Approximate Turing Kernels

for Problems Parameterized by Treewidth

Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse

ESA 2020

Kernelization

Polynomial time preprocessing

Goal: obtain kernels that are small

- Every problem that is FPT has a kernel
- But only some problems have polynomial-size kernels
 - Under some complexity-theoretic assumptions

Beyond kernelization

Turing kernelization

• Allow creation of multiple instances

Approximate kernelization

• Relax the equivalence constraint

This talk: Approximate Turing Kernelization

Turing Kernelization

A Turing Kernel of size f for a problem Q is an algorithm that solves a given instance (x, ℓ) in time polynomial in $|x| + \ell$, when given access to an oracle that decides membership of Q for any instance with size at most $f(\ell)$ in a single step.

Approximate Turing Kernelization

 α -approximate Turing Kernel

- Turing kernel, but
 - The oracle is *c*-approximate for some (unknown) *c*
 - The output must be guaranteed to be $\alpha \cdot c$ -approximate

Approximate Turing Kernels, when?

When is it possible to aim for a α -approximate Turing kernel

• The problem is α -FPT-approximable

Approximate Turing Kernels, when?

When is it possible to aim for a α -approximate Turing kernel

• The problem is α -FPT-approximable

Theorem

If a decidable problem has an α -approximate Turing kernel, it has an α -approximation algorithm that runs in FPT time.

Proof

Simply run the α -approximate Turing kernel, replacing oracle calls by calls to any algorithm solving the problem. Running time is bounded by

 $f(\text{size of TK})\cdot\text{running time of approxTK} = f(\ell) \cdot \text{poly}(n)$

Approximate Turing Kernels, when?

When is it possible to aim for a α -approximate Turing kernel

- The problem is α -FPT-approximable
- But not α -approximable in polynomial time

It is only useful, when

- The best-known Turing kernel is too large
 - Ideally, evidence that no polynomial Turing kernel exists
- The best-known α -approximate kernel is also large
 - Ideally, proof of nonexistence, but this seems much harder to come by

Our results

Problem	#Vertices in kernel
Independent Set	$O\left(\frac{\ell^2}{\varepsilon}\right)$
Vertex Cover	$O\left(\frac{\ell}{\varepsilon}\right)$
CONNECTED VERTEX COVER	$O\left(\left(\frac{\ell^2}{\varepsilon}\right)^{\left\lceil\frac{3+\varepsilon}{\varepsilon}\right\rceil}\right)$
Edge Clique Cover	$O\left(\frac{\ell^4}{\varepsilon}\right)$
Edge-Disjoint Triangle Packing	$O\left(\frac{\ell^2}{\varepsilon}\right)$
Vertex-Disjoint H -Packing for connected H	$O\left(\left(\frac{\ell}{\varepsilon}\right)^{ V(H) -1}\right)$
CLIQUE COVER	$O\left(\frac{\ell^4}{\varepsilon^2}\right)$
Feedback vertex Set	$O\left(\frac{\ell^2}{\varepsilon^2}\right)$
Edge Dominating Set	$O\left(\frac{\ell^2}{\varepsilon^2}\right)$

These problems parameterized by treewidth ℓ have $(1 + \varepsilon)$ -approximate Turing Kernels

- Assuming tree decomposition on input
- For all $0 < \varepsilon \leq 1$

Plus a general statement concerning "sufficiently friendly" problems

Our results

Problem	#Vertices in kernel
INDEPENDENT SET	$O\left(\frac{\ell^2}{\varepsilon}\right)$
VERTEX COVER	$O\left(\frac{\ell}{\varepsilon}\right)$
CONNECTED VERTEX COVER	$O\left(\left(\frac{\ell^2}{\varepsilon}\right)^{\left\lceil\frac{3+\varepsilon}{\varepsilon}\right\rceil}\right)$
Edge Clique Cover	$O\left(\frac{\ell^4}{\varepsilon}\right)$
Edge-Disjoint Triangle Packing	$O\left(\frac{\ell^2}{\varepsilon}\right)$
Vertex-Disjoint H -Packing for connected H	$O\left(\left(\frac{\ell}{\varepsilon}\right)^{ V(H) -1}\right)$
CLIQUE COVER	$O\left(\frac{\ell^4}{\varepsilon^2}\right)$
Feedback vertex Set	$O\left(\frac{\ell^2}{\varepsilon^2}\right)$
Edge Dominating Set	$O\left(\frac{\ell^2}{\varepsilon^2}\right)$

