Sparsification Upper and Lower Bounds for Graph Problems and Not-All-Equal SAT

Astrid Pieterse Supervisor: Bart Jansen

TU/e

Technische Universiteit Eindhoven University of Technology

October 1, 2015

- Introduction
- Not-All-Equal Satisfiability
 - Lower bound
 - Upper bound
- Lower bound for 4-Coloring
- Results
- Questions?

Introduction

Goal Develop fast algorithms to solve problems

- Failed for some problems
- Many considered problems proven NP-hard

Solution

- How to analyze this preprocessing?
 - \sim Preprocessing algorithm cannot guarantee n
 ightarrow n 100

Introduction

Goal

Develop fast algorithms to solve problems

- Failed for some problems
- Many considered problems proven NP-hard

Solution

- How to analyze this preprocessing?
 - \sim Preprocessing algorithm cannot guarantee n
 ightarrow n-1

Develop fast algorithms to solve problems

- Failed for some problems
- Many considered problems proven NP-hard

Solution

- How to analyze this preprocessing?
 - \sim Preprocessing algorithm cannot guarantee n
 ightarrow n-1

Develop fast algorithms to solve problems

- Failed for some problems
- Many considered problems proven NP-hard

Solution

- How to analyze this preprocessing?
 - Preprocessing algorithm cannot guarantee n
 ightarrow n 1

Develop fast algorithms to solve problems

- Failed for some problems
- Many considered problems proven NP-hard

Solution

- How to analyze this preprocessing?
 - Preprocessing algorithm cannot guarantee $n \rightarrow n-1$

Develop fast algorithms to solve problems

- Failed for some problems
- Many considered problems proven NP-hard

Solution

- How to analyze this preprocessing?
 - Preprocessing algorithm cannot guarantee $n \rightarrow n-1$

Parameterized problem

Decision problem P with inputs of type (x, k), where k is the parameter

- Examples
 - Solution size k
 - The size of a vertex cover in an input graph
 - The number of vertices in an input graph
 - . . .

P is *Fixed Parameter Tractable* if there is an algorithm with running time

 $O(f(k) \cdot \text{poly}(n))$

For NP-hard problems, we expect f to be exponential in k

/ department of mathematics and computer science

Parameterized problem

Decision problem P with inputs of type (x, k), where k is the parameter

- Examples
 - Solution size k
 - The size of a vertex cover in an input graph
 - · The number of vertices in an input graph
 - ...

P is *Fixed Parameter Tractable* if there is an algorithm with running time

 $O(f(k) \cdot poly(n))$

▶ For NP-hard problems, we expect f to be exponential in k

/ department of mathematics and computer science

Parameterized problem

Decision problem P with inputs of type (x, k), where k is the parameter

- Examples
 - Solution size k
 - The size of a vertex cover in an input graph
 - · The number of vertices in an input graph
 - ...

P is Fixed Parameter Tractable if there is an algorithm with running time

 $O(f(k) \cdot \text{poly}(n))$

▶ For NP-hard problems, we expect f to be exponential in k

Kernel

Reduce the size of an input instance, before solving the problem.

Kernel

- Algorithm mapping $(x,k) \in P$ to $(x',k') \in P$
 - The running time is polynomial in $\left|x\right|+k$
 - $|x^{\,\prime}|$ and $k^{\,\prime}$ are bounded by f(k)
 - (x', k') is a YES-instance for P if and only if (x, k) is a YES-instance for P
- ► f(k) is the *size*

Any FPT problem has a kernel.

Kernel

Reduce the size of an input instance, before solving the problem.

Kernel

- Algorithm mapping $(x, k) \in P$ to $(x', k') \in P$
 - The running time is polynomial in |x| + k
 - $|\mathbf{x}'|$ and \mathbf{k}' are bounded by $f(\mathbf{k})$
 - (x', k') is a YES-instance for P if and only if (x, k) is a YES-instance for P
- ▶ f(k) is the *size*

Any FPT problem has a kernel.

Reduce the size of an input instance, before solving the problem.

