
Approximate Turing Kernels
for Problems Parameterized by Treewidth

Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse

ESA 2020

Kernelization

Polynomial time preprocessing

Goal: obtain kernels that are small

• Every problem that is FPT has a kernel

• But only some problems have polynomial-size kernels
• Under some complexity-theoretic assumptions

𝑥’ℓ′

≤ 𝑓(ℓ)

𝑥
ℓ

𝑛

Kernel

Beyond kernelization

Turing kernelization

• Allow creation of multiple instances

Approximate kernelization

• Relax the equivalence constraint

This talk: Approximate Turing Kernelization

Turing Kernelization

A Turing Kernel of size 𝑓 for a problem 𝑄 is an algorithm that solves a given
instance (𝑥, ℓ) in time polynomial in |𝑥| + ℓ, when given access to an oracle that
decides membership of 𝑄 for any instance with size at most 𝑓(ℓ) in a single step.

𝑥

𝑛

ℓ

Poly time

Yes/No

Oracle for 𝑄

Instances of
size ≤ 𝑓(ℓ)

Towards approximate kernelization

Move from decision problems to optimization problems

𝑥’ℓ’

≤ 𝑓(ℓ)𝑛

𝑥
ℓ

Kernel

Towards approximate kernelization

Move from decision problems to optimization problems

𝑥’ℓ’

≤ 𝑓(ℓ)𝑛

𝑥
ℓ

Solution
lifting

Solution
𝑆′ for 𝑥′

Solution
𝑆 for 𝑥

Kernel

Towards approximate kernelization

Move from decision problems to optimization problems

𝑥’ℓ’

≤ 𝑓(ℓ)𝑛

𝑥
ℓ

Solution
lifting

Solution
𝑆′ for 𝑥′

Solution
𝑆 for 𝑥

𝑐-Approximate
Solution 𝑆′ for

𝑥′

𝑐-Approximate
Solution 𝑆

for 𝑥

Kernel

Towards approximate kernelization

Move from decision problems to optimization problems

𝑥’ℓ’

≤ 𝑓(ℓ)𝑛

𝑥
ℓ

Solution
lifting

Solution
𝑆′ for 𝑥′

Solution
𝑆 for 𝑥

𝑐-Approximate
Solution 𝑆′ for

𝑥′

𝑐-Approximate
Solution 𝑆

for 𝑥

𝑐-Approximate
Solution 𝑆′ for 𝑥′

𝛼 ⋅ 𝑐-Approximate
Solution 𝑆

for 𝑥

𝛼-approximate
kernel

𝑥

Approximate Turing Kernelization

𝛼-approximate Turing Kernel

• Turing kernel, but
• The oracle is 𝑐-approximate for some (unknown) 𝑐

• The output must be guaranteed to be 𝛼 ⋅ 𝑐-approximate

𝑛

ℓ

Poly time

𝛼 ⋅ 𝑐-approximate
solution

𝑐-approx.
oracle

Instances of
size ≤ 𝑓(ℓ)

Approximate Turing Kernels, when?

When is it possible to aim for a 𝛼-approximate Turing kernel

• The problem is 𝛼-FPT-approximable

Approximate Turing Kernels, when?

When is it possible to aim for a 𝛼-approximate Turing kernel

• The problem is 𝛼-FPT-approximable

It is only useful, when

• The best-known Turing kernel is too large
• Ideally, evidence that no polynomial Turing kernel exists

• The best-known 𝛼-approximate kernel is also large
• Ideally, proof of nonexistence, but this seems much harder to come by

Theorem
If a decidable problem has an 𝛼-approximate Turing kernel, it has an 𝛼-
approximation algorithm that runs in FPT time.

Proof
Simply run the 𝛼-approximate Turing kernel, replacing oracle calls by calls to any
algorithm solving the problem. Running time is bounded by

𝑓(size of TK)⋅running time of approxTK = 𝑓 ℓ ⋅poly(𝑛)

Approximate Turing Kernels, when?