These problems parameterized by treewidth ℓ have $(1 + \varepsilon)$ -approximate Turing Kernels

- Assuming tree decomposition on input
- For all $0 < \varepsilon \leq 1$

Plus a general statement concerning "sufficiently friendly" problems

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth

- No good approximate kernels known
 - Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth

- No good approximate kernels known
 - Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth

- No good approximate kernels known
 - Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth

- No good approximate kernels known
 - Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

- Tree T with nodes each node t has $bag X_t \subseteq V(G)$
 - For each edge uv in G, exists bag such that $u \in X_t, v \in X_t$
 - For each $u \in V(G)$, bags in which u occurs form connected subgraph of T
 - Each u ∈ V(G) occurs in at least one bag
- Width: size largest bag 1

- Tree T with nodes each node t has $bag X_t \subseteq V(G)$
 - For each edge uv in G, exists bag such that $u \in X_t$, $v \in X_t$
 - For each $u \in V(G)$, bags in which u occurs form connected subgraph of T
 - Each u ∈ V(G) occurs in at least one bag
- Width: size largest bag 1

- Tree T with nodes each node t has $bag X_t \subseteq V(G)$
 - For each edge uv in G, exists bag such that $u \in X_t, v \in X_t$
 - For each $u \in V(G)$, bags in which u occurs form connected subgraph of T
 - Each u ∈ V(G) occurs in at least one bag
- Width: size largest bag 1

- Tree T with nodes each node t has $bag X_t \subseteq V(G)$
 - For each edge uv in G, exists bag such that $u \in X_t$, $v \in X_t$
 - For each $u \in V(G)$, bags in which u occurs form connected subgraph of T
 - Each u ∈ V(G) occurs in at least one bag
- Width: size largest bag 1

- Tree T with nodes each node t has $bag X_t \subseteq V(G)$
 - For each edge uv in G, exists bag such that $u \in X_t$, $v \in X_t$
 - For each $u \in V(G)$, bags in which u occurs form connected subgraph of T
 - Each u ∈ V(G) occurs in at least one bag
- Width: size largest bag 1

- Tree T with nodes each node t has $bag X_t \subseteq V(G)$
 - For each edge uv in G, exists bag such that $u \in X_t$, $v \in X_t$
 - For each $u \in V(G)$, bags in which u occurs form connected subgraph of T
 - Each u ∈ V(G) occurs in at least one bag
- Width: size largest bag 1

- Tree T with nodes each node t has $bag X_t \subseteq V(G)$
 - For each edge uv in G, exists bag such that $u \in X_t$, $v \in X_t$
 - For each $u \in V(G)$, bags in which u occurs form connected subgraph of T
 - Each u ∈ V(G) occurs in at least one bag
- Width: size largest bag 1

- Tree T with nodes each node t has $bag X_t \subseteq V(G)$
 - For each edge uv in G, exists bag such that $u \in X_t$, $v \in X_t$
 - For each $u \in V(G)$, bags in which u occurs form connected subgraph of T
 - Each u ∈ V(G) occurs in at least one bag
- Width: size largest bag 1

Approximate Turing kernel for Independent Set

Independent Set

Theorem

Independent Set has a $(1 + \varepsilon)$ -approximate Turing Kernel with $O\left(\frac{\ell^2}{\varepsilon}\right)$ vertices.

Overview

- 1. Find a good separator X, separate the graph into (small) A and B
- 2. Ask the oracle for a solution S_A of part A
- 3. Recurse to find an approximate solution S_B for part B
- 4. Show $S_A \cup S_B$ is a $c(1 + \varepsilon)$ -approximate solution

Independent Set

Theorem

Independent Set has a $(1 + \varepsilon)$ -approximate Turing Kernel with $O\left(\frac{\ell^2}{\varepsilon}\right)$ vertices.

