
Sparsification Upper and Lower
Bounds for Graph Problems and
Not-All-Equal SAT

Astrid Pieterse
Supervisor: Bart Jansen

October 1, 2015

2/48

/ department of mathematics and computer science

Contents

I Introduction
I Not-All-Equal Satisfiability

• Lower bound
• Upper bound

I Lower bound for 4-Coloring
I Results
I Questions?

3/48

/ department of mathematics and computer science

Introduction

Goal
Develop fast algorithms to solve problems

I Failed for some problems
I Many considered problems proven NP-hard

Solution
Run an efficient preprocessing algorithm to reduce input size

I How to analyze this preprocessing?
• Preprocessing algorithm cannot guarantee n→ n− 1

3/48

/ department of mathematics and computer science

Introduction

Goal
Develop fast algorithms to solve problems

I Failed for some problems
I Many considered problems proven NP-hard

Solution
Run an efficient preprocessing algorithm to reduce input size

I How to analyze this preprocessing?
• Preprocessing algorithm cannot guarantee n→ n− 1

3/48

/ department of mathematics and computer science

Introduction

Goal
Develop fast algorithms to solve problems

I Failed for some problems
I Many considered problems proven NP-hard

Solution
Run an efficient preprocessing algorithm to reduce input size

I How to analyze this preprocessing?
• Preprocessing algorithm cannot guarantee n→ n− 1

3/48

/ department of mathematics and computer science

Introduction

Goal
Develop fast algorithms to solve problems

I Failed for some problems
I Many considered problems proven NP-hard

Solution
Run an efficient preprocessing algorithm to reduce input size

I How to analyze this preprocessing?
• Preprocessing algorithm cannot guarantee n→ n− 1

3/48

/ department of mathematics and computer science

Introduction

Goal
Develop fast algorithms to solve problems

I Failed for some problems
I Many considered problems proven NP-hard

Solution
Run an efficient preprocessing algorithm to reduce input size

I How to analyze this preprocessing?
• Preprocessing algorithm cannot guarantee n→ n− 1

3/48

/ department of mathematics and computer science

Introduction

Goal
Develop fast algorithms to solve problems

I Failed for some problems
I Many considered problems proven NP-hard

Solution
Run an efficient preprocessing algorithm to reduce input size

I How to analyze this preprocessing?
• Preprocessing algorithm cannot guarantee n→ n− 1

4/48

/ department of mathematics and computer science

Fixed parameter tractability

Parameterized problem
Decision problem P with inputs of type (x, k), where k is the parameter

I Examples
• Solution size k
• The size of a vertex cover in an input graph
• The number of vertices in an input graph
• . . .

P is Fixed Parameter Tractable if there is an algorithm with running time

O(f(k) · poly(n))

I For NP-hard problems, we expect f to be exponential in k

4/48

/ department of mathematics and computer science

Fixed parameter tractability

Parameterized problem
Decision problem P with inputs of type (x, k), where k is the parameter

I Examples
• Solution size k
• The size of a vertex cover in an input graph
• The number of vertices in an input graph
• . . .

P is Fixed Parameter Tractable if there is an algorithm with running time

O(f(k) · poly(n))

I For NP-hard problems, we expect f to be exponential in k

4/48

/ department of mathematics and computer science

Fixed parameter tractability

Parameterized problem
Decision problem P with inputs of type (x, k), where k is the parameter

I Examples
• Solution size k
• The size of a vertex cover in an input graph
• The number of vertices in an input graph
• . . .

P is Fixed Parameter Tractable if there is an algorithm with running time

O(f(k) · poly(n))

I For NP-hard problems, we expect f to be exponential in k

5/48

/ department of mathematics and computer science

Kernel

Reduce the size of an input instance, before solving the problem.

Kernel
I Algorithm mapping (x, k) ∈ P to (x ′, k ′) ∈ P

• The running time is polynomial in |x|+ k
• |x ′| and k ′ are bounded by f(k)
• (x ′, k ′) is a YES-instance for P if and only if
(x, k) is a YES-instance for P

I f(k) is the size

Any FPT problem has a kernel.

x

x′
k′

k

5/48

/ department of mathematics and computer science

Kernel

Reduce the size of an input instance, before solving the problem.

