Approximate Turing Kernels

for Problems Parameterized by Treewidth

Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse

ESA 2020

Kernelization

Polynomial time preprocessing

Kernel

< »
<« »

=f{)

A
v

n
Goal: obtain kernels that are small
* Every problem that is FPT has a kernel

* But only some problems have kernels
 Under some complexity-theoretic assumptions

Beyond kernelization

Turing kernelization

* Allow creation of multiple instances

kernelization

* Relax the equivalence constraint

This talk: Turing Kernelization

Turing Kernelization

A Turing Kernel of size f for a problem @ is an algorithm that solves a given
instance (x,€) in time polynomial in |x| + €, when given access to an oracle that
decides membership of Q for any instance with size at most f(£) in a single step.

Poly time

t X) Q |) Yes/No

o

Instances of
size < f(¥)

Oracle for Q

Towards approximate kernelization

Move from decision problems to optimization problems

n
> Kernel) < f(®) ,

Gl — 7 — G

Towards approximate kernelization

Move from decision problems to optimization problems

n
> Kernel) < f(®) ,

Gl —h

!

Solution a y | Solution

S for x a i o

Solution
lifting

Towards approximate kernelization

Move from decision problems to optimization problems

n
> Kernel) < f(®) ,

g

!

c-Approximate a c-Approximate
Solution S —— ¢ Solution S’ for
for x a x'

Solution
lifting

Towards approximate kernelization

Move from decision problems to optimization problems

n ‘ a-approximate < f(f)

|
= — =

Solution
lifting

Approximate Turing Kernelization

a-approximate Turing Kernel

e Turing kernel, but
* The oracle is c-approximate for some (unknown) ¢
* The output must be guaranteed to be o - c-approximate

n

Poly time

X | Q | q « - c-approximate

a g solution
Instances of
size < f(¥)
C-approx.
oracle

Approximate Turing Kernels, when?

When is it possible to aim for a a-approximate Turing kernel

 The problem is a-FPT-approximable

Approximate Turing Kernels, when?

When is it possible to aim for a a-approximate Turing kernel

 The problem is a-FPT-approximable

Theorem

If a decidable problem has an a-approximate Turing kernel, it has an a-
approximation algorithm that runs in FPT time.

Proof

Simply run the a-approximate Turing kernel, replacing oracle calls by calls to any
algorithm solving the problem. Running time is bounded by

f (size of TK)-running time of approxTK = f(£) -poly(n)

Approximate Turing Kernels, when?

When is it possible to aim for a a-approximate Turing kernel
 The problem is a-FPT-approximable

* But not a-approximable in polynomial time

It is only useful, when

* The best-known Turing kernel is too large
* |deally, evidence that no polynomial Turing kernel exists

* The best-known a-approximate kernel is also large
* |deally, proof of nonexistence, but this seems much harder to come by

Our results

Problem #Vertices in kernel
INDEPENDENT SET 22
0(%)
VERTEX COVER 0 (f) . :
: These problems parameterized by treewidth £
CONNECTED VERTEX COVER gz [ﬁ]> have (1 + &)-approximate Turing Kernels
o\(=) ° : . :
(%) * Assuming tree decomposition on input
EDGE CLIQUE COVER 0 (ﬁ)
e e Forall0<e <1
EDGE-DISIOINT TRIANGLE PACKING 0 (ﬁ)
&

VERTEX-DISJOINT H-PACKING A IVH)-1
FOR CONNECTED H (_)

Plus a general statement concerning
“sufficiently friendly” problems

CLiQUE COVER 0 ()
FEEDBACK VERTEX SET 0 (4’2)
&)

EDGE DOMINATING SET 0

Our results

Problem #Vertices in kernel
INDEPENDENT SET 22
0(%)
VERTEX COVER 0 (f) . :
: These problems parameterized by treewidth £
CONNECTED VERTEX COVER p [3_+s]> have (1 + &)-approximate Turing Kernels
ol\(=) ° : . :
(%) * Assuming tree decomposition on input
EDGE CLIQUE COVER 0 (ﬁ)
e e Forall0<e<1
EDGE-DISIOINT TRIANGLE PACKING 0 (ﬁ)
&

VERTEX-DISJOINT H-PACKING A IVH)-1
FOR CONNECTED H (_)

Plus a general statement concerning
“sufficiently friendly” problems

CLiQUE COVER 0 ()
FEEDBACK VERTEX SET 0 (4’2)
&)

EDGE DOMINATING SET 0

Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth
* VERTEX COVER and INDEPENDENT SET are MK |[2] hard