Overview

- 1. Find a good separator X, separate the graph into (small) A and B
- 2. Ask the oracle for a solution S_A of part A
- 3. Recurse to find an approximate solution S_B for part B
- 4. Show $S_A \cup S_B$ is a $c(1 + \varepsilon)$ -approximate solution

Finding a separator

What is a good separator? Separate the graph into X, A and B, such that

- $|X| \leq \ell + 1$
 - Use a bag in the tree decomposition!
- |A| is small
 - |A| will determine the size of the kernel
 - $|A| = O\left(\frac{\ell^2}{\varepsilon}\right)$
- The part of an optimal solution in G[A] is sufficiently large
 - By discarding X, we loose out on value at most |X|
 - |X| should be small, compared to IS(G[A])

Size of A

Theorem

A graph with n vertices and treewidth ℓ , has an independent set of size at least $\frac{n}{\ell+1}$

Proof

Various options, immediate from alternative definition of TW

Conclusion

If
$$|A| \ge \frac{(\ell+1)^2}{\varepsilon}$$
, then $IS(A) \ge \frac{\ell+1}{\varepsilon} \ge \frac{|X|}{\varepsilon}$

Finding a separator

Find a node *t* in *T* such that $\frac{(\ell+1)^2}{\varepsilon} \le |G_t - X_t| \le \frac{10(\ell+1)^2}{\varepsilon}$

- Let $A \coloneqq G_t X_t$, $X \coloneqq X_t$
- Recurse as long as $G_t X_t$ too large
 - Join node Recurse on subtree with at least half the vertices
 - Introduce/forget node Recurse on subtree
 - Leaf node Contradicts $G_t X_t$ large

Independent Set

Theorem

Independent Set has a $(1 + \varepsilon)$ -approximate Turing Kernel with $O\left(\frac{\ell^2}{\varepsilon}\right)$ vertices.

Overview

- 1. Find a good separator X, separate the graph into (small) A and B
- **2.** Ask the oracle for a solution S_A of part A
- 3. Recurse to find an approximate solution S_B for part B
- 4. Show $S_A \cup S_B$ is a $c(1 + \varepsilon)$ -approximate solution

Independent Set

Theorem

Independent Set has a $(1 + \varepsilon)$ -approximate Turing Kernel with $O\left(\frac{\ell^2}{\varepsilon}\right)$ vertices.

Overview

- 1. Find a good separator X, separate the graph into (small) A and B
- 2. Ask the oracle for a solution S_A of part A
- 3. Recurse to find an approximate solution S_B for part B
- 4. Show $S_A \cup S_B$ is a $c(1 + \varepsilon)$ -approximate solution

Independent Set: Correctness

Consider an optimal solution *S*, then $|S| = |S \cap A| + |S \cap B| + |S \cap X| \le opt(G[A]) + opt(G[B]) + |X|$

 $\leq c|S_A| + c(1+\varepsilon)|S_B| + \varepsilon|S_A|$

 $\leq c(1+\varepsilon)(S_A+S_B)$

Crucial point: Lower bound for IS on graphs of low treewidth

Independent Set: Correctness

Crucial point: Lower bound for IS on graphs of low treewidth

Approximate Turing kernel for Connected Vertex Cover

Parameterized by treewidth

Given a graph G (and tree decomposition T) find minimum vertex cover S such that G[S] is connected

Cannot apply earlier idea immediately

- No lower bound based on treewidth
- Combining solutions is complex
 - Need to ensure connectivity

No bound depending on treewidth, but

• A $(1 + \delta)$ -approximate kernel for all $\delta > 0$ [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

No good bounds on optimal solution depending on CVC(G[A]), CVC(G[B]), and X

Subconnected tree decompositions

Tree decomposition such that G_t is connected for all t

- A given tree decomposition can be made subconnected in polynomial time
 - Without increasing its width [Fraigniaud, Nisse, LATIN 2006]

- 1. If our graph has a small CVC
 - Apply $(1 + \delta)$ -approximate kernel, obtain (G', k')
 - Feed (G', k') to oracle, obtain solution S'
 - Lift S' to a solution S of (G, k)
- 2. Else, obtain tree decomposition such that G_t connected for all t
 - For all *t*, define the following graphs