Kernel
I Algorithm mapping (x, k) ∈ P to (x ′, k ′) ∈ P

• The running time is polynomial in |x|+ k
• |x ′| and k ′ are bounded by f(k)
• (x ′, k ′) is a YES-instance for P if and only if
(x, k) is a YES-instance for P

I f(k) is the size

Any FPT problem has a kernel.

x

x′
k′

k

6/48

/ department of mathematics and computer science

Generalized kernel

Reduce the size of an input instance, before solving the problem.

Generalized kernel
I Algorithm mapping (x, k) ∈ P to (x ′, k ′) ∈ P ′

• The running time is polynomial in |x|+ k
• |x ′| and k ′ are bounded by f(k)
• (x ′, k ′) is a YES-instance for P ′ if and only if
(x, k) is a YES-instance for P

I f(k) is the size

Any FPT problem has a kernel.

x

x′
k′

k

7/48

/ department of mathematics and computer science

Kernel: Example

Vertex Cover

I Input: Graph G, integer k
I Question: Are there k vertices in G, such that for every edge, at least one of its

endpoints is chosen?
I Parameter: k

8/48

/ department of mathematics and computer science

Kernel: Example

Vertex Cover

I Input: Graph G, integer k
I Question: Are there k vertices in G, such that for every edge, at least one of its

endpoints is chosen?
I Parameter: k

Rule 1
If v is an isolated vertex

I Remove v.

8/48

/ department of mathematics and computer science

Kernel: Example

Vertex Cover

I Input: Graph G, integer k
I Question: Are there k vertices in G, such that for every edge, at least one of its

endpoints is chosen?
I Parameter: k

Rule 1
If v is an isolated vertex

I Remove v.

9/48

/ department of mathematics and computer science

Kernel: Example

Vertex Cover

I Input: Graph G, integer k
I Question: Are there k vertices in G, such that for every edge, at least one of its

endpoints is chosen?
I Parameter: k

Rule 2
If some vertex v has degree larger than k

and k > 0

I Remove v and decrease k by one.

k = 3

9/48

/ department of mathematics and computer science

Kernel: Example

Vertex Cover

I Input: Graph G, integer k
I Question: Are there k vertices in G, such that for every edge, at least one of its

endpoints is chosen?
I Parameter: k

Rule 2
If some vertex v has degree larger than k

and k > 0

I Remove v and decrease k by one.

k = 2

10/48

/ department of mathematics and computer science

Kernel: Example

Vertex Cover

I Input: Graph G, integer k
I Question: Are there k vertices in G, such that for every edge, at least one of its

endpoints is chosen?
I Parameter: k

Rule 3
Apply rules 1 and 2 until no longer possible.

I Every vertex has degree at most k
I Every vertex can cover at most k edges
I If we have more than k · k = k2 edges remaining
I Output NO

10/48

/ department of mathematics and computer science

Kernel: Example

Vertex Cover

I Input: Graph G, integer k
I Question: Are there k vertices in G, such that for every edge, at least one of its

endpoints is chosen?
I Parameter: k

Rule 3
Apply rules 1 and 2 until no longer possible.

I Every vertex has degree at most k
I Every vertex can cover at most k edges
I If we have more than k · k = k2 edges remaining
I Output NO

10/48

/ department of mathematics and computer science

Kernel: Example

Vertex Cover

I Input: Graph G, integer k
I Question: Are there k vertices in G, such that for every edge, at least one of its

endpoints is chosen?
I Parameter: k

Rule 3
Apply rules 1 and 2 until no longer possible.

I Every vertex has degree at most k
I Every vertex can cover at most k edges
I If we have more than k · k = k2 edges remaining
I Output NO

10/48

/ department of mathematics and computer science

Kernel: Example

Vertex Cover

I Input: Graph G, integer k
I Question: Are there k vertices in G, such that for every edge, at least one of its

endpoints is chosen?
I Parameter: k

Rule 3
Apply rules 1 and 2 until no longer possible.

I Every vertex has degree at most k
I Every vertex can cover at most k edges
I If we have more than k · k = k2 edges remaining
I Output NO

11/48

/ department of mathematics and computer science

Kernel: Example

Vertex Cover

I Input: Graph G, integer k
I Question: Are there k vertices in G, such that for every edge, at least one of its

endpoints is chosen?
I Parameter: k

Resulting kernel
Apply rules 1 and 2 until no longer possible, then apply rule 3.