When is it possible to aim for a 𝛼-approximate Turing kernel

• The problem is 𝛼-FPT-approximable

• But not 𝛼-approximable in polynomial time

It is only useful, when

• The best-known Turing kernel is too large
• Ideally, evidence that no polynomial Turing kernel exists

• The best-known 𝛼-approximate kernel is also large
• Ideally, proof of nonexistence, but this seems much harder to come by

Problem #Vertices in kernel

INDEPENDENT SET 𝑂
ℓ2

𝜀

VERTEX COVER 𝑂
ℓ

𝜀

CONNECTED VERTEX COVER

𝑂
ℓ2

𝜀

3+𝜀

𝜀

EDGE CLIQUE COVER 𝑂
ℓ4

𝜀

EDGE-DISJOINT TRIANGLE PACKING 𝑂
ℓ2

𝜀

VERTEX-DISJOINT 𝐻-PACKING

FOR CONNECTED 𝐻 𝑂
ℓ

𝜀

𝑉 𝐻 −1

CLIQUE COVER 𝑂
ℓ4

𝜀2

FEEDBACK VERTEX SET 𝑂
ℓ2

𝜀2

EDGE DOMINATING SET 𝑂
ℓ2

𝜀2

Our results

These problems parameterized by treewidth ℓ
have (1 + 𝜀)-approximate Turing Kernels

• Assuming tree decomposition on input

• For all 0 < 𝜀 ≤ 1

Plus a general statement concerning
“sufficiently friendly” problems

Our results

These problems parameterized by treewidth ℓ
have (1 + 𝜀)-approximate Turing Kernels

• Assuming tree decomposition on input

• For all 0 < 𝜀 ≤ 1

Plus a general statement concerning
“sufficiently friendly” problems

Problem #Vertices in kernel

INDEPENDENT SET 𝑂
ℓ2

𝜀

VERTEX COVER 𝑂
ℓ

𝜀

CONNECTED VERTEX COVER

𝑂
ℓ2

𝜀

3+𝜀

𝜀

EDGE CLIQUE COVER 𝑂
ℓ4

𝜀

EDGE-DISJOINT TRIANGLE PACKING 𝑂
ℓ2

𝜀

VERTEX-DISJOINT 𝐻-PACKING

FOR CONNECTED 𝐻 𝑂
ℓ

𝜀

𝑉 𝐻 −1

CLIQUE COVER 𝑂
ℓ4

𝜀2

FEEDBACK VERTEX SET 𝑂
ℓ2

𝜀2

EDGE DOMINATING SET 𝑂
ℓ2

𝜀2

Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth

• VERTEX COVER and INDEPENDENT SET are 𝑀𝐾[2] hard

• No good approximate kernels known
• Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth

• VERTEX COVER and INDEPENDENT SET are 𝑀𝐾[2] hard

• No good approximate kernels known
• Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth

• VERTEX COVER and INDEPENDENT SET are 𝑀𝐾[2] hard

• No good approximate kernels known
• Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth

• VERTEX COVER and INDEPENDENT SET are 𝑀𝐾[2] hard

• No good approximate kernels known
• Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Treewidth

Tree decomposition of 𝐺

• Tree 𝑇 with nodes each node 𝑡 has
bag 𝑋𝑡 ⊆ 𝑉(𝐺)
• For each edge 𝑢𝑣 in 𝐺, exists bag

such that 𝑢 ∈ 𝑋𝑡 , 𝑣 ∈ 𝑋𝑡
• For each 𝑢 ∈ 𝑉(𝐺), bags in which
𝑢 occurs form connected subgraph
of 𝑇

• Each 𝑢 ∈ 𝑉(𝐺) occurs in at least
one bag

• Width: size largest bag – 1

u
v

w

x

y

a b

c

d
e

f

𝑢, 𝑣, 𝑤

𝑢, 𝑤, 𝑥

𝑢, 𝑥, 𝑦

𝑢, 𝑣, 𝑏

𝑢, 𝑎, 𝑏

𝑎, 𝑏, 𝑐

𝑣, 𝑤, 𝑑

𝑤, 𝑑, 𝑒

𝑤, 𝑒, 𝑓

𝑡

𝐺𝑡𝐺

𝑇

Treewidth

Tree decomposition of 𝐺

• Tree 𝑇 with nodes each node 𝑡 has
bag 𝑋𝑡 ⊆ 𝑉(𝐺)
• For each edge 𝑢𝑣 in 𝐺, exists bag

such that 𝑢 ∈ 𝑋𝑡 , 𝑣 ∈ 𝑋𝑡
• For each 𝑢 ∈ 𝑉(𝐺), bags in which
𝑢 occurs form connected subgraph
of 𝑇

