Kernelization

Astrid Pieterse

October 21, 2016

Algorithms and running time

- Algorithms
 - Today we consider decision problems: YES/NO output
- Running time
 - Number of steps compared to input size
 - Polynomial vs Exponential
 - Denoted using big-O notation, $O(n^5)$ or $O(3^n)$
- NP-hardness
 - No polynomial-time algorithm

Why preprocessing

Suppose the problem is NP-hard, what can we do?

- Provide a way to preprocess an input
- Simplify the input efficiently, while keeping the answer
- Apply the "slow" algorithm to the simplified input

Great preprocessing

A great preprocessing algorithm would:

- Run in polynomial time
- Not change the answer
- Reduce the size of the instance to size n' < n</p>

Great preprocessing: does not exist

For NP-hard problems, such algorithms are not believed to exist:

- We can use them to solve the problem in polynomial time
 - As soon as the instance x has constant size (say, \leqslant 5), solve it in constant time
 - Otherwise, run Preprocess(x) to find a smaller instance x'
 - Recurse on x'

- Does $\leqslant n$ steps in polynomial time \rightarrow polynomial time

Parameterized preprocessing

- Consider an additional parameter k, and measure the size of the preprocessed instance as a function of k
- k denotes the complexity of the instance in some way
 - Measure of how tree-like a graph is
 - Number of variables in a problem
 - .. More examples later
- An instance that is large compared to k must somehow contain many irrelevant parts

Kernelization

Find an algorithm that

- Runs in polynomial time
- Outputs an equivalent instance of the same problem
- The new instance is small
 - Bounded by some function f(k)
 - Independent of n

Such an algorithm is called a kernel

- Visit all my k friends in a tour
- k! possible orders
 - Hard problem
- Input size
 - Huge!
- Simplify input
 - Replace the road network by a graph
 - Edge {A, B} keeps the distance from A to B
 - Equivalently, a distance table
- Kernel size
 - Number of cities squared
 - Much smaller

- Visit all my k friends in a tour
- k! possible orders
 - Hard problem
- Input size
 - Huge!
- Simplify input
 - Replace the road network by a graph
 - Edge {A, B} keeps the distance from A to B
 - Equivalently, a distance table
- Kernel size
 - Number of cities squared
 - Much smaller

- Visit all my k friends in a tour
- k! possible orders
 - Hard problem
- Input size
 - Huge!
- Simplify input
 - Replace the road network by a graph
 - Edge {A, B} keeps the distance from A to B
 - Equivalently, a distance table
- Kernel size
 - Number of cities squared
 - Much smaller

- Visit all my k friends in a tour
- k! possible orders
 - Hard problem
- Input size
 - Huge!
- Simplify input
 - Replace the road network by a graph
 - Edge {A, B} keeps the distance from A to B
 - Equivalently, a distance table
- Kernel size
 - Number of cities squared
 - Much smaller

- Visit all my k friends in a tour
- k! possible orders
 - Hard problem
- Input size
 - Huge!
- Simplify input
 - Replace the road network by a graph
 - Edge {A, B} keeps the distance from A to B
 - Equivalently, a distance table
- Kernel size
 - Number of cities squared
 - Much smaller

- Visit all my k friends in a tour
- k! possible orders
 - Hard problem
- Input size
 - Huge!
- Simplify input
 - Replace the road network by a graph
 - Edge {A, B} keeps the distance from A to B
 - Equivalently, a distance table
- Kernel size
 - Number of cities squared
 - Much smaller

Correctness

- The new instance is small
- Can solve shortest path in polynomial time
- Correctness?

Suppose the kernel has some tour

 If this tour uses edge {A, B}, replace by shortest path

Suppose the kernel has some tour

 If this tour uses edge {A, B}, replace by shortest path

10/37

Suppose the kernel has some tour

 If this tour uses edge {A, B}, replace by shortest path

10/37

Suppose the kernel has some tour

 If this tour uses edge {A, B}, replace by shortest path

Exercises

1. We just saw a simple example of a kernel. But does it actually follow all the rules? You may assume that the decision problem asks whether there is a tour of length at most ℓ

Kernel:

- Runs in polynomial time
- x is a yes-instance $\Leftrightarrow x'$ is a yes-instance
- $|x'| \leqslant f(k)$ and $k' \leqslant f(k)$

Solutions

 Technically, the size is not completely correct. How large are the edge-weights (length of shortest paths) that we store?? They are not bounded by k. But, there are ways to solve the problem, there is a way to "rescale" our weights such that they can be stored efficiently

Satisfiability variants

Input: some formula with boolean variables

```
(\mathbf{x} \lor \mathbf{y}) \land (\mathbf{z} \lor \neg \mathbf{y} \lor \mathbf{w}) \land \dots
```

- Used to verify specifications
- Rule out incorrect behaviour in chip design
- Type of formula depends on practical problem
 - influence running times of algorithms
 - influences kernel size?