I Kernel with at most k2 edges
I and at most 2k2 vertices.

11/48

/ department of mathematics and computer science

Kernel: Example

Vertex Cover

I Input: Graph G, integer k
I Question: Are there k vertices in G, such that for every edge, at least one of its

endpoints is chosen?
I Parameter: k

Resulting kernel
Apply rules 1 and 2 until no longer possible, then apply rule 3.

I Kernel with at most k2 edges
I and at most 2k2 vertices.

12/48

/ department of mathematics and computer science

My goal

Graph problems

I Chosen parameter is |V |.
I Represent as an adjacency matrix, O(|V |2) storage.
I Can we do better, can we reduce the number of edges to something sub-quadratic?

Logic problems

I Chosen parameter: Number of variables.
I Can we reduce the number of clauses?

(x∨ y∨ z)︸ ︷︷ ︸
clause

∧(x∨ ¬y∨ ¬z)∧ (¬x∨ ¬y∨ ¬z)

13/48

/ department of mathematics and computer science

Proving lower bounds

Suppose we know that P does not have a small generalized kernel. How to use this result?

Linear parameter transformation
Let P,P ′ be decision problems. A linear parameter transformation from P to P ′ maps (x, k)
from P to (x ′, k ′) from P ′ where

I The reduction takes polynomial time
I (x, k) is a yes-instance⇔ (x ′, k ′) is yes
I It is linear: k ′ = O(k)

14/48

/ department of mathematics and computer science

Proving lower bounds

Theorem
If P ′ has a generalized kernel of size O(kd), this
implies that P has a generalized kernel of O(kd).

I Let (x, k) be given for P
I Use the transformation to obtain (x ′, k ′) for P ′

I Use the kernel of P ′ to compress (x ′, k ′).
I Resulting kernel size O(kd)

x
kP

14/48

/ department of mathematics and computer science

Proving lower bounds

Theorem
If P ′ has a generalized kernel of size O(kd), this
implies that P has a generalized kernel of O(kd).

I Let (x, k) be given for P
I Use the transformation to obtain (x ′, k ′) for P ′

I Use the kernel of P ′ to compress (x ′, k ′).
I Resulting kernel size O(kd)

x
kP

14/48

/ department of mathematics and computer science

Proving lower bounds

Theorem
If P ′ has a generalized kernel of size O(kd), this
implies that P has a generalized kernel of O(kd).

I Let (x, k) be given for P
I Use the transformation to obtain (x ′, k ′) for P ′

I Use the kernel of P ′ to compress (x ′, k ′).
I Resulting kernel size O(kd)

x′
k′P ′

x
kP

Transform

k′ = O(k)

14/48

/ department of mathematics and computer science

Proving lower bounds

Theorem
If P ′ has a generalized kernel of size O(kd), this
implies that P has a generalized kernel of O(kd).

I Let (x, k) be given for P
I Use the transformation to obtain (x ′, k ′) for P ′

I Use the kernel of P ′ to compress (x ′, k ′).
I Resulting kernel size O(kd)

x′

x′′ k
′′

k′P ′

P ′′

x
kP

Transform

Kernel

k′ = O(k)

k′′ = O((k′)d)

|x′′| = O((k′)d)

15/48

/ department of mathematics and computer science

Proving lower bounds

Theorem
If P ′ has a generalized kernel of size O(kd), then P has a generalized kernel of O(kd).

Consequence
If P does not have a generalized kernel of size O(kd−ε) for ε > 0, then P ′ does not have a
generalized kernel of size O(kd−ε).

16/48

/ department of mathematics and computer science

Satisfiability

d-CNF-SAT

I Input: A Boolean formula F in CNF form, where every clause contains at most d literals.

F = (x∨ ¬y∨ . . .∨ z)︸ ︷︷ ︸
Clause

∧(¬x∨ ¬z∨ . . .∨ ¬y)∧ . . .

I Parameter: The number of variables n.
I Question: Can we find a truth assignment such that F is true?

17/48

/ department of mathematics and computer science

Satisfiability

I Important NP-hard problem
• For d > 3

Claim
d-CNF-Sat does not have a generalized kernel of size O(nd−ε), unless NP ⊆ coNP/poly

(Dell and Van Melkebeek).

NP 6⊆ coNP/poly will be used as an assumption, compare to P 6= NP.

