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Kernelization

Polynomial time preprocessing

Goal: obtain kernels that are small

• Every problem that is FPT has a kernel

• But only some problems have polynomial-size kernels
• Under some complexity-theoretic assumptions
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Beyond kernelization

Turing kernelization

• Allow creation of multiple instances 

Approximate kernelization

• Relax the equivalence constraint

This talk: Approximate Turing Kernelization



Turing Kernelization

A Turing Kernel of size 𝑓 for a problem 𝑄 is an algorithm that solves a given 
instance (𝑥, ℓ) in time polynomial in |𝑥| + ℓ, when given access to an oracle that 
decides membership of 𝑄 for any instance with size at most 𝑓(ℓ) in a single step. 
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Towards approximate kernelization

Move from decision problems to optimization problems
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𝑥

Approximate Turing Kernelization

𝛼-approximate Turing Kernel

• Turing kernel, but
• The oracle is 𝑐-approximate for some (unknown) 𝑐

• The output must be guaranteed to be 𝛼 ⋅ 𝑐-approximate
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Approximate Turing Kernels, when?

When is it possible to aim for a 𝛼-approximate Turing kernel

• The problem is 𝛼-FPT-approximable



Approximate Turing Kernels, when?

When is it possible to aim for a 𝛼-approximate Turing kernel

• The problem is 𝛼-FPT-approximable

It is only useful, when

• The best-known Turing kernel is too large
• Ideally, evidence that no polynomial Turing kernel exists

• The best-known 𝛼-approximate kernel is also large
• Ideally, proof of nonexistence, but this seems much harder to come by

Theorem
If a decidable problem has an 𝛼-approximate Turing kernel, it has an 𝛼-
approximation algorithm that runs in FPT time.

Proof
Simply run the 𝛼-approximate Turing kernel, replacing oracle calls by calls to any 
algorithm solving the problem. Running time is bounded by

𝑓(size of TK)⋅running time of approxTK = 𝑓 ℓ ⋅poly(𝑛)



Approximate Turing Kernels, when?

When is it possible to aim for a 𝛼-approximate Turing kernel

• The problem is 𝛼-FPT-approximable

• But not 𝛼-approximable in polynomial time

It is only useful, when

• The best-known Turing kernel is too large
• Ideally, evidence that no polynomial Turing kernel exists

• The best-known 𝛼-approximate kernel is also large
• Ideally, proof of nonexistence, but this seems much harder to come by



Problem #Vertices in kernel
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Our results

These problems parameterized by treewidth ℓ
have (1 + 𝜀)-approximate Turing Kernels

• Assuming tree decomposition on input

• For all 0 < 𝜀 ≤ 1

Plus a general statement concerning 
“sufficiently friendly” problems
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Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable) 

Polynomial kernels rare, parameterized by treewidth

• VERTEX COVER and INDEPENDENT SET are 𝑀𝐾[2] hard

• No good approximate kernels known
• Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]
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Treewidth

Tree decomposition of 𝐺

• Tree 𝑇 with nodes each node 𝑡 has 
bag 𝑋𝑡 ⊆ 𝑉(𝐺)
• For each edge 𝑢𝑣 in 𝐺, exists bag 

such that 𝑢 ∈ 𝑋𝑡 , 𝑣 ∈ 𝑋𝑡
• For each 𝑢 ∈ 𝑉(𝐺), bags in which 
𝑢 occurs form connected subgraph 
of 𝑇

• Each 𝑢 ∈ 𝑉(𝐺) occurs in at least 
one bag

• Width: size largest bag – 1
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Independent Set

Overview

1. Find a good separator 𝑋, separate the graph into (small) A and B

2. Ask the oracle for a solution 𝑆𝐴 of part A

3. Recurse to find an approximate solution 𝑆𝐵 for part B

4. Show 𝑆𝐴 ∪ 𝑆𝐵 is a c(1 + 𝜀)-approximate solution

Theorem

Independent Set has a (1 + 𝜀)-approximate Turing Kernel with 𝑂
ℓ2

𝜀
vertices.

𝐺

𝐵

𝐴

X
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Overview

1. Find a good separator 𝑿, separate the graph into (small) A and B

2. Ask the oracle for a solution 𝑆𝐴 of part A

3. Recurse to find an approximate solution 𝑆𝐵 for part B
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Finding a separator

What is a good separator? Separate the graph into 𝑋, 𝐴 and 𝐵, such that

• 𝑋 ≤ ℓ + 1
• Use a bag in the tree decomposition!

• |𝐴| is small 
• |𝐴| will determine the size of the kernel

• 𝐴 = 𝑂
ℓ2

𝜀

• The part of an optimal solution in 𝐺[𝐴] is sufficiently large 
• By discarding 𝑋, we loose out on value at most |𝑋|

• |𝑋| should be small, compared to IS(G[A])
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X



Size of 𝐴

Proof

Various options, immediate from alternative definition of TW

Conclusion

If  𝐴 ≥
ℓ+1 2

𝜀
, then 𝐼𝑆 𝐴 ≥

ℓ+1

𝜀
≥

|𝑋|

𝜀

𝐺

𝐵

𝐴

X

Theorem
A graph with 𝑛 vertices and treewidth ℓ, has an 

independent set of size at least 
𝑛

ℓ+1



Finding a separator

Find a node 𝑡 in 𝑇 such that 
ℓ+1 2

𝜀
≤ 𝐺𝑡 − X𝑡 ≤

10 ℓ+1 2

𝜀

• Let 𝐴 ≔ 𝐺𝑡 − 𝑋𝑡, 𝑋 ≔ 𝑋𝑡

• Recurse as long as 𝐺𝑡 − X𝑡 too large
• Join node – Recurse on subtree with at least half the vertices