• Each 𝑢 ∈ 𝑉(𝐺) occurs in at least
one bag

• Width: size largest bag – 1

u
v

w

x

y

a b

c

d
e

f

𝑢, 𝑣, 𝑤

𝑢, 𝑤, 𝑥

𝑢, 𝑥, 𝑦

𝑢, 𝑣, 𝑏

𝑢, 𝑎, 𝑏

𝑎, 𝑏, 𝑐

𝑣, 𝑤, 𝑑

𝑤, 𝑑, 𝑒

𝑤, 𝑒, 𝑓

𝑢, 𝑣, 𝑏

𝑢, 𝑎, 𝑏

𝑎, 𝑏, 𝑐

𝑡

𝐺𝑡𝐺

𝑇

Treewidth

Tree decomposition of 𝐺

• Tree 𝑇 with nodes each node 𝑡 has
bag 𝑋𝑡 ⊆ 𝑉(𝐺)
• For each edge 𝑢𝑣 in 𝐺, exists bag

such that 𝑢 ∈ 𝑋𝑡 , 𝑣 ∈ 𝑋𝑡
• For each 𝑢 ∈ 𝑉(𝐺), bags in which
𝑢 occurs form connected subgraph
of 𝑇

• Each 𝑢 ∈ 𝑉(𝐺) occurs in at least
one bag

• Width: size largest bag – 1

u
v

w

x

y

a b

c

d
e

f

𝑢, 𝑣, 𝑤

𝑢, 𝑤, 𝑥

𝑢, 𝑥, 𝑦

𝑢, 𝑣, 𝑏

𝑢, 𝑎, 𝑏

𝑎, 𝑏, 𝑐

𝑣, 𝑤, 𝑑

𝑤, 𝑑, 𝑒

𝑤, 𝑒, 𝑓

𝑡

𝐺𝑡𝐺

𝑇

Treewidth

Tree decomposition of 𝐺

• Tree 𝑇 with nodes each node 𝑡 has
bag 𝑋𝑡 ⊆ 𝑉(𝐺)
• For each edge 𝑢𝑣 in 𝐺, exists bag

such that 𝑢 ∈ 𝑋𝑡 , 𝑣 ∈ 𝑋𝑡
• For each 𝑢 ∈ 𝑉(𝐺), bags in which
𝑢 occurs form connected subgraph
of 𝑇

• Each 𝑢 ∈ 𝑉(𝐺) occurs in at least
one bag

• Width: size largest bag – 1

u
v

w

x

y

a b

c

d
e

f

𝑢, 𝑣, 𝑤

𝑢, 𝑤, 𝑥

𝑢, 𝑥, 𝑦

𝑢, 𝑣, 𝑏

𝑢, 𝑎, 𝑏

𝑎, 𝑏, 𝑐

𝑣, 𝑤, 𝑑

𝑤, 𝑑, 𝑒

𝑤, 𝑒, 𝑓

𝐺

𝑇

Treewidth

Tree decomposition of 𝐺

• Tree 𝑇 with nodes each node 𝑡 has
bag 𝑋𝑡 ⊆ 𝑉(𝐺)
• For each edge 𝑢𝑣 in 𝐺, exists bag

such that 𝑢 ∈ 𝑋𝑡 , 𝑣 ∈ 𝑋𝑡
• For each 𝑢 ∈ 𝑉(𝐺), bags in which
𝑢 occurs form connected subgraph
of 𝑇

• Each 𝑢 ∈ 𝑉(𝐺) occurs in at least
one bag

• Width: size largest bag – 1

u
v

w

x

y

a b

c

d
e

f

𝑢, 𝑣, 𝑤

𝑢, 𝑤, 𝑥

𝑢, 𝑥, 𝑦

𝑢, 𝑣, 𝑏

𝑢, 𝑎, 𝑏

𝑎, 𝑏, 𝑐

𝑣, 𝑤, 𝑑

𝑤, 𝑑, 𝑒

𝑤, 𝑒, 𝑓

𝑢, 𝑣, 𝑤

𝐺

𝑇

Treewidth

Tree decomposition of 𝐺

• Tree 𝑇 with nodes each node 𝑡 has
bag 𝑋𝑡 ⊆ 𝑉(𝐺)
• For each edge 𝑢𝑣 in 𝐺, exists bag

such that 𝑢 ∈ 𝑋𝑡 , 𝑣 ∈ 𝑋𝑡
• For each 𝑢 ∈ 𝑉(𝐺), bags in which
𝑢 occurs form connected subgraph
of 𝑇