17/48

/ department of mathematics and computer science

Satisfiability

I Important NP-hard problem
• For d > 3

Claim
d-CNF-Sat does not have a generalized kernel of size O(nd−ε), unless NP ⊆ coNP/poly

(Dell and Van Melkebeek).

NP 6⊆ coNP/poly will be used as an assumption, compare to P 6= NP.

17/48

/ department of mathematics and computer science

Satisfiability

I Important NP-hard problem
• For d > 3

Claim
d-CNF-Sat does not have a generalized kernel of size O(nd−ε), unless NP ⊆ coNP/poly

(Dell and Van Melkebeek).

NP 6⊆ coNP/poly will be used as an assumption, compare to P 6= NP.

18/48

/ department of mathematics and computer science

Not-All-Equal Satisfiability

d-NAE-SAT

I Input: A Boolean formula in CNF form, where every clause contains at most d literals.

(x∨ ¬y∨ . . .∨ z)︸ ︷︷ ︸
Clause

∧(¬x∨ ¬z∨ . . .∨ ¬y)∧ . . .

I Parameter: The number of variables n.
I Question: Can we find a truth assignment such that each clause contains at least one
true and one false literal?

Compare to d-CNF-Sat, where we only require at least one true literal per clause.

18/48

/ department of mathematics and computer science

Not-All-Equal Satisfiability

d-NAE-SAT

I Input: A Boolean formula in CNF form, where every clause contains at most d literals.

(x∨ ¬y∨ . . .∨ z)︸ ︷︷ ︸
Clause

∧(¬x∨ ¬z∨ . . .∨ ¬y)∧ . . .

I Parameter: The number of variables n.
I Question: Can we find a truth assignment such that each clause contains at least one
true and one false literal?

Compare to d-CNF-Sat, where we only require at least one true literal per clause.

19/48

/ department of mathematics and computer science

Not-All-Equal Satisfiability: Lower bound

Prove that this problem does not have a generalized kernel of size O(nd−1−ε), unless
NP ⊆ coNP/poly.

I Use a linear parameter transformation from d-CNF-Sat to (d+ 1)-NAE-Sat.

20/48

/ department of mathematics and computer science

Not-All-Equal Satisfiability: Lower bound

d-NAE-Sat does not have a generalized kernel of size O(nd−1−ε), unless NP ⊆ coNP/poly.

Proof

I Given formula F for d-CNF-Sat

F = (x∨ y∨ z)∧ (x∨ ¬y∨ ¬z)∧ (¬x∨ ¬y∨ ¬z).

I Transform to formula G for (d+ 1)-NAE-Sat, add variable b to each clause

G = (x∨ y∨ z∨ b)∧ (x∨ ¬y∨ ¬z∨ b)∧ (¬x∨ ¬y∨ ¬z∨ b).

I Show that F is satisfiable if and only if G is NAE-satisfiable.

21/48

/ department of mathematics and computer science

Not-All-Equal Satisfiability: Lower bound

Show that F is satisfiable if and only if G is NAE-satisfiable.

F = (x∨ y∨ z) ∧ (x∨ ¬y∨ ¬z) ∧ (¬x∨ ¬y∨ ¬z).

G = (x∨ y∨ z∨ b) ∧ (x∨ ¬y∨ ¬z∨ b) ∧ (¬x∨ ¬y∨ ¬z∨ b).

Proof

(⇒) Suppose F is satisfiable
• Choose the same assignment together with b = false.
• Every clause contains one true and one false literal.

22/48

/ department of mathematics and computer science

Not-All-Equal Satisfiability: Lower bound

Show that F is satisfiable if and only if G is NAE-satisfiable.

F = (x∨ y∨ z) ∧ (x∨ ¬y∨ ¬z) ∧ (¬x∨ ¬y∨ ¬z).

G = (x∨ y∨ z∨ b) ∧ (x∨ ¬y∨ ¬z∨ b) ∧ (¬x∨ ¬y∨ ¬z∨ b).

Proof

(⇐) Suppose G is NAE-satisfiable
• Suppose b = false, choose the same assignment for F.
• If b = true, choose the opposite assignment for F.

23/48

/ department of mathematics and computer science

Not-All-Equal Satisfiability: Upper bound

d-NAE-Sat does not have a generalized kernel of size O(nd−1−ε), unless NP ⊆ coNP/poly.

I Is this a tight bound?
• Not trivial.