Generalized kernel

- Algorithm mapping $(x, k) \in P$ to $(x', k') \in P'$
 - The running time is polynomial in $\left|x\right|+k$
 - $|x^{\,\prime}|$ and $k^{\,\prime}$ are bounded by f(k)
 - (x', k') is a YES-instance for P' if and only if
 (x, k) is a YES-instance for P
- ▶ f(k) is the *size*

Any FPT problem has a kernel.

Vertex Cover

- Input: Graph G, integer k
- Question: Are there k vertices in G, such that for every edge, at least one of its endpoints is chosen?
- Parameter: k

Vertex Cover

- Input: Graph G, integer k
- Question: Are there k vertices in G, such that for every edge, at least one of its endpoints is chosen?
- Parameter: k

Rule 1

If $\boldsymbol{\nu}$ is an isolated vertex

Remove v.

/ department of mathematics and computer science

Vertex Cover

- Input: Graph G, integer k
- Question: Are there k vertices in G, such that for every edge, at least one of its endpoints is chosen?
- Parameter: k

Rule 1

If $\boldsymbol{\nu}$ is an isolated vertex

Remove v.

Vertex Cover

- Input: Graph G, integer k
- Question: Are there k vertices in G, such that for every edge, at least one of its endpoints is chosen?
- Parameter: k

Rule 2

If some vertex ν has degree larger than k and k>0

• Remove v and decrease k by one.

Vertex Cover

- Input: Graph G, integer k
- Question: Are there k vertices in G, such that for every edge, at least one of its endpoints is chosen?
- Parameter: k

Rule 2

If some vertex ν has degree larger than k and k>0

• Remove v and decrease k by one.

- Input: Graph G, integer k
- Question: Are there k vertices in G, such that for every edge, at least one of its endpoints is chosen?
- Parameter: k

Rule 3

Apply rules 1 and 2 until no longer possible.

- Every vertex has degree at most k
- Every vertex can cover at most k edges
- If we have more than $k \cdot k = k^2$ edges remaining
- Output NO

/ department of mathematics and computer science

- Input: Graph G, integer k
- Question: Are there k vertices in G, such that for every edge, at least one of its endpoints is chosen?
- Parameter: k

Rule 3

Apply rules 1 and 2 until no longer possible.

- Every vertex has degree at most k
- Every vertex can cover at most k edges
- If we have more than $k \cdot k = k^2$ edges remaining
- Output NO

/ department of mathematics and computer science

- Input: Graph G, integer k
- Question: Are there k vertices in G, such that for every edge, at least one of its endpoints is chosen?
- Parameter: k

Rule 3

Apply rules 1 and 2 until no longer possible.

- Every vertex has degree at most k
- Every vertex can cover at most k edges
- If we have more than $k \cdot k = k^2$ edges remaining
- Output NO

- Input: Graph G, integer k
- Question: Are there k vertices in G, such that for every edge, at least one of its endpoints is chosen?
- Parameter: k

Rule 3

Apply rules 1 and 2 until no longer possible.

- Every vertex has degree at most k
- Every vertex can cover at most k edges
- If we have more than $k \cdot k = k^2$ edges remaining
- Output NO

- Input: Graph G, integer k
- Question: Are there k vertices in G, such that for every edge, at least one of its endpoints is chosen?
- Parameter: k

Resulting kernel

Apply rules 1 and 2 until no longer possible, then apply rule 3.

- Kernel with at most k² edges
- and at most 2k² vertices.

- Input: Graph G, integer k
- Question: Are there k vertices in G, such that for every edge, at least one of its endpoints is chosen?
- Parameter: k

Resulting kernel

Apply rules 1 and 2 until no longer possible, then apply rule 3.

- Kernel with at most k² edges
- ▶ and at most 2k² vertices.

My goal

Graph problems

- Chosen parameter is |V|.
- Represent as an adjacency matrix, $O(|V|^2)$ storage.
- Can we do better, can we reduce the number of edges to something sub-quadratic?

Logic problems

- Chosen parameter: Number of variables.
- Can we reduce the number of clauses?

$$\underbrace{(x \lor y \lor z)}_{\text{clause}} \land (x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z)$$

Suppose we know that P does not have a small generalized kernel. How to use this result?