• Each 𝑢 ∈ 𝑉(𝐺) occurs in at least
one bag

• Width: size largest bag – 1

u
v

w

x

y

a b

c

d
e

f

𝑢, 𝑣, 𝑤

𝑢, 𝑤, 𝑥

𝑢, 𝑥, 𝑦

𝑢, 𝑣, 𝑏

𝑢, 𝑎, 𝑏

𝑎, 𝑏, 𝑐

𝑣, 𝑤, 𝑑

𝑤, 𝑑, 𝑒

𝑤, 𝑒, 𝑓

𝑢, 𝑣, 𝑤

𝐺

𝑇

Treewidth

Tree decomposition of 𝐺

• Tree 𝑇 with nodes each node 𝑡 has
bag 𝑋𝑡 ⊆ 𝑉(𝐺)
• For each edge 𝑢𝑣 in 𝐺, exists bag

such that 𝑢 ∈ 𝑋𝑡 , 𝑣 ∈ 𝑋𝑡
• For each 𝑢 ∈ 𝑉(𝐺), bags in which
𝑢 occurs form connected subgraph
of 𝑇

• Each 𝑢 ∈ 𝑉(𝐺) occurs in at least
one bag

• Width: size largest bag – 1

x

y

a b

c

d
e

f

𝑢, 𝑣, 𝑤

𝑢, 𝑤, 𝑥

𝑢, 𝑥, 𝑦

𝑢, 𝑣, 𝑏

𝑢, 𝑎, 𝑏

𝑎, 𝑏, 𝑐

𝑣, 𝑤, 𝑑

𝑤, 𝑑, 𝑒

𝑤, 𝑒, 𝑓

𝑢, 𝑣, 𝑤

𝐺

𝑇

Treewidth

Tree decomposition of 𝐺

• Tree 𝑇 with nodes each node 𝑡 has
bag 𝑋𝑡 ⊆ 𝑉(𝐺)
• For each edge 𝑢𝑣 in 𝐺, exists bag

such that 𝑢 ∈ 𝑋𝑡 , 𝑣 ∈ 𝑋𝑡
• For each 𝑢 ∈ 𝑉(𝐺), bags in which
𝑢 occurs form connected subgraph
of 𝑇

• Each 𝑢 ∈ 𝑉(𝐺) occurs in at least
one bag

• Width: size largest bag – 1

x

y

a b

c

d
e

f

𝑢, 𝑤, 𝑥

𝑢, 𝑥, 𝑦

𝑢, 𝑣, 𝑏

𝑢, 𝑎, 𝑏

𝑎, 𝑏, 𝑐

𝑣, 𝑤, 𝑑

𝑤, 𝑑, 𝑒

𝑤, 𝑒, 𝑓

𝑥

𝑥, 𝑦

𝑏

𝑎, 𝑏

𝑎, 𝑏, 𝑐

𝑑

𝑑, 𝑒

𝑒, 𝑓

Approximate Turing kernel for

Independent Set

Independent Set

Overview

1. Find a good separator 𝑋, separate the graph into (small) A and B

2. Ask the oracle for a solution 𝑆𝐴 of part A

3. Recurse to find an approximate solution 𝑆𝐵 for part B

4. Show 𝑆𝐴 ∪ 𝑆𝐵 is a c(1 + 𝜀)-approximate solution

Theorem

Independent Set has a (1 + 𝜀)-approximate Turing Kernel with 𝑂
ℓ2

𝜀
vertices.

𝐺

𝐵

𝐴

X

Independent Set

Overview

1. Find a good separator 𝑿, separate the graph into (small) A and B

2. Ask the oracle for a solution 𝑆𝐴 of part A

3. Recurse to find an approximate solution 𝑆𝐵 for part B

4. Show 𝑆𝐴 ∪ 𝑆𝐵 is a c(1 + 𝜀)-approximate solution

Theorem

Independent Set has a (1 + 𝜀)-approximate Turing Kernel with 𝑂
ℓ2

𝜀
vertices.

𝐺

𝐵

𝐴

X

Finding a separator

What is a good separator? Separate the graph into 𝑋, 𝐴 and 𝐵, such that

• 𝑋 ≤ ℓ + 1
• Use a bag in the tree decomposition!