Input CNF-formula F consisting of *clauses* each consisting of a number of *literals*, a literal is a variable or its negation

$$\mathsf{F} = \underbrace{\{\neg x, \neg y\}}_{\mathsf{clause}} \land \{\neg y, z\} \land \{x, z\}$$

Parameter The number of variables Question Does there exist an assignment to the variables, such that each clause contains *exactly* one true literal?

With few variables, exponentially many clauses can be made

To obtain a kernel, we need to reduce the formula such that we can we bound the number of remaining clauses

Exact Satisfiability: Example

Input:

$$\mathsf{F} = \underbrace{\{\neg x, \neg y\}}_{\mathsf{clause}} \land \{\neg y, z\} \land \{x, z\}$$

has satisfying assignment

$$x \leftarrow \textit{true}, y \leftarrow \textit{false}, z \leftarrow \textit{false}$$

Substituted in F this gives:

 $\{false, true\} \land \{true, false\} \land \{true, false\}$

Exactly 1 true literal in each clause, as required

Let $x, y, z \in \{0, 1\}$ (where 0 is false, 1 is true), then

Let $x, y, z \in \{0, 1\}$ (where 0 is false, 1 is true), then

Let $x, y, z \in \{0, 1\}$ (where 0 is false, 1 is true), then

$$\begin{array}{lll} \{\neg x, \neg y\} & \land & (1-x) + (1-y) = 1 & x+y = 1 \\ \{\neg y, z\} & \land & \Leftrightarrow & (1-y) + z & = 1 & \Leftrightarrow & z-y = 0 \\ \{x, z\} & & x+z & = 1 & x+z = 1 \end{array}$$
 is exact-sat

Let $x, y, z \in \{0, 1\}$ (where 0 is false, 1 is true), then

$$\begin{array}{lll} \{\neg x, \neg y\} & \land & (1-x) + (1-y) = 1 & x+y = 1 \\ \{\neg y, z\} & \land & \Leftrightarrow & (1-y) + z & = 1 & \Leftrightarrow & \frac{z-y=0}{x+z=1} + \\ \{x, z\} & x+z & = 1 & & \frac{z-y=0}{x+z=1} + \end{array}$$
 is exact-sat

Let $x, y, z \in \{0, 1\}$ (where 0 is false, 1 is true), then

$$\begin{array}{lll} \{\neg x, \neg y\} & \land & (1-x) + (1-y) = 1 & x+y = 1 \\ \{\neg y, z\} & \land & \Leftrightarrow & (1-y) + z & = 1 & \Leftrightarrow & \frac{z-y=0}{x+z=1} + \\ \{x, z\} & x+z & = 1 & & \frac{z-y=0}{x+z=1} + \end{array}$$
 is exact-sat

Given formula F

- Rewrite by giving an linear equation for each clause
- Find a basis of the row-space
 - Use Gaussian elimination
- Remove constraints not in the basis

$$\begin{pmatrix} 1 & 0 & \dots & 1 \\ 1 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & -1 & \dots & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$

Kernel for Exact Satisfiability

- Given formula F
- Rewrite by giving an linear equation for each clause
- Find a basis of the row-space
 - Use Gaussian elimination
- Remove constraints not in the basis

$$\begin{pmatrix} 1 & 0 & \dots & 1 \\ 1 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & -1 & \dots & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$

- Given formula F
- Rewrite by giving an linear equation for each clause
- Find a basis of the row-space
 - Use Gaussian elimination
- Remove constraints not in the basis

$$\begin{pmatrix} 1 & 0 & \dots & 1 & | & 1 \\ 1 & 1 & \dots & 0 & | & 1 \\ \dots & \dots & \dots & \dots & | \\ \dots & \dots & \dots & \dots & \dots \\ 0 & -1 & \dots & 1 & | & 0 \end{pmatrix}$$