I Provide a generalized kernel via d-Hypergraph 2-Colorability

(x, k)︸ ︷︷ ︸
d-NAE-Sat

lpt−→ (x ′, k ′)︸ ︷︷ ︸
d-Hypergraph 2-Colorability

kernel−−−→ (x ′′, k ′′)︸ ︷︷ ︸
d-Hypergraph 2-Colorability

24/48

/ department of mathematics and computer science

d-Hypergraph 2-Colorability

d-HYPERGRAPH 2-COLORABILITY

I Input: A hypergraph, where every edge contains at at most d vertices.
I Parameter: The number of vertices n.
I Question: Can we color each vertex with red/blue such that every edge contains at least

one red and one blue vertex?

25/48

/ department of mathematics and computer science

d-Hypergraph 2-Colorability

Lower bound
d-Hypergraph 2-colorability does not have a generalized kernel of size at most O(nd−1−ε),
unless NP ⊆ coNP/poly.

Kernel
d-Hypergraph 2-colorability has a kernel with O(nd−1) edges.

26/48

/ department of mathematics and computer science

d-Hypergraph 2-Colorability: Kernel

For simplicity, let every edge have exactly d vertices, let the edges be e1, . . . , em. Enumerate
all subsets of V that have size d− 1 as S1, S2, . . . , S`
Create the following matrix M.


e1 e2 ... em

S1 S1 ⊆ e1 S1 ⊆ e2 ... S1 ⊆ em
S2 S2 ⊆ e1 S2 ⊆ e2 ... S2 ⊆ em
...

S` S` ⊆ e1 S` ⊆ e2 ... S` ⊆ em


Compute a base of the columns of this matrix. This results in a subset of the edges of G.

27/48

/ department of mathematics and computer science

d-Hypergraph 2-Colorability: Kernel

Size

I Matrix M has at most
(

n
d−1

)
6 nd−1 rows.

I Any base of M contains at most nd−1 edges.
I Storage per edge: O(d logn) bits.
I Total number of bits: O(nd−1d logn).

Correctness

I If all edges in the base are split
I all remaining edges are split.

28/48

/ department of mathematics and computer science

d-NAE-Sat

Lower bound
No generalized kernel of size O(nd−1−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Generalized kernel
Generalized kernel of size O(nd−1 · d · logn)

I Linear parameter transformation to d-Hypergraph 2-Colorability
I Kernel for d-Hypergraph 2-Colorability

29/48

/ department of mathematics and computer science

Proving lower bounds: Cross-composition

Degree-2 cross-composition

I Think of an appropriate NP-hard problem Q

I Give a polynomial time algorithm
I Input: t2 instances of Q: x1, . . . , xt2

• We can assume they are similar
I Output: An instance (y, k) of P, where

• k = O(t ·max |xi|c)
• (y, k) is a logical OR of the input

• (y, k) is a YES-instance iff at least one xi is

Q

P

OR

. . .
x1 x2 xt2

30/48

/ department of mathematics and computer science

Proving lower bounds: Cross-composition

Theorem
If there exists a degree-2 cross-composition, P has no generalized kernel of size O(k2−ε)

I Assuming NP 6⊆ coNP/poly.

Proof sketch
The combination of a degree-2 cross-composition and a generalized kernel of size O(k2−ε)
results in an algorithm we consider unlikely to exist.

I Suppose for contradiction that P has a generalized kernel of size O(k1.9)

31/48

/ department of mathematics and computer science

Proving lower bounds: Cross-composition

Q

. . .

x1

x2

xn100

n100 inputs
Size n each

31/48

/ department of mathematics and computer science

Proving lower bounds: Cross-composition

Q

. . .

x1

x2

xn100

n100 inputs
Size n each

P

1 input
k =O(n50 ·max |xi|c)
Size: unknown

degree-2 cross-
composition

31/48

/ department of mathematics and computer science

Proving lower bounds: Cross-composition

Q

. . .

x1

x2

xn100

n100 inputs
Size n each

P

1 input
k =O(n51)
Size: unknown

degree-2 cross-
composition

31/48

/ department of mathematics and computer science

Proving lower bounds: Cross-composition

Q

. . .

x1

x2

xn100

n100 inputs
Size n each

P

1 input
k =O(n51)
Size: unknown

degree-2 cross-
composition

P ′

1 input
k′ =O((n51)1.9)
Size =O((n51)1.9)

generalized
kernel

31/48

/ department of mathematics and computer science

Proving lower bounds: Cross-composition

Q

. . .

x1

x2

xn100

n100 inputs
Size n each

P

1 input
k =O(n51)
Size: unknown

degree-2 cross-
composition

P ′

generalized
kernel

1 input
k′ =O(n97)
Size =O(n97)

32/48

/ department of mathematics and computer science

4-Coloring

Goal
Prove that there is no kernel of size O(|V |2−ε) for 4-COLORING.