Linear parameter transformation

Let P,P' be decision problems. A linear parameter transformation from P to P' maps (x, k) from P to (x', k') from P' where

- The reduction takes polynomial time
- (x, k) is a yes-instance $\Leftrightarrow (x', k')$ is yes
- It is linear: k' = O(k)

Theorem

- Let (x, k) be given for P
- \blacktriangleright Use the transformation to obtain (x^\prime,k^\prime) for P^\prime
- Use the kernel of P' to compress (x', k').
- ► Resulting kernel size O(k^d)

Theorem

- Let (x, k) be given for P
- Use the transformation to obtain (x', k') for P'
- Use the kernel of P' to compress (x', k').
- ► Resulting kernel size O(k^d)

Theorem

- Let (x, k) be given for P
- Use the transformation to obtain (x', k') for P'
- Use the kernel of P' to compress (x', k').
- ► Resulting kernel size O(k^d)

Theorem

- Let (x, k) be given for P
- Use the transformation to obtain (x', k') for P'
- Use the kernel of P' to compress (x', k').
- Resulting kernel size O(k^d)

Theorem

If P' has a generalized kernel of size $O(k^d)$, then P has a generalized kernel of $O(k^d)$.

Consequence

If P does *not* have a generalized kernel of size $O(k^{d-\epsilon})$ for $\epsilon > 0$, then P' does not have a generalized kernel of size $O(k^{d-\epsilon})$.

d-CNF-SAT

• Input: A Boolean formula \mathcal{F} in CNF form, where every clause contains at most d literals.

$$\mathcal{F} = \underbrace{(x \lor \neg y \lor \ldots \lor z)}_{\mathsf{Clause}} \land (\neg x \lor \neg z \lor \ldots \lor \neg y) \land \ldots$$

- Parameter: The number of variables n.
- ▶ Question: Can we find a truth assignment such that *F* is *true*?

Important NP-hard problem

• For $d \ge 3$

Claim

d-CNF-Sat does not have a generalized kernel of size $O(n^{d-\epsilon})$, unless $NP \subseteq coNP/poly$ (Dell and Van Melkebeek).

 $\mathsf{NP} \not\subseteq \mathsf{coNP}/\mathsf{poly}$ will be used as an assumption, compare to $\mathsf{P}
eq \mathsf{NP}.$

- Important NP-hard problem
 - For $d \ge 3$

Claim

d-CNF-Sat does not have a generalized kernel of size $O(n^{d-\epsilon})$, unless $NP\subseteq coNP/poly$ (Dell and Van Melkebeek).

 $\mathsf{NP}
ot\subseteq \mathsf{coNP}/\mathsf{poly}$ will be used as an assumption, compare to $\mathsf{P}
eq \mathsf{NP}.$

- Important NP-hard problem
 - For $d \ge 3$

Claim

d-CNF-Sat does not have a generalized kernel of size $O(n^{d-\epsilon})$, unless $NP\subseteq coNP/poly$ (Dell and Van Melkebeek).

 $NP \not\subseteq coNP/poly$ will be used as an assumption, compare to $P \neq NP$.
d-NAE-SAT

▶ Input: A Boolean formula in CNF form, where every clause contains at most d literals.

$$\underbrace{(x \lor \neg y \lor \ldots \lor z)}_{Clause} \land (\neg x \lor \neg z \lor \ldots \lor \neg y) \land \ldots$$

- Parameter: The number of variables n.
- Question: Can we find a truth assignment such that each clause contains at least one true and one false literal?

Compare to d-CNF-Sat, where we only require at least one *true* literal per clause.

d-NAE-SAT

▶ Input: A Boolean formula in CNF form, where every clause contains at most d literals.

$$\underbrace{(x \lor \neg y \lor \ldots \lor z)}_{Clause} \land (\neg x \lor \neg z \lor \ldots \lor \neg y) \land \ldots$$

- Parameter: The number of variables n.
- Question: Can we find a truth assignment such that each clause contains at least one true and one false literal?

Compare to d-CNF-Sat, where we only require at least one *true* literal per clause.