Lemma

- 1. If *G* has small CVC
 - Use the $(1 + \varepsilon)$ -approximate kernel & oracle to obtain $c(1 + \varepsilon)$ -approx. solution
- 2. Otherwise, find t such that $\widehat{G_t}$ has CVC of size between $\frac{\ell}{\delta}$ and $\frac{100\ell^2}{\delta}$ for $\delta = \frac{\varepsilon}{3}$
- 3. Obtain $c(1 + \delta)$ -approximate CVC \hat{S} in $\widehat{G_t}$
 - Use the $(1 + \delta)$ -approximate kernel & oracle
- 4. By lemma, obtain CVC \tilde{S} in G_t , with $X \subseteq \tilde{S}$ and $|\tilde{S}| \leq |\hat{S}| + 2|X|$
- 5. Obtain $c(1 + \varepsilon)$ -approximate CVC S' in G'_t
- 6. Output $S' \cup \tilde{S} \setminus \{z\}$

Approximate Turing kernels Conclusions and future work

Problem	#Vertices in kernel
INDEPENDENT SET	$O\left(\frac{\ell^2}{\varepsilon}\right)$
VERTEX COVER	$O\left(\frac{\ell}{\varepsilon}\right)$
CONNECTED VERTEX COVER	$O\left(\left(\frac{\ell^2}{\varepsilon}\right)^{\left\lceil\frac{3+\varepsilon}{\varepsilon}\right\rceil}\right)$
Edge Clique Cover	$O\left(\frac{\ell^4}{\varepsilon}\right)$
Edge-Disjoint Triangle Packing	$O\left(\frac{\ell^2}{\varepsilon}\right)$
Vertex-Disjoint H -Packing for connected H	$O\left(\left(\frac{\ell}{\varepsilon}\right)^{ V(H) -1}\right)$
CLIQUE COVER	$O\left(\frac{\ell^4}{\varepsilon^2}\right)$
FEEDBACK VERTEX SET	$O\left(\frac{\ell^2}{\varepsilon^2}\right)$
Edge Dominating Set	$O\left(\frac{\ell^2}{\varepsilon^2}\right)$

These problems parameterized by treewidth ℓ have $(1 + \varepsilon)$ -approximate Turing Kernels

- Assuming tree decomposition on input
- For all $0 < \varepsilon \leq 1$

Friendly problems have a $(1 + \varepsilon)$ -approximate Turing kernel with

$$h\left(\frac{\varepsilon}{3}, \varphi\left(\frac{6 \cdot g(\ell+1)}{\varepsilon} + g(1), \ell\right) + \ell\right)$$

vertices

Problem	#Vertices in kernel	
INDEPENDENT SET	$O\left(rac{\ell^2}{arepsilon} ight)$	These problems parameterized by treewidth ℓ
VERTEX COVER	$O\left(\frac{\ell}{\varepsilon}\right)$	have $(1 + \varepsilon)$ -approximate Turing Kernels
CONNECTED VERTEX COVER	$O\left(\left(\ell^2\right)\left[\frac{3+\varepsilon}{\varepsilon}\right]\right)$	 Assuming tree decomposition on input
	$O\left(\left(\frac{-\varepsilon}{\varepsilon}\right)\right)$	• For all $0 < \varepsilon \leq 1$
Edge Clique Cover	$O\left(rac{\ell^4}{arepsilon} ight)$	
Edge-Disjoint Triangle Packing	$O\left(\frac{\ell^2}{\varepsilon}\right)$	
Vertex-Disjoint H -Packing for connected H	$O\left(\left(\frac{\ell}{\varepsilon}\right)^{ V(H) -1}\right)$ Si	$\frac{1}{2\epsilon} \circ f(1 + \epsilon) - roblems$ have a $(1 + \epsilon)$ -approximate
		pprox. kernel
CLIQUE COVER	$O\left(\frac{\ell^2}{\varepsilon^2}\right)$	$\int \left(\varepsilon \left(6 \cdot g(\ell + 1) \right) \right) = 0 $
Feedback vertex Set	$O\left(rac{\ell^2}{arepsilon^2} ight)$	$h\left(\frac{1}{3}, \varphi\left(\frac{1}{\varepsilon} + g(1), \ell\right) + \ell\right)$
EDGE DOMINATING SET	$O\left(rac{\ell^2}{arepsilon^2} ight)$	vertices