* No good approximate kernels known
* Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth
* VERTEX COVER and INDEPENDENT SET are MK |[2] hard

* No good approximate kernels known
* Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth
* VERTEX COVER and INDEPENDENT SET are MK |[2] hard

* No good approximate kernels known
* Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth
* VERTEX COVER and INDEPENDENT SET are MK |[2] hard

* No good approximate kernels known
* Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Treewidth

Tree decomposition of G

 Tree T with nodes each node t has
bag X; € V(G)
* For each edge uv in G, exists bag
such thatu € X;, v € X;

* Foreachu € V(G), bags in which
u occurs form connected subgraph
of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag—1

Treewidth

Tree decomposition of G

 Tree T with nodes each node t has
bag X; € V(G)
* For each edge uv in G, exists bag
such thatu € X;, v € X;

* Foreachu € V(G), bags in which
u occurs form connected subgraph
of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag—1

Treewidth

Tree decomposition of G

 Tree T with nodes each node t has
bag X; € V(G)
* For each edge uv in G, exists bag
such thatu € X;, v € X;

* Foreachu € V(G), bags in which
u occurs form connected subgraph
of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag—1

Treewidth

Tree decomposition of G

 Tree T with nodes each node t has
bag X; € V(G)
* For each edge uv in G, exists bag
such thatu € X;, v € X;

* Foreachu € V(G), bags in which
u occurs form connected subgraph
of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag—1

Treewidth

Tree decomposition of G

 Tree T with nodes each node t has
bag X; € V(G)
* For each edge uv in G, exists bag
such thatu € X;, v € X;

* Foreachu € V(G), bags in which
u occurs form connected subgraph
of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag—1

Treewidth

Tree decomposition of G

 Tree T with nodes each node t has
bag X; € V(G)
* For each edge uv in G, exists bag
such thatu € X;, v € X;

* Foreachu € V(G), bags in which
u occurs form connected subgraph
of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag—1

Treewidth

Tree decomposition of G A&J

* Tree T with nodes each node t has
bag X; € V(G)

* For each edge uv in G, exists bag
suchthatu € X;,v € X; @
* Foreachu € V(G), bags in which @

u occurs form connected subgraph
of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag—1

Treewidth

Tree decomposition of G

* Tree T with nodes each node t has

bag X; € V(G) @
* For each edge uv in G, exists bag
suchthatu € X;,v € X; @ Q\Q y
* Foreachu € V(G), bags in which o

u occurs form connected subgraph
of T

* Eachu € V(G) occurs in at least

one bag o
* Width: size largest bag—1 Q
<D Cor

Approximate Turing kernel for

Independent Set

Independent Set

Theorem

£2

Independent Set has a (1 + €)-approximate Turing Kernel with O (—) vertices.

E

Overview

1.

2.
3.
4

Find a good separator X, separate the graph into (small) Aand B

Ask the oracle for a solution S, of part A

B
Recurse to find an approximate solution S for part B \\ ///
G X

Show S, U Sg is a c(1 + &)-approximate solution
[1)

A

Independent Set

Theorem

£2

Independent Set has a (1 + €)-approximate Turing Kernel with O (—) vertices.

E

Overview

1.

2.
3.
4

Find a good separator X, separate the graph into (small) A and B

Ask the oracle for a solution S, of part A

B
Recurse to find an approximate solution S for part B \\ ///
G X

Show S, U Sg is a c(1 + &)-approximate solution
[1)

A

Finding a separator

What is a good separator? Separate the graph into X, A and B, such that
c X|<f+1

* Use a bag in the tree decomposition!

B
* |A| is small
* |A| will determine the size of the kernel G \X ///
32
=0 () il
* The part of an optimal solution in G[A] is sufficiently large
* By discarding X, we loose out on value at most | X| 4

* |X| should be small, compared to IS(G[A])

Size of A

Theorem
A graph with n vertices and treewidth £, has an

independent set of size at least %

Proof \\\X ///

Various options, immediate from alternative definition of TW G
[1]

Conclusion A

2
U then 15(4) = ©1 > K

&E

If |A]l =

€ 4

Finding a separator

2 2
(£’+81) < |G, —X,| < 10({’:1)

Find a node t in T such that
e Let 4 = Gt _Xt,X = Xt
* Recurse as long as G; — X; too large

B
* Join node — Recurse on subtree with at least half the vertices \X ///
G X

* Introduce/forget node — Recurse on subtree
* Leaf node — Contradicts G, — X; large M\

A

Independent Set

Theorem

£2

Independent Set has a (1 + €)-approximate Turing Kernel with O (—) vertices.

