widetilde{O}(n^{d-1}) & d\text{-NAE-SAT} & \text{is } (d-1)\text{-Options sat use } S := \{1, 2, \ldots, d-1\} \\ \widetilde{O}(n) & d\text{-Exact-sat} & \text{is } 1\text{-Options sat use } S := \{1\} \end{array}$

c-Options Sat

- $\label{eq:input} \text{Input} \qquad \text{A set of clauses over variables } V \text{ and set } S_i \subset \mathbb{N} \text{ with } |S_i| \leqslant c.$
- **Parameter** The number of variables n.
- **Question** Does there exists an assignment to the variables, such the number of *true* literals in clause i lies in S_i ?

$$\begin{array}{c|c} \widetilde{O}(n^d) & d\text{-CNF-SAT} & \text{is } d\text{-Options sat use } S := \{1, 2, \ldots, d\} \\ \widetilde{O}(n^{d-1}) & d\text{-NAE-SAT} & \text{is } (d-1)\text{-Options sat use } S := \{1, 2, \ldots, d-1\} \\ \widetilde{O}(n) & d\text{-Exact-sat} & \text{is } 1\text{-Options sat use } S := \{1\} \end{array}$$

c-Options Sat

- $\label{eq:input} \text{Input} \qquad \text{A set of clauses over variables } V \text{ and set } S_i \subset \mathbb{N} \text{ with } |S_i| \leqslant c.$
- **Parameter** The number of variables n.
- **Question** Does there exists an assignment to the variables, such the number of *true* literals in clause i lies in S_i ?

c-Options sat has a sparsification with $O(n^{c})\mbox{ clauses}$

- Bitsize $\widetilde{O}(n^{c+1})$ if no bound on clause size

Given S_{i} we can find a polynomial f of degree c

$$f(x_1, \dots, x_k) = 0 \Leftrightarrow \text{clause} (x_1, \dots, x_k)$$
 is satisfied

Example S := $\{1, 3\}$, c = 2, clause (w, x, y, z)

- Satisfied if $w + x + y + z = a \in \{1, 3\}$
- Let $G(a) = (a-1) \cdot (a-3)$
 - G(1) = G(3) = 0
- Let f(w, x, y, z) := G(w + x + y + z)

Given S_{i} we can find a polynomial f of degree c

$$f(x_1, \ldots, x_k) = 0 \Leftrightarrow \text{clause}(x_1, \ldots, x_k)$$
 is satisfied

Example S := {1,3}, c = 2, clause (w, x, y, z)

- Satisfied if $w + x + y + z = a \in \{1, 3\}$
- Let $G(a) = (a 1) \cdot (a 3)$
 - G(1) = G(3) = 0
- Let f(w, x, y, z) := G(w + x + y + z)

- Input A list of polynomial equalities of the form $f(x_1, ..., x_k) = 0$ where f has degree at most c.
- **Parameter** The number of variables n.
- **Question** Does there exists an assignment to the variables, such that all equalities are satisfied?

- Input A list of polynomial inequalities $f(x_1, ..., x_n) \neq 0$ where f has degree at most c.
- **Parameter** The number of variables n.
- **Question** Does there exists an assignment to the variables, such that all inequalities are satisfied?

c-Polynomial -		over ${\mathbb R}$	$\mathbb Z \ { m mod} \ p$	$\mathbb{Z} \operatorname{mod} \mathfrak{m}$
root CSP	UB^1	$\widetilde{O}(n^{c+1})$	$\widetilde{O}(\mathfrak{n}^{c+1})$?
	LB ²	$\Omega(\mathfrak{n}^{c+1-\varepsilon})$	$\Omega(\mathfrak{n}^{c+1-\varepsilon})$	$\Omega(\mathfrak{n}^{c+1-\varepsilon})$
non-root CSP	UB^1	-	$\widetilde{O}(\mathfrak{n}^{c(p-1)+1})$?
	LB ²	Exp	$\Omega(\mathfrak{n}^{\mathfrak{c}(\mathfrak{p}-1)-\epsilon})$	$\Omega(\mathfrak{n}^{d^r/2-\varepsilon})$

¹Assuming clauses of size $\leqslant n$ are encoded in $\widetilde{O}(n)$ bits. ² $\forall \epsilon > 0$, assuming NP $\not\subseteq$ coNP/poly

A sparsification for c-Polynomial root CSP

- ► Given input F
- One matrix row for each polynomial equality
 - $f(x,y) = \alpha_0 + \alpha_1 x + \alpha_2 y + \alpha_3 x y + \dots$
 - $g(x,y) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 xy + \dots$

- Find redundant constraints
 - Do Gaussian elimination to find a basis of the row-space of the matrix
- Remove them

A sparsification for c-Polynomial root CSP

Correctness

Removed constraints are a linear combination of remaining constraints.

