Polynomial kernels for hitting forbidden minors using constant treedepth modulators

Astrid Pieterse

Computations on Networks with a Tree-Structure: From Theory to Practice

joint work with Bart M. P. Jansen

September 13, 2018

Polynomial-time preprocessing

A kernelization for a parameterized problem is a polynomial-time algorithm that transforms input (x, k) to (x', k') such that

- (x, k) is a yes-instance if and only if (x', k') is a yes instance
- $|x'| \leq f(k)$ and $k' \leq f(k)$

Goal

- Obtain polynomial kernels for a wide variety of problems
- Small parameter k

Polynomial-time preprocessing

A kernelization for a parameterized problem is a polynomial-time algorithm that transforms input (x, k) to (x', k') such that

- (x, k) is a yes-instance if and only if (x', k') is a yes instance
- $|x'| \leq f(k)$ and $k' \leq f(k)$

Goal

- Obtain polynomial kernels for a wide variety of problems
- Small parameter k

Parameterizations

One of the most common parameterizations: solution size

- Good when large input asks for small solution
- \blacktriangleright Does not give good bounds when solution size \approx input size

Focus on structural parameters instead

Good when input has simple structure

Meta theorems

Courcelle's Theorem

All problems that can be expressed in MSOL on graphs, can be solved in linear time on graphs of bounded treewidth

Obtain similar results for kernelization?

- ► DOMINATING SET has no polynomial kernel when parameterized by VERTEX COVER [Dom et al. ICALP'09]
 - ► Large structural parameter
- But is easy to express in most types of logic

Focus on another very general problem

Meta theorems

Courcelle's Theorem

All problems that can be expressed in MSOL on graphs, can be solved in linear time on graphs of bounded treewidth

Obtain similar results for kernelization?

- ► DOMINATING SET has no polynomial kernel when parameterized by VERTEX COVER [Dom et al. ICALP'09]
 - ► Large structural parameter
- But is easy to express in most types of logic

Focus on another very general problem

 \mathcal{F} -Minor-Free Deletion

Let ${\mathcal F}$ be a set of connected graphs

Definition

InputA graph G and integer kQuestionDoes there exist $S \subseteq V(G)$ with $|S| \leq k$, such that
no graph in \mathcal{F} is a minor of G - S?

We sometimes say S breaks \mathcal{F}

Generalizes many problems $\mathcal{F} = \left\{ \bullet - \bullet \right\}: \text{ VERTEX COVER}$ $\mathcal{F} = \left\{ \bigtriangleup \right\}: \text{ FEEDBACK VERTEX SET}$ $\mathcal{F} = \left\{ \bigotimes \right\}: \text{ Making a graph planar by vertex-deletions}$ \mathcal{F} -Minor-Free Deletion

Let ${\mathcal F}$ be a set of connected graphs

Definition

InputA graph G and integer kQuestionDoes there exist $S \subseteq V(G)$ with $|S| \leq k$, such that
no graph in \mathcal{F} is a minor of G - S?

We sometimes say S breaks \mathcal{F}

Generalizes many problems

F = { ● ● }: VERTEX COVER
F = { ● }: FEEDBACK VERTEX SET
F = { ● }: Making a graph planar by vertex-deletions

Structural parameters

Many problems are easy for some simple graph class ${\mathcal G}$

► Trees, cliques, paths, independent sets, forests, ...

Treewidth, pathwidth, cliquewidth, ...

► VERTEX COVER has no polynomial kernel [Bodlaender et.al. 2009]

Number of vertices we need to remove until $G \in \mathcal{G}$

- Sometimes allows for polynomial kernels
- Also called a modulator

Parameter: modulator to constant treedepth

X is a treedepth- η modulator when $td(G - X) \le \eta$ $\blacktriangleright \eta$ is considered a fixed constant Parameter: |X| for optimal X

 $\mathcal F\text{-}\mathrm{MINOR}\text{-}\mathrm{FREE}$ Deletion is easy on graphs of constant treedepth