E

Overview

1.

Find a good separator X, separate the graph into (small) Aand B

2. Ask the oracle for a solution S 4 of part A
3.
4

B
Recurse to find an approximate solution S for part B \\ ///
G X

Show S, U Sg is a c(1 + &)-approximate solution
[1)

A

Independent Set

Theorem

£2

Independent Set has a (1 + €)-approximate Turing Kernel with O (—) vertices.

E

Overview

1.

2.
3.
4

Find a good separator X, separate the graph into (small) Aand B

Ask the oracle for a solution S, of part A

B
Recurse to find an approximate solution S for part B \\ ///
G X

Show S4 U Spisac(1 + £)-approximate solution
[1)

A

Independent Set: Correctness

Consider an optimal solution S, then
S| =[SNA|+|SNB|+|SNnX| <opt(G|A]) + opt(G[B]) + |X|

< c|Sy| +c(1+¢)|Sg| + €Syl

<c(1+&)(S4+ Sg)

Crucial point: Lower bound for IS on graphs of low treewidth

Independent Set: Correctness

Consider an optimal solution S, then
S| =|SNA|+|Sn Bythe < ont(G|A]) + opt(G[B]) + |

oracle Induction

<c|Sul+c(1+¢)|Ss| +

<c(1+&)(S4+ Sg)

Crucial point: Lower bound for IS on graphs of low treewidth

Approximate Turing kernel for
Connected Vertex Cover

Parameterized by treewidth

Connected Vertex Cover

Given a graph G (and tree decomposition T) find minimum vertex cover S such that
G [S] is connected

Cannot apply earlier idea immediately
* No lower bound based on treewidth

* Combining solutions is complex
* Need to ensure connectivity

Connected Vertex Cover

No bound depending on treewidth, but

* A(1+ 6)-approximate kernel forall § > 0
[Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

No good bounds on optimal solution depending on
CVC(G|A]), CVC(G[B]), and X

B

/4
//\

A

Subconnected tree decompositions

Tree decomposition such that G; is connected for all t

* A given tree decomposition can be made subconnected in polynomial time

* Without increasing its width
[Fraigniaud, Nisse, LATIN 2006]

Connected

Connected Vertex Cover

1. If our graph has a small CVC
* Apply (1 + &§)-approximate kernel, obtain (G', k')
* Feed (G', k") to oracle, obtain solution S’
* Lift S’ to a solution S of (G, k)

2. Else, obtain tree decomposition such that G; connected for all t
* Forall t, define the following graphs

G—Ge G — G,
E\ Contract X \\\\ /// Contract X \%
tA ¢ I (A > Gy

Gy — X¢ Gy — X

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X]|. Furthermore, X € S'.

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X]|. Furthermore, X € S'.
(recall G; is connected)

— G[S] has = |Xt|
X X
Gt components Gt /t \ Gt /t I \
Add X; I Connect
| > | >

Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X]|. Furthermore, X € S'.
(recall G; is connected)

G[S] has < |X¢]
G components X
t Gt

A R AR

[> @

Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X]|. Furthermore, X € S'.
(recall G; is connected)

G[S] has < |X;|

Gt components Gt X Gt /Xt I \
Add X, I Connect
' > @

Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X]|. Furthermore, X € S'.
(recall G; is connected)

o G[S] has < |X¢]
X X
Gt components Gt ¢ I Gt /t I \
Add X, Connect
[> @ @ @ | >

Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X]|. Furthermore, X € S'.
(recall G; is connected)

o G[S] has < |X¢]
X X
Gt components Gt ¢ I Gt /t I \
Add X, Connect
[> @ @ @ | >

b
Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X]|. Furthermore, X € S'.
(recall G; is connected)

o G[S] has < |X¢]
X X
Gt components Gt ¢ I Gt /t I \
Add X, Connect
[> @ @ @ | >

—(c)

Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X]|. Furthermore, X € S'.
(recall G; is connected)

o G[S] has < |X¢]
X X
Gt components Gt ¢ I Gt /t I \
Add X, Connect
[> @ @ @ | >

Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

1. If G has small CVC
* Use the (1 + &)-approximate kernel & oracle to obtain c(1 + &)-approx. solution

100¢2 €

2. Otherwise, find t such that G, has CVC of size between g and P foro = 3

3. Obtain c(1 + &§)-approximate CVC S in G,
* Use the (1 + §)-approximate kernel & oracle

4. Bylemma, obtain CVC Sin G, with X € S and [S| < [S] + 2|X]
. Obtain c(1 + ¢€)-approximate CVC S’ in G;
6. OutputS' U S \ {z}