- Given formula F
- Rewrite by giving an linear equation for each clause
- Find a basis of the row-space
 - Use Gaussian elimination
- Remove constraints not in the basis

- Given formula F
- Rewrite by giving an linear equation for each clause
- Find a basis of the row-space
 - Use Gaussian elimination
- Remove constraints not in the basis

$$\begin{pmatrix} 1 & 0 & \dots & 1 & | & 1 \\ 1 & 1 & \dots & 0 & | & 1 \\ \dots & \dots & \dots & \dots & | & \dots \end{pmatrix}$$

Correctness

- Polynomial time
- yes-instance after removing constraints \Rightarrow F is a yes-instance

Size

- Matrix size (#clauses) \times (n + 1)
- At most n + 1 clauses remaining

Kernel for Exact Satisfiability: Recap

- Problem can be represented by linear equations
- Gives a linear kernel

Q: What about problems represented by equations of higher-degree polynomials?

Kernel for Exact Satisfiability: Recap

- Problem can be represented by linear equations
- Gives a linear kernel

Q: What about problems represented by equations of higher-degree polynomials?
Exercise

Find a kernel for the 3-NAE-SAT problem that has $O(n^2)$ constraints.

Input A formula in CNF-form where every clause contains exactly 3 variables, such as

$$\mathsf{F} = \underbrace{\{x, y, z\}}_{\mathsf{clause}} \land \{y, z, w\} \land \dots$$

You may assume that the input contains no negations.

- Parameter The number of variables.
 - Question Does there exist an assignment to the variables, such that each clause contains at least one *true* and at least one *false* variable?

Hint: Find a degree-2 polynomial f to represent a clause, for example

 $f(x, y, z) = 0 \Leftrightarrow \{x, y, z\}$ contains 1 or 2 *true* variables

Solution: 3-NAE-SAT

Find a degree-2 polynomial to represent a clause. Start simple:

- 1. Single variable: $\{x\}$. Never satisfied.
- **2.** Small clause: $\{x, y\}$. Satisfied iff x + y = 1
- 3. Consider $\{x, y, z\}$. Satisfied iff $x + y + z \in \{1, 2\}$,

d. Generally for clause $\{x_1, x_2, \dots, x_d\}$ let $g(t) := (t-1)(t-2)\cdots(t-d+1)$, define

$$f(x_1,\ldots,x_d) \coloneqq g(x_1+x_2+\ldots+x_d)$$

General solution: d-NAE-SAT

Find a degree-(d-1) polynomial g to represent a clause Kernel:

- Construct such a polynomial for each clause
- Construct matrix A with one row for each clause
 - Row $\ensuremath{\mathfrak{i}}$ contains all coefficients of the polynomial of clause $\ensuremath{\mathfrak{i}}$
- Do Gaussian elimination, find a basis
- Remove all clauses belonging to rows NOT in this basis

#clauses = #coefficients in the polynomials = $O(n^{d-1})$

Given: Graph G Question: Is it possible to color each vertex of G with red, green or blue such that any two endpoints of an edge have a different color

Parameter

The size of a vertex cover in G: a set S of vertices, such that for every edge at least one endpoint is in S

Goal

Find a small kernel (wrt |S|) We assume S is given

Given: Graph G Question: Is it possible to color each vertex of G with red, green or blue such that any two endpoints of an edge have a different color

Parameter

The size of a vertex cover in G: a set S of vertices, such that for every edge at least one endpoint is in S

Goal

Find a small kernel (wrt |S|) We assume S is given

Given: Graph G Question: Is it possible to color each vertex of G with red, green or blue such that any two endpoints of an edge have a different color

Parameter

The size of a vertex cover in G: a set S of vertices, such that for every edge at least one endpoint is in S

Goal

Find a small kernel (wrt |S|) We assume S is given

Given: Graph G Question: Is it possible to color each vertex of G with red, green or blue such that any two endpoints of an edge have a different color

Parameter

The size of a vertex cover in G: a set S of vertices, such that for every edge at least one endpoint is in S

Goal

Find a small kernel (wrt |S|) We assume S is given

Given: Graph G Question: Is it possible to color each vertex of G with red, green or blue such that any two endpoints of an edge have a different color