Size

- One column for each coefficient
 - $O(n^c)$ multilinear monomials gives $O(n^c)$ columns
- At most O(n^c) remaining constraints

Generalizations

Works with polynomial equalities over any field

• For example, $\mathbb{Z}/p\mathbb{Z}$

Correctness

Removed constraints are a linear combination of remaining constraints.

Size

- One column for each coefficient
 - + $O(n^c)$ multilinear monomials gives $O(n^c)$ columns
- At most $O(n^c)$ remaining constraints

Generalizations

Works with polynomial equalities over any field

• For example, $\mathbb{Z}/p\mathbb{Z}$

Correctness

Removed constraints are a linear combination of remaining constraints.

Size

- One column for each coefficient
 - + $O(n^c)$ multilinear monomials gives $O(n^c)$ columns
- At most $O(n^c)$ remaining constraints

Generalizations

Works with polynomial equalities over any field

• For example, $\mathbb{Z}/p\mathbb{Z}$

Is the given sparsification "optimal"?

- $O(n^c)$ remaining constraints
- Sparsification size $\widetilde{O}(n^{c+1})$
- We showed that the problem has no sparsification of size $O(n^{c+1-\epsilon})$, if NP $\not\subseteq coNP/poly$
 - "Simple" polynomials
 - Using cross-composition, details in the paper

1-Polynomial non-root CSP can express CNF-SAT

• Clause $(x \lor y \lor z)$ is equivalent to

 $x + y + z \neq 0$

d-CNF-SAT does not have a (more general type of) sparsification of size $O(n^{d-\epsilon})$

• Unless NP \subseteq coNP/poly

No polynomial sparsification for 1-Polynomial non-root CSP

c-Polynomial non-root CSP mod p

Use the sparsification for c-Polynomial root CSP

- Consider $f(x_1, \ldots, x_k) \neq 0 \pmod{p}$
- \blacktriangleright Equivalent to $f(x_1,\ldots,x_k)\in\{1,2,\ldots,p-1\} \pmod{p}$
- Let $G(x) := (x 1) \cdot (x 2) \cdots (x p + 1)$
- $\blacktriangleright \ f(x_1,\ldots,x_k) \neq 0 \ (\text{mod } p) \Leftrightarrow G(f(x_1,\ldots,x_k)) = 0 \ (\text{mod } p)$
 - has degree c(p-1)

Instance for $c(p-1)\mbox{-}{\mbox{Polynomial}}$ root CSP, constraints replaced by $G\circ f$

- $O(n^{c(p-1)})$ constraints remain
- ► LB: no sparsification of size O(n^{c(p-1)-ε})

Strategy fails when p is not prime!

Why does our strategy fail modulo a non-prime?

- Counter example for m not prime
- m = 6, c = 3, procedure would give $O(n^{c(m-1)}) = O(n^{15})$ clauses
- But, there is a degree-3 polynomial f such that

$$f(x_1, x_2, \dots, x_{27}) \neq 0 \pmod{6} \Leftrightarrow (x_1 \lor x_2 \lor \dots \lor x_{27})$$

- No sparsification of size $O(n^{27-\epsilon})$ possible
 - Unless NP \subseteq coNP/poly

- Optimal sparsifications for two types of CSPs
- Relates existing results
- Open problems:
 - CSPs represented by polynomial (in)equalities over non-field
 - "the number of satisfied literals is one or two, modulo six"

Thank you!

- Optimal sparsifications for two types of CSPs
- Relates existing results
- Open problems:
 - CSPs represented by polynomial (in)equalities over non-field
 - "the number of satisfied literals is one or two, modulo six"

Thank you!