• |𝐴| is small
• |𝐴| will determine the size of the kernel

• 𝐴 = 𝑂
ℓ2

𝜀

• The part of an optimal solution in 𝐺[𝐴] is sufficiently large
• By discarding 𝑋, we loose out on value at most |𝑋|

• |𝑋| should be small, compared to IS(G[A])

𝐺

𝐵

𝐴

X

Size of 𝐴

Proof

Various options, immediate from alternative definition of TW

Conclusion

If 𝐴 ≥
ℓ+1 2

𝜀
, then 𝐼𝑆 𝐴 ≥

ℓ+1

𝜀
≥

|𝑋|

𝜀

𝐺

𝐵

𝐴

X

Theorem
A graph with 𝑛 vertices and treewidth ℓ, has an

independent set of size at least
𝑛

ℓ+1

Finding a separator

Find a node 𝑡 in 𝑇 such that
ℓ+1 2

𝜀
≤ 𝐺𝑡 − X𝑡 ≤

10 ℓ+1 2

𝜀

• Let 𝐴 ≔ 𝐺𝑡 − 𝑋𝑡, 𝑋 ≔ 𝑋𝑡

• Recurse as long as 𝐺𝑡 − X𝑡 too large
• Join node – Recurse on subtree with at least half the vertices

• Introduce/forget node – Recurse on subtree

• Leaf node – Contradicts 𝐺𝑡 − X𝑡 large
𝐺

𝐵

𝐴

X

Various separator theorems for treewidth are known; we show
this one for completeness.

Independent Set

Overview

1. Find a good separator 𝑋, separate the graph into (small) A and B

2. Ask the oracle for a solution 𝑺𝑨 of part A

3. Recurse to find an approximate solution 𝑺𝑩 for part B

4. Show 𝑆𝐴 ∪ 𝑆𝐵 is a c(1 + 𝜀)-approximate solution

Theorem

Independent Set has a (1 + 𝜀)-approximate Turing Kernel with 𝑂
ℓ2

𝜀
vertices.

𝐺

𝐵

𝐴

X

Independent Set

Overview

1. Find a good separator 𝑋, separate the graph into (small) A and B

2. Ask the oracle for a solution 𝑆𝐴 of part A

3. Recurse to find an approximate solution 𝑆𝐵 for part B

4. Show 𝑺𝑨 ∪ 𝑺𝑩 is a 𝐜(𝟏 + 𝜺)-approximate solution

Theorem

Independent Set has a (1 + 𝜀)-approximate Turing Kernel with 𝑂
ℓ2

𝜀
vertices.

𝐺

𝐵

𝐴

X

Independent Set: Correctness

Consider an optimal solution 𝑆, then
𝑆 = 𝑆 ∩ 𝐴 + 𝑆 ∩ 𝐵 + 𝑆 ∩ X ≤ 𝑜𝑝𝑡 𝐺 𝐴 + 𝑜𝑝𝑡(𝐺[𝐵]) + |𝑋|

≤ 𝑐 𝑆𝐴 + 𝑐 1 + 𝜀 𝑆𝐵 + 𝜀 𝑆𝐴

≤ 𝑐 1 + 𝜀 𝑆𝐴 + 𝑆𝐵

Crucial point: Lower bound for IS on graphs of low treewidth

Independent Set: Correctness

Consider an optimal solution 𝑆, then
𝑆 = 𝑆 ∩ 𝐴 + 𝑆 ∩ 𝐵 + 𝑆 ∩ X ≤ 𝑜𝑝𝑡 𝐺 𝐴 + 𝑜𝑝𝑡(𝐺[𝐵]) + |𝑋|

≤ 𝑐 𝑆𝐴 + 𝑐 1 + 𝜀 𝑆𝐵 + 𝜀 𝑆𝐴

≤ 𝑐 1 + 𝜀 𝑆𝐴 + 𝑆𝐵

Crucial point: Lower bound for IS on graphs of low treewidth

By the
oracle Induction

Approximate Turing kernel for

Connected Vertex Cover
Parameterized by treewidth

Connected Vertex Cover

Given a graph 𝐺 (and tree decomposition 𝑇) find minimum vertex cover 𝑆 such that
𝐺[𝑆] is connected