Parameter

The size of a vertex cover in G: a set S of vertices, such that for every edge at least one endpoint is in S

Goal

Find a small kernel (wrt |S|) We assume S is given

Given: Graph G Question: Is it possible to color each vertex of G with red, green or blue such that any two endpoints of an edge have a different color

Parameter

The size of a vertex cover in G: a set S of vertices, such that for every edge at least one endpoint is in S

Goal

Find a small kernel (wrt |S|) We assume S is given

Given: Graph G Question: Is it possible to color each vertex of G with red, green or blue such that any two endpoints of an edge have a different color

Parameter

The size of a vertex cover in G: a set S of vertices, such that for every edge at least one endpoint is in S

Goal

Find a small kernel (wrt |S|) We assume S is given

Put vertices in the vertex cover on the left, all others on the right

- Vertices not in S cannot be connected to each other
- When can we color a vertex not in S?
- Vertices with degree at least 3 in
 V(G) \ S can cause a problem
 - Low-degree vertices in V(G) \ S could safely be removed

Put vertices in the vertex cover on the left, all others on the right

- Vertices not in S cannot be connected to each other
- When can we color a vertex not in S?
- Vertices with degree at least 3 in
 V(G) \ S can cause a problem
 - Low-degree vertices in V(G) \ S could safely be removed

Put vertices in the vertex cover on the left, all others on the right

- Vertices not in S cannot be connected to each other
- When can we color a vertex not in S?
- Vertices with degree at least 3 in
 V(G) \ S can cause a problem
 - Low-degree vertices in V(G) \ S could safely be removed

Put vertices in the vertex cover on the left, all others on the right

- Vertices not in S cannot be connected to each other
- When can we color a vertex not in S?
- Vertices with degree at least 3 in
 V(G) \ S can cause a problem
 - Low-degree vertices in V(G) \ S could safely be removed

24/37

Put vertices in the vertex cover on the left, all others on the right

- Vertices not in S cannot be connected to each other
- When can we color a vertex not in S?
- Vertices with degree at least 3 in $V(G) \setminus S$ can cause a problem
 - Low-degree vertices in $V(G) \setminus S$ could safely be removed

24/37

Algorithm

Given: graph G, vertex cover S First, we mark vertices we want to keep:

- ► For any three distinct vertices u, v, w in S
- Mark one common neighbor in $V(G) \setminus S$

Remove all unmarked vertices in $V(G) \setminus S$

For *u*, *ν*, *w*

Mark one vertex

For v, w, x

Mark one vertex.

Other triples have no common neighbor

5		
Ø		
	>	
/(🎯	\triangleleft	\Rightarrow
	\nearrow	\leq
	\sim	
A	\leq	<u> </u>

 α

Algorithm

Given: graph G, vertex cover S First, we mark vertices we want to keep:

- ► For any three distinct vertices u, v, w in S
- Mark one common neighbor in $V(G) \setminus S$

Remove all unmarked vertices in $V(G) \setminus S$

For u, v, w

Mark one vertex

For v, w, x

Mark one vertex.

Other triples have no common neighbor

5		
Ø		_
1-	>	
/\ ♥€		\gg
	\sim	
	\searrow	
Ì CO	\leq	

 α

Algorithm

Given: graph G, vertex cover S First, we mark vertices we want to keep:

- ► For any three distinct vertices u, v, w in S
- Mark one common neighbor in $V(G) \setminus S$

Remove all unmarked vertices in $V(G) \setminus S$

For u, v, w

Mark one vertex

For v, w, x

Mark one vertex.

Other triples have no common neighbor

S		
Ø		
10	\geq	$\langle \rangle$
	\succ	\geq
V DE	$\left[\right]$	\rightarrow
	\times	

 α

Algorithm

Given: graph G, vertex cover S First, we mark vertices we want to keep:

- ► For any three distinct vertices u, v, w in S
- Mark one common neighbor in $V(G) \setminus S$

Remove all unmarked vertices in $V(G) \setminus S$

For u, v, w

Mark one vertex

For v, w, x

Mark one vertex.

Other triples have no common neighbor

Correctness

Let the original input be G and the new graph G'

Clearly if G is 3-colorable, so is G'. Suppose G' is 3-colorable, show how to color G

- Copy the coloring of G' to G
 - This colors all vertices in S
- ► For every vertex in *V*(*G*) \ *V*(*G'*) assign it a different color than any of its neighbors
 - All neighbors are in S, those colorings are known
- Clearly this yields a valid coloring for G
 - But we need to show that the last step is always possible!