Polynomial-time solvable

Treedepth

td(G) is the minimum depth of any treedepth decomposition

- Tree T on all vertices of G
- ► Any edge in G is between children/ancestors in T

Example of treedepth 3

For any graph G, $tw(G) \leq td(G)$

Treedepth

td(G) is the minimum depth of any treedepth decomposition

- Tree T on all vertices of G
- ► Any edge in G is between children/ancestors in T

Treedepth of a path is logarithmic

For any graph G, $tw(G) \leq td(G)$

Treedepth

td(G) is the minimum depth of any treedepth decomposition

- Tree T on all vertices of G
- ► Any edge in G is between children/ancestors in T

Treedepth of a path is logarithmic

For any graph G, $tw(G) \leq td(G)$

Previous work

Parameterized by treewidth- η modulator [Jansen, Bodlaender STACS'11]

- ▶ Polynomial kernel for VERTEX COVER for $\eta = 1$
- ▶ No polynomial kernel for VERTEX COVER for $\eta \ge 2$

Parameterized by treedepth- η modulator

- ► Polynomial kernel for VERTEX COVER [Bougeret, Sau IPEC'17]
 - ► Kernelization of FEEDBACK VERTEX SET left open

Results

Let ${\mathcal F}$ be a set of connected graphs

Theorem

 \mathcal{F} -MINOR-FREE DELETION has a polynomial kernel parameterized by a treedepth- η modulator

- Kernel of size $O(|X|^{g(\eta,\mathcal{F})})$ for some function g
- Resolves the question about FVS

Lower bound

VERTEX COVER parameterized by a treedepth- η modulator has no kernel of size $O(|X|^{2^{\eta-4}-\varepsilon})$, unless $NP \subseteq coNP/poly$

• g is exponential in η , and this cannot be avoided

Results

Let ${\mathcal F}$ be a set of connected graphs

Theorem

 \mathcal{F} -MINOR-FREE DELETION has a polynomial kernel parameterized by a treedepth- η modulator

- Kernel of size $O(|X|^{g(\eta,\mathcal{F})})$ for some function g
- Resolves the question about FVS

Lower bound

VERTEX COVER parameterized by a treedepth- η modulator has no kernel of size $O(|X|^{2^{\eta-4}-\varepsilon})$, unless $NP \subseteq coNP/poly$

• g is exponential in η , and this cannot be avoided

Kernel for \mathcal{F} -Minor-Free Deletion

Kernel: main ingredients

Given G with modulator X

- Reduce the number of connected components of G X
- Apply induction on η to obtain kernel

Lemma

There is a polynomial-time algorithm that transforms G into induced subgraph G', and returns an integer Δ such that

- $opt(G') + \Delta = opt(G)$
- G' X has at most $|X|^{O(1)}$ connected components

Kernel: main ingredients

Given G with modulator X

- Reduce the number of connected components of G X
- Apply induction on η to obtain kernel

Lemma

There is a polynomial-time algorithm that transforms G into induced subgraph G', and returns an integer Δ such that

•
$$opt(G') + \Delta = opt(G)$$

• G' - X has at most $|X|^{O(1)}$ connected components

Theorem

 \mathcal{F} -MINOR-FREE DELETION has a polynomial kernel parameterized by a treedepth- η modulator

Theorem

 \mathcal{F} -MINOR-FREE DELETION has a polynomial kernel parameterized by a treedepth- η modulator

Base case: $\eta = 1$

Every connected component of G - X is a single vertex

- Given G and budget k, apply lemma to obtain G' and Δ
- Let the kernel be G' with budget $k \Delta$
- G' has at most $|X| + |X|^{O(1)} = |X|^{O(1)}$ vertices

Step: $\eta > 1$ Apply lemma, find *G*' with only few components in *G*' - *X*

- For each component of G' X, select root vertex r
 - Can be found efficiently

Step: $\eta > 1$

Apply lemma, find G' with only few components in G' - X

- For each component of G' X, select root vertex r
 - Can be found efficiently

Step: $\eta > 1$

Apply lemma, find G' with only few components in G' - X

- For each component of G' X, select root vertex r
 - Can be found efficiently

► Add *r* to *X*, obtain *X*′

Step: $\eta > 1$

Apply lemma, find G' with only few components in G' - X

- For each component of G' X, select root vertex r
 - Can be found efficiently
- Add r to X, obtain X'