Cannot apply earlier idea immediately

• No lower bound based on treewidth

• Combining solutions is complex
• Need to ensure connectivity

Connected Vertex Cover

No bound depending on treewidth, but

• A (1 + 𝛿)-approximate kernel for all 𝛿 > 0
[Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

No good bounds on optimal solution depending on
𝐶𝑉𝐶(𝐺 𝐴), 𝐶𝑉𝐶(𝐺[𝐵]), and 𝑋

𝐴

𝐺

𝐵

Subconnected tree decompositions

Tree decomposition such that 𝐺𝑡 is connected for all 𝑡

• A given tree decomposition can be made subconnected in polynomial time
• Without increasing its width

[Fraigniaud, Nisse, LATIN 2006]

𝐺

𝐺𝑡 − 𝑋𝑡

𝑋𝑡

Connected

Connected Vertex Cover

1. If our graph has a small CVC
• Apply (1 + 𝛿)-approximate kernel, obtain (𝐺′, 𝑘′)

• Feed (𝐺′, 𝑘′) to oracle, obtain solution 𝑆′

• Lift 𝑆′ to a solution 𝑆 of (𝐺, 𝑘)

2. Else, obtain tree decomposition such that 𝐺𝑡 connected for all 𝑡
• For all 𝑡, define the following graphs

𝐺

𝐺 − 𝐺𝑡

𝐺𝑡 − 𝑋𝑡

𝑋𝑡
𝐺𝑡

z Contract 𝑋

𝐺𝑡′

𝐺 − 𝐺𝑡

𝐺𝑡 − 𝑋𝑡

z
Contract 𝑋

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in 𝐺𝑡, we can in polynomial time find a connected
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡 𝐺𝑡 − 𝑋𝑡

𝑋𝑡𝐺𝑡

𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in 𝐺𝑡, we can in polynomial time find a connected
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in 𝐺𝑡, we can in polynomial time find a connected
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

𝑎
𝑑

𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in 𝐺𝑡, we can in polynomial time find a connected
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

𝑎
𝑑

𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in 𝐺𝑡, we can in polynomial time find a connected
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

𝑎
𝑑

𝑎′

𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in 𝐺𝑡, we can in polynomial time find a connected
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

𝑎
𝑑

𝑏

𝑎′

𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in 𝐺𝑡, we can in polynomial time find a connected
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

𝑎
𝑑

𝑏 𝑐

𝑎′

𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in 𝐺𝑡, we can in polynomial time find a connected
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

𝑎
𝑑

𝑏 𝑐

𝑎′

𝑏

Connected Vertex Cover

1. If 𝐺 has small CVC
• Use the (1 + 𝜀)-approximate kernel & oracle to obtain 𝑐 1 + 𝜀 -approx. solution

2. Otherwise, find 𝑡 such that 𝐺𝑡 has CVC of size between
ℓ

𝛿
and

100ℓ2

𝛿
for 𝛿 =

𝜀

3

3. Obtain 𝑐(1 + 𝛿)-approximate CVC መ𝑆 in 𝐺𝑡
• Use the (1 + 𝛿)-approximate kernel & oracle

4. By lemma, obtain CVC ሚ𝑆 in 𝐺𝑡, with 𝑋 ⊆ ሚ𝑆 and ሚ𝑆 ≤ መ𝑆 + 2|𝑋|

5. Obtain 𝑐(1 + 𝜀)-approximate CVC 𝑆′ in 𝐺𝑡
′

6. Output 𝑆′ ∪ ሚ𝑆 ∖ {𝑧}

Approximate Turing kernels

Conclusions and future work

Problem #Vertices in kernel

INDEPENDENT SET 𝑂
ℓ2

𝜀

VERTEX COVER 𝑂
ℓ

𝜀

CONNECTED VERTEX COVER

𝑂
ℓ2

𝜀

3+𝜀

𝜀

EDGE CLIQUE COVER 𝑂
ℓ4

𝜀

EDGE-DISJOINT TRIANGLE PACKING 𝑂
ℓ2

𝜀

VERTEX-DISJOINT 𝐻-PACKING

FOR CONNECTED 𝐻 𝑂
ℓ

𝜀

𝑉 𝐻 −1

CLIQUE COVER 𝑂
ℓ4

𝜀2

FEEDBACK VERTEX SET 𝑂
ℓ2

𝜀2

EDGE DOMINATING SET 𝑂
ℓ2

𝜀2

Summary

These problems parameterized by treewidth ℓ
have (1 + 𝜀)-approximate Turing Kernels