4-List Coloring
We use list coloring with 4 colors in total, instead of 4-coloring.

I Every vertex has a list of allowed colors
• Subset of {r, g, b, o}

I Can be transformed back to 4-coloring using 4 vertices

32/48

/ department of mathematics and computer science

4-Coloring

Goal
Prove that there is no kernel of size O(|V |2−ε) for 4-COLORING.

4-List Coloring
We use list coloring with 4 colors in total, instead of 4-coloring.

I Every vertex has a list of allowed colors
• Subset of {r, g, b, o}

I Can be transformed back to 4-coloring using 4 vertices

32/48

/ department of mathematics and computer science

4-Coloring

Goal
Prove that there is no kernel of size O(|V |2−ε) for 4-COLORING.

4-List Coloring
We use list coloring with 4 colors in total, instead of 4-coloring.

I Every vertex has a list of allowed colors
• Subset of {r, g, b, o}

I Can be transformed back to 4-coloring using 4 vertices

{r, o}

{o}

{o, b}

{r}

{r, g, b}

{r, g}

32/48

/ department of mathematics and computer science

4-Coloring

Goal
Prove that there is no kernel of size O(|V |2−ε) for 4-COLORING.

4-List Coloring
We use list coloring with 4 colors in total, instead of 4-coloring.

I Every vertex has a list of allowed colors
• Subset of {r, g, b, o}

I Can be transformed back to 4-coloring using 4 vertices

{r, o}

{o}

{o, b}

{r}

{r, g, b}

{r, g}

33/48

/ department of mathematics and computer science

4-Coloring: Cross-composition

NP-hard starting problem
2-3-COLORING ON TRIANGLE-SPLIT GRAPHS

I Input: Graph G = (S ∪ T, E) where S is an independent set and T consists of disjoint
triangles.

I Question: Does G have a proper 3-coloring, such that S is colored using only 2 colors?
• We call this a 2-3-coloring of G.

S T

34/48

/ department of mathematics and computer science

4-Coloring: Cross-composition

I Assume we have t2 instances
I Let |S| = n and |T | = 3m for all instances
I Construct an instance G for 4-coloring

• Polynomial time
• At most O(t · (n+m)) vertices
• OR of all inputs

I We cannot use t2 vertices→ we cannot copy all vertices
• But we can keep all edges!

I Enumerate instances as Xij, where i = 1, . . . , t

35/48

/ department of mathematics and computer science

4-Coloring: First idea

S1 S2 S3

T1 T2 T3

St

Tt

35/48

/ department of mathematics and computer science

4-Coloring: First idea

S1 S2 S3

T1 T2 T3

InstanceX23?

St

Tt

35/48

/ department of mathematics and computer science

4-Coloring: First idea

S1 S2 S3

T1 T2 T3

St

Tt

35/48

/ department of mathematics and computer science

4-Coloring: First idea

St

Tt

S1 S2 S3

T1 T2 T3

35/48

/ department of mathematics and computer science

4-Coloring: First idea

St

Tt

S1 S2 S3

T1 T2 T3

{r, g, o}

{r, g, b}

35/48

/ department of mathematics and computer science

4-Coloring: First idea

St

Tt

S1 S2 S3

T1 T2 T3

{r, g, o}

{r, g, b}

35/48

/ department of mathematics and computer science

4-Coloring: First idea

St

Tt

S1 S2 S3

T1 T2 T3

{r, g, o}

{r, g, b}

35/48

/ department of mathematics and computer science

4-Coloring: First idea

St

Tt

S1 S2 S3

T1 T2 T3

{r, g, o}

{r, g, b}

35/48

/ department of mathematics and computer science

4-Coloring: First idea

St

Tt

S1 S2 S3

T1 T2 T3

{r, g, o}

{r, g, b}

36/48

/ department of mathematics and computer science

4-Coloring: Triangular gadget

This is not a valid coloring of the triangles. Replace them:

Inner vertices
Corner

Corner

Corner

Allow the new vertices to be red, green, orange, or blue.