• Introduce/forget node – Recurse on subtree

• Leaf node – Contradicts 𝐺𝑡 − X𝑡 large
𝐺

𝐵

𝐴

X

Various separator theorems for treewidth are known; we show 
this one for completeness.
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Independent Set

Overview

1. Find a good separator 𝑋, separate the graph into (small) A and B

2. Ask the oracle for a solution 𝑆𝐴 of part A

3. Recurse to find an approximate solution 𝑆𝐵 for part B

4. Show 𝑺𝑨 ∪ 𝑺𝑩 is a 𝐜(𝟏 + 𝜺)-approximate solution
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Independent Set: Correctness

Consider an optimal solution 𝑆, then 
𝑆 = 𝑆 ∩ 𝐴 + 𝑆 ∩ 𝐵 + 𝑆 ∩ X ≤ 𝑜𝑝𝑡 𝐺 𝐴 + 𝑜𝑝𝑡(𝐺[𝐵]) + |𝑋|

≤ 𝑐 𝑆𝐴 + 𝑐 1 + 𝜀 𝑆𝐵 + 𝜀 𝑆𝐴

≤ 𝑐 1 + 𝜀 𝑆𝐴 + 𝑆𝐵

Crucial point: Lower bound for IS on graphs of low treewidth



Independent Set: Correctness

Consider an optimal solution 𝑆, then 
𝑆 = 𝑆 ∩ 𝐴 + 𝑆 ∩ 𝐵 + 𝑆 ∩ X ≤ 𝑜𝑝𝑡 𝐺 𝐴 + 𝑜𝑝𝑡(𝐺[𝐵]) + |𝑋|

≤ 𝑐 𝑆𝐴 + 𝑐 1 + 𝜀 𝑆𝐵 + 𝜀 𝑆𝐴

≤ 𝑐 1 + 𝜀 𝑆𝐴 + 𝑆𝐵

Crucial point: Lower bound for IS on graphs of low treewidth

By the 
oracle Induction



Approximate Turing kernel for 

Connected Vertex Cover
Parameterized by treewidth



Connected Vertex Cover

Given a graph 𝐺 (and tree decomposition 𝑇) find minimum vertex cover 𝑆 such that 
𝐺[𝑆] is connected

Cannot apply earlier idea immediately

• No lower bound based on treewidth

• Combining solutions is complex
• Need to ensure connectivity



Connected Vertex Cover

No bound depending on treewidth, but

• A (1 + 𝛿)-approximate kernel for all 𝛿 > 0
[Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

No good bounds on optimal solution depending on 
𝐶𝑉𝐶(𝐺 𝐴 ), 𝐶𝑉𝐶(𝐺[𝐵]), and 𝑋

𝐴

𝐺

𝐵



Subconnected tree decompositions

Tree decomposition such that 𝐺𝑡 is connected for all 𝑡

• A given tree decomposition can be made subconnected in polynomial time
• Without increasing its width

[Fraigniaud, Nisse, LATIN 2006]
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Connected Vertex Cover

1. If our graph has a small CVC
• Apply (1 + 𝛿)-approximate kernel, obtain (𝐺′, 𝑘′)

• Feed (𝐺′, 𝑘′) to oracle, obtain solution 𝑆′

• Lift 𝑆′ to a solution 𝑆 of (𝐺, 𝑘)

2. Else, obtain tree decomposition such that 𝐺𝑡 connected for all 𝑡
• For all 𝑡, define the following graphs 

𝐺

𝐺 − 𝐺𝑡

𝐺𝑡 − 𝑋𝑡

𝑋𝑡
𝐺𝑡

z Contract 𝑋

𝐺𝑡′
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z
Contract 𝑋



Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in 𝐺𝑡, we can in polynomial time find a connected 
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.
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z

𝐺𝑡 − 𝑋𝑡 𝐺𝑡 − 𝑋𝑡

𝑋𝑡𝐺𝑡
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Connected Vertex Cover
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Connected Vertex Cover

1. If 𝐺 has small CVC
• Use the (1 + 𝜀)-approximate kernel & oracle to obtain 𝑐 1 + 𝜀 -approx. solution

2. Otherwise, find 𝑡 such that 𝐺𝑡 has CVC of size between 
ℓ

𝛿
and 

100ℓ2

𝛿
for 𝛿 =

𝜀

3

3. Obtain 𝑐(1 + 𝛿)-approximate CVC መ𝑆 in 𝐺𝑡
• Use the (1 + 𝛿)-approximate kernel & oracle

4. By lemma, obtain CVC ሚ𝑆 in 𝐺𝑡, with 𝑋 ⊆ ሚ𝑆 and ሚ𝑆 ≤ መ𝑆 + 2|𝑋|

5. Obtain 𝑐(1 + 𝜀)-approximate CVC 𝑆′ in 𝐺𝑡
′

6. Output 𝑆′ ∪ ሚ𝑆 ∖ {𝑧}



Approximate Turing kernels

Conclusions and future work
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Open questions

Approximate Turing kernels for other problems

• Many graph problems are not “friendly”
• Constant-factor approximate Turing kernel for DOMINATING SET parameterized by 

treewidth ?

• Extend to other parameters
• Other width parameters

More lower bounds

• Problems without (1 + 𝜀)-approximate (Turing) kernels
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Thank you!