Prove that this problem does not have a generalized kernel of size $O(n^{d-1-\epsilon})$, unless NP $\subseteq coNP/poly$.

• Use a linear parameter transformation from d-CNF-Sat to (d + 1)-NAE-Sat.

d-NAE-Sat does not have a generalized kernel of size $O(n^{d-1-\epsilon})$, unless $NP\subseteq coNP/poly.$ Proof

► Given formula 𝔅 for d-CNF-Sat

$$\mathfrak{F} = (\mathbf{x} \lor \mathbf{y} \lor \mathbf{z}) \land (\mathbf{x} \lor \neg \mathbf{y} \lor \neg \mathbf{z}) \land (\neg \mathbf{x} \lor \neg \mathbf{y} \lor \neg \mathbf{z}).$$

Fransform to formula \mathcal{G} for (d + 1)-NAE-Sat, add variable b to each clause

$$\mathfrak{G} = (\mathbf{x} \vee \mathbf{y} \vee \mathbf{z} \vee \mathbf{b}) \wedge (\mathbf{x} \vee \neg \mathbf{y} \vee \neg \mathbf{z} \vee \mathbf{b}) \wedge (\neg \mathbf{x} \vee \neg \mathbf{y} \vee \neg \mathbf{z} \vee \mathbf{b}).$$

▶ Show that *F* is satisfiable if and only if *G* is NAE-satisfiable.

Show that ${\mathfrak F}$ is satisfiable if and only if ${\mathfrak G}$ is NAE-satisfiable.

$$\begin{split} \mathcal{F} &= (\mathbf{x} \lor \mathbf{y} \lor \mathbf{z}) & \wedge (\mathbf{x} \lor \neg \mathbf{y} \lor \neg \mathbf{z}) & \wedge (\neg \mathbf{x} \lor \neg \mathbf{y} \lor \neg \mathbf{z}). \\ \mathcal{G} &= (\mathbf{x} \lor \mathbf{y} \lor \mathbf{z} \lor \mathbf{b}) & \wedge (\mathbf{x} \lor \neg \mathbf{y} \lor \neg \mathbf{z} \lor \mathbf{b}) & \wedge (\neg \mathbf{x} \lor \neg \mathbf{y} \lor \neg \mathbf{z} \lor \mathbf{b}). \end{split}$$

Proof

(\Rightarrow) Suppose \mathcal{F} is satisfiable

- Choose the same assignment together with b = false.
- Every clause contains one *true* and one *false* literal.

Show that ${\mathfrak F}$ is satisfiable if and only if ${\mathfrak G}$ is NAE-satisfiable.

$$\begin{split} \mathcal{F} &= (\mathbf{x} \lor \mathbf{y} \lor \mathbf{z}) & \wedge (\mathbf{x} \lor \neg \mathbf{y} \lor \neg \mathbf{z}) & \wedge (\neg \mathbf{x} \lor \neg \mathbf{y} \lor \neg \mathbf{z}). \\ \mathcal{G} &= (\mathbf{x} \lor \mathbf{y} \lor \mathbf{z} \lor \mathbf{b}) & \wedge (\mathbf{x} \lor \neg \mathbf{y} \lor \neg \mathbf{z} \lor \mathbf{b}) & \wedge (\neg \mathbf{x} \lor \neg \mathbf{y} \lor \neg \mathbf{z} \lor \mathbf{b}). \end{split}$$

Proof

(\Leftarrow) Suppose \mathcal{G} is NAE-satisfiable

- Suppose b = false, choose the same assignment for \mathcal{F} .
- If b = true, choose the opposite assignment for \mathcal{F} .

d-NAE-Sat does not have a generalized kernel of size $O(n^{d-1-\epsilon})$, unless $NP \subseteq coNP/poly$.

- Is this a tight bound?
 - Not trivial.
- Provide a generalized kernel via d-Hypergraph 2-Colorability

d-Hypergraph 2-Colorability

- ▶ Input: A hypergraph, where every edge contains at *at most* d vertices.
- Parameter: The number of vertices n.
- Question: Can we color each vertex with red/blue such that every edge contains at least one red and one blue vertex?