37/48

/ department of mathematics and computer science

4-Coloring: Triangular gadget

Useful properties

If orange is allowed in the inner vertices,
we can color all corners with blue.

If 3-colored: ordinary triangle. All corners
get distinct color.

38/48

/ department of mathematics and computer science

4-Coloring: Improved

S1 S2 S3

T1 T2 T3

{r, g, o}

{r, g, b, o}

St

Tt

38/48

/ department of mathematics and computer science

4-Coloring: Improved

S1 S2 S3

T1 T2 T3

{r, g, o}

{r, g, b, o}

Tt

St

39/48

/ department of mathematics and computer science

4-Coloring: Treegadgets

Make sure that at least one Si and one Tj are colored using red, green, and blue.

Treegadget
A treegadget is a balanced binary tree where every vertex is replaced by a triangle:

root

leaves

40/48

/ department of mathematics and computer science

4-Coloring: Treegadgets

Suppose we want to 3-color a gadget, using red, green and orange.

Property 1
If none of the leaves is colored orange, the root must be orange.

40/48

/ department of mathematics and computer science

4-Coloring: Treegadgets

Suppose we want to 3-color a gadget, using red, green and orange.

Property 1
If none of the leaves is colored orange, the root must be orange.

40/48

/ department of mathematics and computer science

4-Coloring: Treegadgets

Suppose we want to 3-color a gadget, using red, green and orange.

Property 1
If none of the leaves is colored orange, the root must be orange.

40/48

/ department of mathematics and computer science

4-Coloring: Treegadgets

Suppose we want to 3-color a gadget, using red, green and orange.

Property 1
If none of the leaves is colored orange, the root must be orange.

40/48

/ department of mathematics and computer science

4-Coloring: Treegadgets

Suppose we want to 3-color a gadget, using red, green and orange.

Property 1
If none of the leaves is colored orange, the root must be orange.

40/48

/ department of mathematics and computer science

4-Coloring: Treegadgets

Suppose we want to 3-color a gadget, using red, green and orange.

Property 1
If none of the leaves is colored orange, the root must be orange.

41/48

/ department of mathematics and computer science

4-Coloring: Treegadgets

Suppose we want to 3-color a gadget, using red, green and orange.

Property 2
We can extend a coloring of the leaves, to color the entire tree. If at least one of the leaves is
colored orange, the root can be red or green.

41/48

/ department of mathematics and computer science

4-Coloring: Treegadgets

Suppose we want to 3-color a gadget, using red, green and orange.

Property 2
We can extend a coloring of the leaves, to color the entire tree. If at least one of the leaves is
colored orange, the root can be red or green.

41/48

/ department of mathematics and computer science

4-Coloring: Treegadgets

Suppose we want to 3-color a gadget, using red, green and orange.

Property 2
We can extend a coloring of the leaves, to color the entire tree. If at least one of the leaves is
colored orange, the root can be red or green.

41/48

/ department of mathematics and computer science

4-Coloring: Treegadgets

Suppose we want to 3-color a gadget, using red, green and orange.

Property 2
We can extend a coloring of the leaves, to color the entire tree. If at least one of the leaves is
colored orange, the root can be red or green.

41/48

/ department of mathematics and computer science

4-Coloring: Treegadgets

Suppose we want to 3-color a gadget, using red, green and orange.

Property 2
We can extend a coloring of the leaves, to color the entire tree. If at least one of the leaves is
colored orange, the root can be red or green.

41/48

/ department of mathematics and computer science

4-Coloring: Treegadgets

Suppose we want to 3-color a gadget, using red, green and orange.

Property 2
We can extend a coloring of the leaves, to color the entire tree. If at least one of the leaves is
colored orange, the root can be red or green.

42/48

/ department of mathematics and computer science

4-Coloring: Cross-composition
Ensure one group in S is colored with red and green.

{r, g, o} {r, g, b, o}

{o, r, g}

{r, g}

S T

43/48

/ department of mathematics and computer science

4-Coloring: Cross-composition
Ensure one group in T is colored with red, green and orange.