• Assuming tree decomposition on input

• For all 0 < 𝜀 ≤ 1

Friendly problems have a (1 + 𝜀)-approximate
Turing kernel with

ℎ
𝜀

3
, 𝜑

6 ⋅ g ℓ + 1

𝜀
+ 𝑔 1 , ℓ + ℓ

vertices

Problem #Vertices in kernel

INDEPENDENT SET 𝑂
ℓ2

𝜀

VERTEX COVER 𝑂
ℓ

𝜀

CONNECTED VERTEX COVER

𝑂
ℓ2

𝜀

3+𝜀

𝜀

EDGE CLIQUE COVER 𝑂
ℓ4

𝜀

EDGE-DISJOINT TRIANGLE PACKING 𝑂
ℓ2

𝜀

VERTEX-DISJOINT 𝐻-PACKING

FOR CONNECTED 𝐻 𝑂
ℓ

𝜀

𝑉 𝐻 −1

CLIQUE COVER 𝑂
ℓ4

𝜀2

FEEDBACK VERTEX SET 𝑂
ℓ2

𝜀2

EDGE DOMINATING SET 𝑂
ℓ2

𝜀2

Problem #Vertices in kernel

INDEPENDENT SET 𝑂
ℓ2

𝜀

VERTEX COVER 𝑂
ℓ

𝜀

CONNECTED VERTEX COVER

𝑂
ℓ2

𝜀

3+𝜀

𝜀

EDGE CLIQUE COVER 𝑂
ℓ4

𝜀

EDGE-DISJOINT TRIANGLE PACKING 𝑂
ℓ2

𝜀

VERTEX-DISJOINT 𝐻-PACKING

FOR CONNECTED 𝐻 𝑂
ℓ

𝜀

𝑉 𝐻 −1

CLIQUE COVER 𝑂
ℓ4

𝜀2

FEEDBACK VERTEX SET 𝑂
ℓ2

𝜀2

EDGE DOMINATING SET 𝑂
ℓ2

𝜀2

Summary

These problems parameterized by treewidth ℓ
have (1 + 𝜀)-approximate Turing Kernels

• Assuming tree decomposition on input

• For all 0 < 𝜀 ≤ 1

Friendly problems have a (1 + 𝜀)-approximate
Turing kernel with

ℎ
𝜀

3
, 𝜑

6 ⋅ g ℓ + 1

𝜀
+ 𝑔 1 , ℓ + ℓ

vertices

Problem #Vertices in kernel

INDEPENDENT SET 𝑂
ℓ2

𝜀

VERTEX COVER 𝑂
ℓ

𝜀

CONNECTED VERTEX COVER

𝑂
ℓ2

𝜀

3+𝜀

𝜀

EDGE CLIQUE COVER 𝑂
ℓ4

𝜀

EDGE-DISJOINT TRIANGLE PACKING 𝑂
ℓ2

𝜀

VERTEX-DISJOINT 𝐻-PACKING

FOR CONNECTED 𝐻 𝑂
ℓ

𝜀

𝑉 𝐻 −1

CLIQUE COVER 𝑂
ℓ4

𝜀2

FEEDBACK VERTEX SET 𝑂
ℓ2

𝜀2

EDGE DOMINATING SET 𝑂
ℓ2

𝜀2

Size of (1 + 𝜀)-
approx. kernel

Problem #Vertices in kernel

INDEPENDENT SET 𝑂
ℓ2

𝜀

VERTEX COVER 𝑂
ℓ

𝜀

CONNECTED VERTEX COVER

𝑂
ℓ2

𝜀

3+𝜀

𝜀

EDGE CLIQUE COVER 𝑂
ℓ4

𝜀

EDGE-DISJOINT TRIANGLE PACKING 𝑂
ℓ2

𝜀

VERTEX-DISJOINT 𝐻-PACKING

FOR CONNECTED 𝐻 𝑂
ℓ

𝜀

𝑉 𝐻 −1

CLIQUE COVER 𝑂
ℓ4

𝜀2

FEEDBACK VERTEX SET 𝑂
ℓ2

𝜀2

EDGE DOMINATING SET 𝑂
ℓ2

𝜀2

Summary

These problems parameterized by treewidth ℓ
have (1 + 𝜀)-approximate Turing Kernels