Lower bound

d-Hypergraph 2-colorability does not have a generalized kernel of size at most $O(n^{d-1-\epsilon})$, unless $NP \subseteq coNP/poly$.

Kernel

d-Hypergraph 2-colorability has a kernel with $O(n^{d-1})$ edges.

For simplicity, let every edge have *exactly* d vertices, let the edges be e_1, \ldots, e_m . Enumerate all subsets of V that have size d - 1 as S_1, S_2, \ldots, S_ℓ Create the following matrix M.

Compute a base of the columns of this matrix. This results in a subset of the edges of G.

Size

- Matrix M has at most $\binom{n}{d-1} \leq n^{d-1}$ rows.
- Any base of M contains at most n^{d-1} edges.
- ► Storage per edge: O(d log n) bits.
- Total number of bits: $O(n^{d-1} d \log n)$.

Correctness

- If all edges in the base are split
- all remaining edges are split.

Lower bound

No generalized kernel of size $O(n^{d-1-\epsilon})$ for any $\epsilon > 0$, unless $NP \subseteq coNP/poly$.

Generalized kernel

Generalized kernel of size $O(n^{d-1} \cdot d \cdot \log n)$

- Linear parameter transformation to d-Hypergraph 2-Colorability
- Kernel for d-Hypergraph 2-Colorability

Degree-2 cross-composition

- Think of an appropriate NP-hard problem Q
- Give a polynomial time algorithm
- Input: t^2 instances of Q: x_1, \ldots, x_{t^2}
 - We can assume they are *similar*
- Output: An instance (y, k) of P, where
 - $k = O(t \cdot \max |x_i|^c)$
 - (y, k) is a logical OR of the input
 - + $(\boldsymbol{y},\boldsymbol{k})$ is a YES-instance iff at least one \boldsymbol{x}_i is

Theorem

If there exists a degree-2 cross-composition, P has no generalized kernel of size $O(k^{2-\epsilon})$

• Assuming NP $\not\subseteq$ coNP/poly.

Proof sketch

The combination of a degree-2 cross-composition and a generalized kernel of size $O(k^{2-\epsilon})$ results in an algorithm we consider unlikely to exist.

• Suppose for contradiction that P has a generalized kernel of size $O(k^{1.9})$

/ department of mathematics and computer science

/ department of mathematics and computer science

/ department of mathematics and computer science

Goal Prove that there is no kernel of size $O(|V|^{2-\epsilon})$ for 4-COLORING.

4-List Coloring

- Every vertex has a list of allowed colors
 - Subset of {r, g, b, o}
- ► Can be transformed back to 4-coloring using 4 vertices

Goal Prove that there is no kernel of size $O(|V|^{2-\epsilon})$ for 4-COLORING.

4-List Coloring

- Every vertex has a list of allowed colors
 - Subset of {r, g, b, o}
- ► Can be transformed back to 4-coloring using 4 vertices

Goal

Prove that there is no kernel of size $O(|V|^{2-\varepsilon})$ for 4-COLORING.

4-List Coloring

- Every vertex has a list of allowed colors
 - Subset of {r, g, b, o}
- Can be transformed back to 4-coloring using 4 vertices

Goal

Prove that there is no kernel of size $O(|V|^{2-\varepsilon})$ for 4-COLORING.

4-List Coloring

- Every vertex has a list of allowed colors
 - Subset of {r, g, b, o}
- Can be transformed back to 4-coloring using 4 vertices

4-Coloring: Cross-composition

NP-hard starting problem

- 2-3-COLORING ON TRIANGLE-SPLIT GRAPHS
 - Input: Graph $G = (S \cup T, E)$ where S is an independent set and T consists of disjoint triangles.
 - Question: Does G have a proper 3-coloring, such that S is colored using only 2 colors?
 - We call this a 2-3-coloring of G.

- Assume we have t² instances
- Let |S| = n and |T| = 3m for all instances
- Construct an instance G for 4-coloring
 - Polynomial time
 - At most $O(t \cdot (n+m))$ vertices
 - OR of all inputs

- \blacktriangleright We cannot use t^2 vertices \rightarrow we cannot copy all vertices
 - But we can keep all edges!
- \blacktriangleright Enumerate instances as X_{ij} , where $i=1,\ldots,t$

Instance X_{23} ?