{r, g, o} {r, g, b, o}

{o, r, g}

{r, g}

S T

{g, b, o}

{g, b}

{r, g, b}

44/48

/ department of mathematics and computer science

4-Coloring: Cross-composition

To prove
I The number of vertices of G is allowed: O(t ·max |Xij|).
I Can be done in polynomial time.

X If some Xij is 2-3-colorable, G is 4-colorable.

X If G is 4-colorable, there exists an Xij that is 2-3-colorable.

45/48

/ department of mathematics and computer science

4-Coloring: Cross-composition

Proof: |V |
Count the number of vertices

I S: t · n vertices
I T : t · 12m vertices
I Gadgets: O(t) vertices

Total: O(t · (n+m)) vertices as required.

Proof: Polynomial time
The graph has polynomial size and is straightforward to construct.

46/48

/ department of mathematics and computer science

Results

Problems without a generalized kernel of size O(|V |2−ε) for any ε > 0, unless
NP ⊆ coNP/poly.

I Feedback Arc Set
I 4-Coloring

• And thereby k-coloring for k > 4

I Hamiltonian Cycle
I Dominating Set

• Non Blocker
I Connected Dominating Set

• Maximum Leaf Spanning Tree

46/48

/ department of mathematics and computer science

Results

Problems without a generalized kernel of size O(|V |2−ε) for any ε > 0, unless
NP ⊆ coNP/poly.

I Feedback Arc Set
I 4-Coloring

• And thereby k-coloring for k > 4

I Hamiltonian Cycle
I Dominating Set

• Non Blocker
I Connected Dominating Set

• Maximum Leaf Spanning Tree

46/48

/ department of mathematics and computer science

Results

Problems without a generalized kernel of size O(|V |2−ε) for any ε > 0, unless
NP ⊆ coNP/poly.

I Feedback Arc Set
I 4-Coloring

• And thereby k-coloring for k > 4

I Hamiltonian Cycle
I Dominating Set

• Non Blocker
I Connected Dominating Set

• Maximum Leaf Spanning Tree

46/48

/ department of mathematics and computer science

Results

Problems without a generalized kernel of size O(|V |2−ε) for any ε > 0, unless
NP ⊆ coNP/poly.

I Feedback Arc Set
I 4-Coloring

• And thereby k-coloring for k > 4

I Hamiltonian Cycle
I Dominating Set

• Non Blocker
I Connected Dominating Set

• Maximum Leaf Spanning Tree

46/48

/ department of mathematics and computer science

Results

Problems without a generalized kernel of size O(|V |2−ε) for any ε > 0, unless
NP ⊆ coNP/poly.

I Feedback Arc Set
I 4-Coloring

• And thereby k-coloring for k > 4

I Hamiltonian Cycle
I Dominating Set

• Non Blocker
I Connected Dominating Set

• Maximum Leaf Spanning Tree

46/48

/ department of mathematics and computer science

Results

Problems without a generalized kernel of size O(|V |2−ε) for any ε > 0, unless
NP ⊆ coNP/poly.

I Feedback Arc Set
I 4-Coloring

• And thereby k-coloring for k > 4

I Hamiltonian Cycle
I Dominating Set

• Non Blocker
I Connected Dominating Set

• Maximum Leaf Spanning Tree

46/48

/ department of mathematics and computer science

Results

Problems without a generalized kernel of size O(|V |2−ε) for any ε > 0, unless
NP ⊆ coNP/poly.

I Feedback Arc Set
I 4-Coloring

• And thereby k-coloring for k > 4

I Hamiltonian Cycle
I Dominating Set

• Non Blocker
I Connected Dominating Set

• Maximum Leaf Spanning Tree

47/48

/ department of mathematics and computer science

Results

Problems that do not have a generalized kernel of size O(nd−1−ε), unless
NP ⊆ coNP/poly.

I d-Hypergraph 2-Colorability
I d-NAE-Sat

And these bounds are tight.

48/48

/ department of mathematics and computer science

Open problems

I 3-Coloring: Kernel of size O(|V |2−ε) – or not??
I Are there graph problems with kernels with O(|V |2−ε) edges?

I Questions or remarks?

48/48

/ department of mathematics and computer science

Open problems

I 3-Coloring: Kernel of size O(|V |2−ε) – or not??
I Are there graph problems with kernels with O(|V |2−ε) edges?

I Questions or remarks?