Step: $\eta > 1$

Apply lemma, find G' with only few components in G' - X

- For each component of G' X, select root vertex r
 - Can be found efficiently
- Add r to X, obtain X'

Apply IH with X'

• Gives kernel of size $|X'|^{O(1)} = |X|^{O(1)}$

Step: $\eta > 1$

Apply lemma, find G' with only few components in G' - X

- For each component of G' X, select root vertex r
 - Can be found efficiently
- Add r to X, obtain X'

Now X' is a treedepth-
$$(\eta - 1)$$
 modulator
 $\downarrow |X'| = |X|^{O(1)}$

Apply IH with X'

• Gives kernel of size $|X'|^{O(1)} = |X|^{O(1)}$

Step: $\eta > 1$

Apply lemma, find G' with only few components in G' - X

- For each component of G' X, select root vertex r
 - Can be found efficiently
- Add r to X, obtain X'

Now X' is a treedepth-
$$(\eta - 1)$$
 modulator

$$|X'| = |X|^{O(1)}$$

Apply IH with X'

• Gives kernel of size $|X'|^{O(1)} = |X|^{O(1)}$

Theorem

\mathcal{F} -MINOR-FREE DELETION has a polynomial kernel parameterized by a treedepth- η modulator

using

Lemma

There is a polynomial-time algorithm that transforms G into induced subgraph G', and returns an integer Δ such that

•
$$opt(G') + \Delta = opt(G)$$

• G' - X has at most $|X|^{O(1)}$ connected components

Example: $\mathcal{F} = \{K_3\}$.

► FEEDBACK VERTEX SET (abbreviated as FVS)

- Exists an FVS in G[C] disconnecting C from X
 - ► Remove C
 - Reduce budget by opt(C)

Example: $\mathcal{F} = \{K_3\}$.

► FEEDBACK VERTEX SET (abbreviated as FVS)

- Exists an FVS in G[C] disconnecting C from X
 - ► Remove C
 - Reduce budget by opt(C)

Example: $\mathcal{F} = \{K_3\}$.

► FEEDBACK VERTEX SET (abbreviated as FVS)

- Exists an FVS in G[C] disconnecting C from X
 - ► Remove C
 - Reduce budget by opt(C)

Example: $\mathcal{F} = \{K_3\}$.

► FEEDBACK VERTEX SET (abbreviated as FVS)

- Exists an FVS in G[C] disconnecting C from X
 - ► Remove C
 - Reduce budget by opt(C)

Solutions in G: property

Let S be an optimal Feedback Vertex Set in G

• Also works if S is an \mathcal{F} -deletion

Lemma

There exist $\leq |X|$ components C in G - X such that

► S is not locally optimal in C

Any optimal FVS is locally optimal for most components!

Solutions in G: property

Let S be an optimal Feedback Vertex Set in G

• Also works if S is an \mathcal{F} -deletion

Lemma

There exist $\leq |X|$ components C in G - X such that

► S is not locally optimal in C

Any optimal FVS is locally optimal for most components!

Solutions in G: property

Let S be an optimal Feedback Vertex Set in G

• Also works if S is an \mathcal{F} -deletion

Lemma

There exist $\leq |X|$ components C in G - X such that

► S is not locally optimal in C

Any optimal FVS is locally optimal for most components!

Solutions in G: property

Let S be an optimal Feedback Vertex Set in G

• Also works if S is an \mathcal{F} -deletion

Lemma

There exist $\leq |X|$ components C in G - X such that

► S is not locally optimal in C

Any optimal FVS is locally optimal for most components!