35/48

35/48

35/48

35/48

35/48

This is not a valid coloring of the triangles. Replace them:

Allow the new vertices to be red, green, orange, or blue.

Useful properties

If orange is allowed in the inner vertices, we can color all corners with blue.

If 3-colored: ordinary triangle. All corners get distinct color.

4-Coloring: Improved

38/48

/ department of mathematics and computer science

4-Coloring: Improved

38/48

/ department of mathematics and computer science

Make sure that at least one $S_{\,i}$ and one T_{j} are colored using red, green, and blue.

Treegadget

A *treegadget* is a balanced binary tree where every vertex is replaced by a triangle:

Property 1

Property 2

Property 2

Property 2

Property 2

Property 2

Property 2

4-Coloring: Cross-composition

Ensure one group in S is colored with red and green.

42/48

4-Coloring: Cross-composition

Ensure one group in T is colored with red, green and orange.

To prove

- ▶ The number of vertices of G is allowed: $O(t \cdot max |X_{ij}|)$.
- Can be done in polynomial time.
- ✓ If some X_{ij} is 2-3-colorable, G is 4-colorable.
- ✓ If G is 4-colorable, there exists an X_{ij} that is 2-3-colorable.

Proof: |V|

Count the number of vertices

- S: t · n vertices
- T: t · 12m vertices
- ► Gadgets: O(t) vertices

Total: $O(t \cdot (n+m))$ vertices as required.

Proof: Polynomial time

The graph has polynomial size and is straightforward to construct.

- Feedback Arc Set
- 4-Coloring
 - And thereby k-coloring for $k \ge 4$
- ► Hamiltonian Cycle
- Dominating Set
 - Non Blocker
- Connected Dominating Set
 - Maximum Leaf Spanning Tree

- Feedback Arc Set
- 4-Coloring
 - And thereby k-coloring for $k \geqslant 4$
- Hamiltonian Cycle
- Dominating Set
 - Non Blocker
- Connected Dominating Set
 - Maximum Leaf Spanning Tree

- Feedback Arc Set
- 4-Coloring
 - And thereby k-coloring for $k \geqslant 4$
- Hamiltonian Cycle
- Dominating Set
 - Non Blocker
- Connected Dominating Set
 - Maximum Leaf Spanning Tree

- Feedback Arc Set
- 4-Coloring
 - And thereby k-coloring for $k \ge 4$
- Hamiltonian Cycle
- Dominating Set
 - Non Blocker
- Connected Dominating Set
 - Maximum Leaf Spanning Tree

- Feedback Arc Set
- 4-Coloring
 - And thereby k-coloring for $k \ge 4$
- Hamiltonian Cycle
- Dominating Set
 - Non Blocker
- Connected Dominating Set
 - Maximum Leaf Spanning Tree

- Feedback Arc Set
- 4-Coloring
 - And thereby k-coloring for $k \ge 4$
- Hamiltonian Cycle
- Dominating Set
 - Non Blocker
- Connected Dominating Set
 - Maximum Leaf Spanning Tree

- Feedback Arc Set
- 4-Coloring
 - And thereby k-coloring for $k \geqslant 4$
- Hamiltonian Cycle
- Dominating Set
 - Non Blocker
- Connected Dominating Set
 - Maximum Leaf Spanning Tree

Problems that do not have a generalized kernel of size $O(n^{d-1-\epsilon})$, unless $NP\subseteq coNP/poly$.

- d-Hypergraph 2-Colorability
- d-NAE-Sat

And these bounds are tight.

- ► 3-Coloring: Kernel of size $O(|V|^{2-\varepsilon})$ or not??
- Are there graph problems with kernels with $O(|V|^{2-\epsilon})$ edges?

Questions or remarks?

48/48

/ department of mathematics and computer science

- ► 3-Coloring: Kernel of size $O(|V|^{2-\varepsilon})$ or not??
- Are there graph problems with kernels with $O(|V|^{2-\epsilon})$ edges?

Questions or remarks?