Approximate Turing kernels
Conclusions and future work

summary

Problem #Vertices in kernel
INDEPENDENT SET 2 . .
0() These problems parameterized by treewidth £
VERTEX COVER o(%) have (1 + €)-approximate Turing Kernels
CONNECTED VERTEX COVER {)2 [3+s> * Assuming tree decomposition on input
0
s Forall0<e< 1
EDGE CLIQUE COVER 0 (ﬁ
8
EDGE-DISIOINT TRIANGLE PACKING 0 (ﬁ)
&
VERTEX-DISIOINT H-PACKING [V (H)|-1 . .
R CONNECTED H 0 ((f)) Friendly problems have a (1 + &)-approximate
. Turing kernel with
CuiQUE COVER 0 £

h(§,¢(6 ' g(ﬁ+ D +g(1),€> +e>

vertices

2
FEEDBACK VERTEX SET 0 (4’)
EDGE DOMINATING SET 0 ()

summary

Problem #Vertices in kernel
INDEPENDENT SET 22 : :
0 (?) These problems parameterized by treewidth £
VERTEX COVER o(%) have (1 + €)-approximate Turing Kernels
&
CONNECTED VERTEX COVER g ﬁ) * Assuming tree decomposition on input
0 - &€
() *Forall0<e<1
EDGE CLIQUE COVER 0 (ﬁ)
)
EDGE-DISIOINT TRIANGLE PACKING (ﬁ)
&€
VERTEX-DISJOINT H-PACKING A IVEI-1Y) : i . .
R CONNECTED H 0 ((;) & (1k+ S)I oblems have a (1 + ¢)-approximate
N) approx. kernel _ na| with
QUE COVER 0 £

£ 6-g(?+1)

(=)
FEEDBACK VERTEX SET 0 (4’2) h § y P - + g(l), L)+ 4
)

EDGE DOMINATING SET 0 vertices

summary

Problem #Vertices in kernel
INDEPENDENT SET £ : :
0 (?) These problems parameterized by treewidth £
VERTEX COVER o(%) have (1 + €)-approximate Turing Kernels
&
CONNECTED VERTEX COVER g ﬁ) * Assuming tree decomposition on input
0 - &
() * Forall0<e<1
EDGE CLIQUE COVER 0 (ﬁ)
&€
EDGE-DISIOINT TRIANGLE PACKING (ﬁ)
&€
VERTEX-DISIOINT H-PACKING A IVEI-1) : i . .
R CONNECTED 0 ((;) / SaIIZ;) S;X(lketnee)l oblems have a (1 + ¢)-approximate
CLIQUE COVER ¢ | -rnel with
0(3) g 6-g(£+1)
FEEDBACK VERTEX SET 0 (ﬁ) h § P < + 9(1), t)+7
&
EDGE DOMINATING SET 0 (ﬁ) Approximation factor of
&

approximation algorithm

summary

Problem

INDEPENDENT SET

VERTEX COVER

CONNECTED VERTEX COVER

EDGE CLIQUE COVER
EDGE-DISJOINT TRIANGLE PACKING

VERTEX-DISJOINT H-PACKING
FOR CONNECTED H

CLIQUE COVER
FEEDBACK VERTEX SET

EDGE DOMINATING SET

#Vertices in kernel

o(

_€2
)

These problems parameterized by treewidth £
have (1 + €)-approximate Turing Kernels

* Assuming tree decomposition on input
e Forall0<e<1

“Friendlyness”

Sizeof (1+¢)- ~oblems .. (usually £ + 1) .ate
approx. kernel _rnhel with
g 6-g(f£+1
h(g,cp(g(g) +g(), L)+ ¢

Approximation factor of
approximation algorithm

Open questions

Approximate Turing kernels for other problems

* Many graph problems are not “friendly”

* Constant-factor approximate Turing kernel for DOMINATING SET parameterized by
treewidth ?

* Extend to other parameters
e Other width parameters

More lower bounds

* Problems without (1 + &£)-approximate (Turing) kernels

Open questions

Approximate Turing kernels for other problems

* Many graph problems are not “friendly”

* Constant-factor approximate Turing kernel for DOMINATING SET parameterized by
treewidth ?

* Extend to other parameters
e Other width parameters

More lower bounds

* Problems without (1 + &£)-approximate (Turing) kernels