Consider which $x \rightsquigarrow x'$ -connections are made by *C* for $x, x' \in X$

After removing some optimal FVS

No optimal FVS breaks $u \rightsquigarrow v$ in C

Consider which $x \rightsquigarrow x'$ -connections are made by *C* for $x, x' \in X$

After removing some optimal FVS

Some optimal FVS breaks $x \rightsquigarrow v$ and $x \rightsquigarrow u$ in C

► . . .

Suppose opt(C) never breaks $u \rightsquigarrow v, v \rightsquigarrow w, u \rightsquigarrow w, w \rightsquigarrow x, \ldots$

- Select a number of representative components
 - Mark $|X|^c$ other components that do not break $u \rightsquigarrow v$
 - Mark $|X|^c$ other components that do not break $v \rightsquigarrow w$
- ▶ Remove *C*, decrease budget by opt(*C*)

G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

G

Suppose *C* was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

G'

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

G'

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

G'-S

Removing components of G - X: rules so far

Cases we handled

- ▶ Some optimal FVS in C breaks all connections of C to X
- Any optimal FVS in C leaves connections $u \rightsquigarrow v, v \rightsquigarrow w, \ldots$
 - and no others

Any other options to consider?

Removing components of G - X: rules so far

Cases we handled

- ▶ Some optimal FVS in C breaks all connections of C to X
- Any optimal FVS in C leaves connections $u \rightsquigarrow v, v \rightsquigarrow w, \ldots$
 - and no others

Any other options to consider?

- Some solution may break $u \rightsquigarrow v$ and $v \rightsquigarrow w$
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

- Some solution may break $u \rightsquigarrow v$ and $v \rightsquigarrow w$
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

- Some solution may break $u \rightsquigarrow v$ and $v \rightsquigarrow w$
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

• u • v

- Some solution may break $u \rightsquigarrow v$ and $v \rightsquigarrow w$
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

- Some solution may break $u \rightsquigarrow v$ and $v \rightsquigarrow w$
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

- Some solution may break $u \rightsquigarrow v$ and $v \rightsquigarrow w$
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

- Some solution may break $u \rightsquigarrow v$ and $v \rightsquigarrow w$
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

All relevant information about C:

Behaviour of components described sets L that cannot be broken

- For each L, mark poly(|X|) representative components
- Remove unmarked components

But there are many sets to consider

- Number of subsets of $X \times X$
- Exponentially many such sets

Ideally: only need to consider sets of constant size γ

• Dependent on \mathcal{F} and η

Behaviour of components described sets L that cannot be broken

- For each L, mark poly(|X|) representative components
- Remove unmarked components

But there are many sets to consider

- Number of subsets of $X \times X$
- Exponentially many such sets

Ideally: only need to consider sets of constant size γ

• Dependent on \mathcal{F} and η

Behaviour of components described sets L that cannot be broken

- For each L, mark poly(|X|) representative components
- Remove unmarked components

But there are many sets to consider

- Number of subsets of $X \times X$
- Exponentially many such sets

Ideally: only need to consider sets of constant size γ

• Dependent on \mathcal{F} and η

Do we need large sets?

- ► What if a FVS cannot break very large set *L*
- ▶ but can break $L \setminus \{(x \rightsquigarrow x')\}$ for all $x, x' \in X$

Main effort in our paper is showing that this does not happen

Constant size witness

Main Lemma (sketch)

Let *L* be a set of pairs from *X*, let *C* be a graph of constant treedepth. If no optimal FVS in *C* breaks the connections between all pairs in *L*, then there exists $L' \subseteq L$ such that

- $\blacktriangleright |L'| \le \gamma$
- ► No optimal FVS of C breaks the connections between all pairs in L'

Do we need large sets?

- What if a FVS cannot break very large set L
- ▶ but can break $L \setminus \{(x \rightsquigarrow x')\}$ for all $x, x' \in X$

Main effort in our paper is showing that this does not happen

Constant size witness

Main Lemma (sketch)

Let L be a set of pairs from X, let C be a graph of constant treedepth. If no optimal FVS in C breaks the connections between all pairs in L, then there exists $L' \subseteq L$ such that

- $\blacktriangleright |L'| \le \gamma$
- No optimal FVS of C breaks the connections between all pairs in L'

Reduction rule

Marking components

For each set L with $|L| \leq \gamma$ of pairs from X, mark poly(|X|) connected components C of G - X s.t.