Correctness

Let the original input be G and the new graph G'

Clearly if G is 3-colorable, so is $G^{\,\prime}.\,$ Suppose $G^{\,\prime}$ is 3-colorable, show how to color G

- Copy the coloring of G' to G
 - This colors all vertices in S
- ► For every vertex in V(G) \ V(G') assign it a different color than any of its neighbors
 - All neighbors are in S, those colorings are known
- Clearly this yields a valid coloring for G
 - But we need to show that the last step is always possible!

Correctness

Let the original input be G and the new graph G'

Clearly if G is 3-colorable, so is $G^{\,\prime}.\,$ Suppose $G^{\,\prime}$ is 3-colorable, show how to color G

- Copy the coloring of G' to G
 - This colors all vertices in S
- For every vertex in V(G) \ V(G') assign it a different color than any of its neighbors
 - All neighbors are in S, those colorings are known
- Clearly this yields a valid coloring for G
 - But we need to show that the last step is always possible!

Correctness

Let the original input be G and the new graph G'

Clearly if G is 3-colorable, so is G'. Suppose G' is 3-colorable, show how to color G

- Copy the coloring of G' to G
 - This colors all vertices in S
- \blacktriangleright For every vertex in $V(G)\setminus V(G')$ assign it a different color than any of its neighbors
 - All neighbors are in S, those colorings are known

Clearly this yields a valid coloring for G

But we need to show that the last step is always possible!

Correctness

Let the original input be G and the new graph G'

Clearly if G is 3-colorable, so is G'. Suppose G' is 3-colorable, show how to color G

- Copy the coloring of G' to G
 - This colors all vertices in S
- \blacktriangleright For every vertex in $V(G)\setminus V(G')$ assign it a different color than any of its neighbors
 - All neighbors are in S, those colorings are known

Clearly this yields a valid coloring for G

But we need to show that the last step is always possible!

Correctness

Let the original input be G and the new graph G'

Clearly if G is 3-colorable, so is G'. Suppose G' is 3-colorable, show how to color G

- Copy the coloring of G' to G
 - This colors all vertices in S
- For every vertex in $V(G) \setminus V(G')$ assign it a different color than any of its neighbors
 - All neighbors are in S, those colorings are known

Clearly this yields a valid coloring for G

But we need to show that the last step is always possible!

Correctness

Suppose vertex y in $V(G) \setminus V(G^{\,\prime})$ cannot be colored

- Thus, it has three neighbors u, v, w which are red, green and blue respectively
- But then there is a node y' in G' with neighbors u, v, w
 - since some vertex was marked by u, ν, w
- Thus y' cannot be colored properly; contradiction

G' has a 3-coloring if and only if G has a 3-coloring

Size

Remember: parameter |S|. Count the vertices in G':

- ► All vertices in S, clearly there are |S|
- ▶ One vertex for all triples in S, at most |S|³
- ► In total O(|S|³) vertices and
 - Possibly $O(|S|^4)$ edges with this kernel

Can we do better? Maybe we can reuse some previous insights:

Find which vertices outside S are redundant

Size

Remember: parameter |S|. Count the vertices in G':

- ► All vertices in S, clearly there are |S|
- One vertex for all triples in S, at most $|S|^3$
- ► In total O(|S|³) vertices and
 - Possibly $O(|S|^4)$ edges with this kernel

Can we do better? Maybe we can reuse some previous insights:

Find which vertices outside S are redundant

To find redundant vertices, use a method that finds redundant clauses

- Replace each vertex in $V(G) \setminus S$ by a constraint
- For every vertex $\nu \in S$ we have three 0/1 variables
 - + $r_{\nu}\text{, }g_{\nu}\text{ and }b_{\nu}\text{ indicating its color}$
- For every $v \notin S$ we have a constraint
 - Let v have neighbors 1, 2 and 3

$$\sum_{1\leqslant i < j \leqslant 3} (r_i r_j + b_i b_j + g_i g_j) \equiv 1 \pmod{2}$$

- If all distinct colors: result is 0
- Else, sum is 1 or 3
- Degree-2 polynomial, this allows us to find O(n²) relevant vertices and remove all others

Size: $O(\vert S \vert^2)$ vertices (and edges) remain

Lower bounds

Is a given kernel for a parameterized problem optimal?

or is there a smaller kernel wrt the same parameter?