Problem	#Vertices in kernel	
INDEPENDENT SET	$O\left(\frac{\ell^2}{\varepsilon}\right)$	These problems parameterized by treewidth ℓ
VERTEX COVER	$O\left(\frac{\ell}{\varepsilon}\right)$	have $(1 + \varepsilon)$ -approximate Turing Kernels
CONNECTED VERTEX COVER	$O\left(\left(\frac{\ell^2}{\varepsilon}\right)^{\left[\frac{3+\varepsilon}{\varepsilon}\right]}\right)$	• Assuming tree decomposition on input • For all $0 < \varepsilon \leq 1$
EDGE CLIQUE COVER	$O\left(\frac{\ell^4}{\varepsilon}\right)$	
Edge-Disjoint Triangle Packing	$O\left(\frac{\ell^2}{\varepsilon}\right)$	
Vertex-Disjoint H -Packing for connected H	$O\left(\left(\frac{\ell}{\varepsilon}\right)^{ V(H) -1}\right)$ Siz	$(1 + \varepsilon)$ - prox. kernel vith
CLIQUE COVER	$O\left(\frac{\ell^4}{\varepsilon^2}\right)$	$\left(\varepsilon \left(6 \cdot g(\ell+1) + \sigma(1) \cdot \theta\right) + \theta\right)$
Feedback vertex Set	$O\left(\frac{\ell^2}{\varepsilon^2}\right)$	$n\left(\frac{1}{3},\varphi\left(\frac{1}{\varepsilon}+g(1),\varepsilon\right)+\varepsilon\right)$
EDGE DOMINATING SET	$O\left(\frac{\ell^2}{\varepsilon^2}\right)$	Approximation factor of approximation algorithm

Problem	#Vertices in kernel	
INDEPENDENT SET	$O\left(\frac{\ell^2}{\varepsilon}\right)$	These problems parameterized by treewidth ℓ
VERTEX COVER	$O\left(\frac{\ell}{\varepsilon}\right)$	have $(1 + \varepsilon)$ -approximate Turing Kernels
CONNECTED VERTEX COVER	$\left(\left(\ell^2 \right) \left[\frac{3+\varepsilon}{\varepsilon} \right] \right)$	 Assuming tree decomposition on input
	$O\left(\left(\frac{t}{\varepsilon}\right)^{1-\varepsilon-1}\right)$	• For all $0 < \varepsilon \leq 1$
Edge Clique Cover	$O\left(\frac{\ell^4}{\varepsilon}\right)$	
Edge-Disjoint Triangle Packing	$O\left(\frac{\ell^2}{\varepsilon}\right)$	"Friendlyness"
VERTEX-DISJOINT H -PACKING	$O\left(\left(\frac{\ell}{c}\right)^{ V(H) -1}\right)$ Siz	e of $(1 + \varepsilon)$ - roblems (usually $\ell + 1$) ate
		prox. kernel
CLIQUE COVER	$O\left(\frac{\ell^4}{\varepsilon^2}\right)$	$\int \varepsilon \left(\delta \cdot g(\ell + 1) \right) = c(1) \left(\theta \right) = c(1) \left(\theta \right)$
Feedback vertex Set	$O\left(\frac{\ell^2}{\varepsilon^2}\right)$	$n\left(\frac{1}{3}, \varphi\left(\frac{1}{\varepsilon} + g(1), \ell\right) + \ell\right)$
EDGE DOMINATING SET	$O\left(\frac{\ell^2}{\varepsilon^2}\right)$	Approximation factor of approximation algorithm

Open questions

Approximate Turing kernels for other problems

- Many graph problems are not "friendly"
 - Constant-factor approximate Turing kernel for DOMINATING SET parameterized by treewidth ?
- Extend to other parameters
 - Other width parameters

More lower bounds

• Problems without $(1 + \varepsilon)$ -approximate (Turing) kernels

Open questions

Approximate Turing kernels for other problems

- Many graph problems are not "friendly"
 - Constant-factor approximate Turing kernel for DOMINATING SET parameterized by treewidth ?
- Extend to other parameters
 - Other width parameters

More lower bounds

• Problems without $(1 + \varepsilon)$ -approximate (Turing) kernels

Thank you!