• Assuming tree decomposition on input

• For all 0 < 𝜀 ≤ 1

Friendly problems have a (1 + 𝜀)-approximate
Turing kernel with

ℎ
𝜀

3
, 𝜑

6 ⋅ g ℓ + 1

𝜀
+ 𝑔 1 , ℓ + ℓ

vertices

Problem #Vertices in kernel

INDEPENDENT SET 𝑂
ℓ2

𝜀

VERTEX COVER 𝑂
ℓ

𝜀

CONNECTED VERTEX COVER

𝑂
ℓ2

𝜀

3+𝜀

𝜀

EDGE CLIQUE COVER 𝑂
ℓ4

𝜀

EDGE-DISJOINT TRIANGLE PACKING 𝑂
ℓ2

𝜀

VERTEX-DISJOINT 𝐻-PACKING

FOR CONNECTED 𝐻 𝑂
ℓ

𝜀

𝑉 𝐻 −1

CLIQUE COVER 𝑂
ℓ4

𝜀2

FEEDBACK VERTEX SET 𝑂
ℓ2

𝜀2

EDGE DOMINATING SET 𝑂
ℓ2

𝜀2

Size of (1 + 𝜀)-
approx. kernel

Approximation factor of
approximation algorithm

Problem #Vertices in kernel

INDEPENDENT SET 𝑂
ℓ2

𝜀

VERTEX COVER 𝑂
ℓ

𝜀

CONNECTED VERTEX COVER

𝑂
ℓ2

𝜀

3+𝜀

𝜀

EDGE CLIQUE COVER 𝑂
ℓ4

𝜀

EDGE-DISJOINT TRIANGLE PACKING 𝑂
ℓ2

𝜀

VERTEX-DISJOINT 𝐻-PACKING

FOR CONNECTED 𝐻 𝑂
ℓ

𝜀

𝑉 𝐻 −1

CLIQUE COVER 𝑂
ℓ4

𝜀2

FEEDBACK VERTEX SET 𝑂
ℓ2

𝜀2

EDGE DOMINATING SET 𝑂
ℓ2

𝜀2

Summary

These problems parameterized by treewidth ℓ
have (1 + 𝜀)-approximate Turing Kernels

• Assuming tree decomposition on input

• For all 0 < 𝜀 ≤ 1

Friendly problems have a (1 + 𝜀)-approximate
Turing kernel with

ℎ
𝜀

3
, 𝜑

6 ⋅ g ℓ + 1

𝜀
+ 𝑔 1 , ℓ + ℓ

vertices

Problem #Vertices in kernel

INDEPENDENT SET 𝑂
ℓ2

𝜀

VERTEX COVER 𝑂
ℓ

𝜀

CONNECTED VERTEX COVER

𝑂
ℓ2

𝜀

3+𝜀

𝜀

EDGE CLIQUE COVER 𝑂
ℓ4

𝜀

EDGE-DISJOINT TRIANGLE PACKING 𝑂
ℓ2

𝜀

VERTEX-DISJOINT 𝐻-PACKING

FOR CONNECTED 𝐻 𝑂
ℓ

𝜀

𝑉 𝐻 −1

CLIQUE COVER 𝑂
ℓ4

𝜀2

FEEDBACK VERTEX SET 𝑂
ℓ2

𝜀2

EDGE DOMINATING SET 𝑂
ℓ2

𝜀2

Size of (1 + 𝜀)-
approx. kernel

Approximation factor of
approximation algorithm

“Friendlyness”
(usually ℓ + 1)
“Friendlyness”
(usually ℓ + 1)

Open questions

Approximate Turing kernels for other problems

• Many graph problems are not “friendly”
• Constant-factor approximate Turing kernel for DOMINATING SET parameterized by

treewidth ?

• Extend to other parameters
• Other width parameters

More lower bounds

• Problems without (1 + 𝜀)-approximate (Turing) kernels

Open questions

Approximate Turing kernels for other problems

• Many graph problems are not “friendly”
• Constant-factor approximate Turing kernel for DOMINATING SET parameterized by

treewidth ?

• Extend to other parameters
• Other width parameters

More lower bounds

• Problems without (1 + 𝜀)-approximate (Turing) kernels

Thank you!