Therefore, we want lower bounds on kernel sizes.

- For which we need some assumptions
- For example; $P \neq NP$

First idea:

Suppose: you already know some lower bound for some problem Can we use it to get lower bounds for other problems?

Re-using existing kernels

A kernel for problem X can sometimes be used to get a (general type of) kernel for problem Y

We can use this to transfer lower bounds Very similar to giving NP-hardness reductions!

Re-using Lower bounds

GIVEN: problem Y has no (generalized) kernel of polynomial size Suppose there is an algorithm that has as input (y, k) for problem Y and

- Outputs an instance (x, k') for problem X in polynomial time
- (x, k') is a yes-instance $\Leftrightarrow (y, k)$ is a yes-instance
- $\blacktriangleright k'$ is bounded by k^c for a constant c

Re-using Lower bounds

GIVEN: problem Y has no (generalized) kernel of polynomial size Suppose there is an algorithm that has as input (y, k) for problem Y and

- Outputs an instance (x, k') for problem X in polynomial time
- (x, k') is a yes-instance $\Leftrightarrow (y, k)$ is a yes-instance
- $\blacktriangleright k'$ is bounded by k^c for a constant c

Lower bound: NAE-SAT

It is known that CNF-SAT with unbounded clause length does not have a kernel of size polynomial in the number of variables

Transform an instance of CNF-SAT to NAE-SAT, to get a lower bound Add new variable t to each clause

$$\mathsf{F} = (\mathsf{x} \lor \mathsf{y}) \land (\mathsf{x} \lor \neg \mathsf{y} \lor \mathsf{z}) \land (\neg \mathsf{w} \lor \mathsf{x})$$

becomes

$$\mathsf{F}' = \{\mathsf{t},\mathsf{x},\mathsf{y}\} \land \{\mathsf{t},\mathsf{x},\neg\mathsf{y},z\} \land \{\mathsf{t},\neg\mathsf{w},\mathsf{x}\}$$

- Can be done in polynomial time
- The number of variables only increased by 1
- It remains to show F is satisfiable iff F' is

$$\begin{split} \mathsf{F} &= (\ x \lor y) \land (\ x \lor \neg y \lor z) \land (\ \neg w \lor x) \\ \mathsf{F}' &= \{\mathsf{t}, \mathsf{x}, \ y\} \land \{\mathsf{t}, \mathsf{x}, \ \neg y, \ z\} \land (\mathsf{t}, \neg w, \ x) \end{split}$$

Suppose F is satisfiable

- ▶ Keep the same assignment for F', extended with t := false
- Every clause in F' has a *false* variable (namely, t)
- and one true variable (from satisfying F)

Suppose F' is satisfiable

- If t = false, keep the same assignment for F
- If t = true, take the opposite assignment for F

Exercises

- 1. Does Exact-SAT have a polynomial kernel when parameterized by the number of variables?
- 2. If all clauses have size d, CNF-SAT with n variables does not have a kernel of size $O(n^{d-\epsilon})$, for any ϵ .
 - a. Can we use this bound to obtain a bound for NAE-SAT with d variables per clause? How?
 - b. Can we hope to improve the kernel for 3-NAE-SAT with $O(n^2)$ constraints that we saw in a previous exercise?
Solutions

- 1. Does Exact-SAT have a polynomial kernel when parameterized by the number of variables? Yes, we have seen that the number of constraints can be reduced to O(n) giving a kernel of $O(n^2 \log n)$. This implies that there is no reduction from CNF-SAT to Exact-SAT
- 2. If all clauses have size d, CNF-SAT with n variables does not have a kernel of size $O(n^{d-\epsilon})$, for any $\epsilon.$
 - a. Can we use this bound to obtain a bound for NAE-SAT with d variables per clause? How? Yes (proof on whiteboard)
 - b. Can we hope to improve the kernel for 3-NAE-SAT with $O(n^2)$ constraints that we saw in a previous exercise? Not really, there is no kernel of size $O(n^{2-\varepsilon})$. But improvements by logarithmic factors could still be possible.

Questions?

37/37