▶ There is no optimal FVS in C that breaks all connections in L

Remove all unmarked components

This leaves polynomially many components in G - X.

Reduction rule

Marking components

For each set L with $|L| \leq \gamma$ of pairs from X, mark poly(|X|) connected components C of G - X s.t.

▶ There is no optimal FVS in C that breaks all connections in L

Remove all unmarked components

This leaves polynomially many components in G - X.

Treewidth versus treedepth in main lemma

Rephrased for VERTEX COVER

Main Lemma (sketch)

Let $L \subseteq X$, let C be a graph of constant treedepth. If no optimal VC in C breaks all connections to L, then there exists $L' \subseteq L$ s.t.

- $\blacktriangleright \ |L'| \leq \gamma$
- ▶ No optimal VC of C breaks all connections to L'

The use of treedepth and not treewidth is essential

Treewidth versus treedepth in main lemma

Rephrased for VERTEX COVER

Main Lemma (sketch)

Let $L \subseteq X$, let C be a graph of constant treedepth. If no optimal VC in C breaks all connections to L, then there exists $L' \subseteq L$ s.t.

- $\blacktriangleright \ |L'| \leq \gamma$
- ▶ No optimal VC of C breaks all connections to L'

The use of treedepth and not treewidth is essential

Treewidth versus treedepth in main lemma

Rephrased for VERTEX COVER

Main Lemma (sketch)

Let $L \subseteq X$, let C be a graph of constant treedepth. If no optimal VC in C breaks all connections to L, then there exists $L' \subseteq L$ s.t.

- $\blacktriangleright \ |L'| \leq \gamma$
- ▶ No optimal VC of C breaks all connections to L'

The use of treedepth and not treewidth is essential

$$L = \{x_1, x_2, x_3, x_4\}$$
Treewidth versus treedepth in main lemma

Rephrased for VERTEX COVER

Main Lemma (sketch)

Let $L \subseteq X$, let C be a graph of constant treedepth. If no optimal VC in C breaks all connections to L, then there exists $L' \subseteq L$ s.t.

 $L = \{x_1, x_2, x_3, x_4\}$

- $\blacktriangleright |L'| \leq \gamma$
- ▶ No optimal VC of C breaks all connections to L'

The use of treedepth and not treewidth is essential

Treewidth versus treedepth in main lemma

Rephrased for VERTEX COVER

Main Lemma (sketch)

Let $L \subseteq X$, let C be a graph of constant treedepth. If no optimal VC in C breaks all connections to L, then there exists $L' \subseteq L$ s.t.

- $\blacktriangleright |L'| \leq \gamma$
- ▶ No optimal VC of C breaks all connections to L'

The use of treedepth and not treewidth is essential

Treewidth versus treedepth in main lemma

Rephrased for VERTEX COVER

Main Lemma (sketch)

Let $L \subseteq X$, let C be a graph of constant treedepth. If no optimal VC in C breaks all connections to L, then there exists $L' \subseteq L$ s.t.

- $\blacktriangleright |L'| \leq \gamma$
- ▶ No optimal VC of C breaks all connections to L'

The use of treedepth and not treewidth is essential

Conclusion

 \mathcal{F} -MINOR-FREE DELETION parameterized by a treedepth- η modulator has a polynomial kernel

• Graphs in \mathcal{F} must be connected

Future work

Find the most general graph class ${\mathcal G}$ such that

► VERTEX COVER parameterized by a modulator to *G* has a polynomial kernel

Conclusion

 \mathcal{F} -MINOR-FREE DELETION parameterized by a treedepth- η modulator has a polynomial kernel

• Graphs in \mathcal{F} must be connected

Future work

Find the most general graph class ${\mathcal G}$ such that

► VERTEX COVER parameterized by a modulator to *G* has a polynomial kernel

Thank you