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Introduction

I Find exact algorithms for NP-hard problems
I Exponential time
I Speed-up possible?

I Preprocess the input instance
I Aim to reduce the size
I Polynomial time

I Many different NP-hard problems
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I Graph problems (3-Coloring, Vertex Cover,. . . )
I . . .

I Study constraint satisfaction problems
I All problems above can be written as a CSP instance
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Constraint Satisfaction Problems

CSP(Γ)

Input A number of constraints over a set of variables V

I Constraint R(x1, ... , xk) applies relation
R ⊆ {0, 1}k to x1, ... , xk ∈ V

Question Does there exists an assignment f : V → {0, 1},
such that all constraints are satisfied?

Constraint language Γ

I Specifies the type of constraints

I Can only use constraints R(x1, ... , xk) for R ∈ Γ



Example: 3-CNF-SAT

3-cnf-sat:

F = (x ∨ y ∨ ¬z)︸ ︷︷ ︸
clause (size 3)

∧(x ∨ ¬y ∨ ¬w) ∧ ...

Equivalent to CSP(Γ) for Γ = {R0,R1,R2,R3}
I Ri represents clauses with i negations
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Sparsification

Constraint satisfaction problems are (often) hard

I Preprocess the input
I Reduce the number of constraints

I Find redundant constraints

I Worst-case bound on the number of remaining constraints
I As a function of the number of variables

I Maintaining the answer
I Keeping all satisfying assignments?
I Not changing satisfiability

I Efficiently!
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An easy sparsification

d-cnf-sat:

F = (x ∨ y ∨ ¬z)︸ ︷︷ ︸
clause (size d)

∧(x ∨ ¬y ∨ ¬w) ∧ ...

Sparsification procedure:
Remove duplicate clauses

Size

I n variables (2n possible literals), d literals per clause

I At most O((2n)d) different possible clauses

I O(nd) for d constant
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Lower bounds

Prove that no “better” sparsification exists?
I Needs assumptions, like P 6= NP

I Stronger assumption: NP 6⊆ coNP/poly

Under these assumptions, we can prove bounds of the type

There is no O(nd−ε) size sparsification for d-cnf-sat,
for any ε > 0
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Dichotomy theorem for CSPs

Schaefer’s dichotomy theorem
Depending on properties of the relations in Γ, CSP(Γ) is

Polynomial-time solvable

2-sat Horn-sat
dual-Horn-sat xor-sat
. . . . . .

or

NP-hard

3-cnf-sat 3-nae-sat
Exact-sat . . .



Sparsification for CSPs: Goal

Find a classification for sparsifiability

Optimal sparsification bound: O(n) constraints

Exact-sat (upcoming), . . . ?

Optimal sparsification bound: O(n2) constraints

. . . ?

...

Optimal sparsification bound: O(nd) constraints

d-cnf-sat, (d + 1)-nae-sat, . . . ?

...



Exact satisfiability



Exact SAT

Input A formula in the following form, consisting of
clauses, each consisting of a number of literals.

(¬x ,¬y)︸ ︷︷ ︸
clause

∧(¬y , z) ∧ (x , z)

Question Does there exists a boolean assignment, such that
each clause contains exactly one true literal?



Sparsification for Exact SAT: Example

Example

Let 0 := false, 1 := true

(¬x ,¬y) ∧ (¬y , z) ∧ (x , z)

Satisfied by x = 1, y = 0, z = 0

I (x , z) is always satisfied when the other clauses are

I It is redundant
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Sparsification for Exact SAT

I Write down linear equation for each constraint

I Problem asks to find 0/1-solution to linear system

I Compute basis of the row space of the matrix
I Keep constraints corresponding to rows in the basis

I Remove others

x+y −1 = 0
z − y = 0

x+ z−1 = 0
... ...
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Sparsification for Exact SAT

I Write down linear equation for each constraint

I Problem asks to find 0/1-solution to linear system

I Compute basis of the row space of the matrix
I Keep constraints corresponding to rows in the basis

I Remove others

Remaining constraints: (x , y) and (¬y , z)



Sparsification for Exact SAT

Correctness
Removed clauses are implied by remaining ones

Size

I The matrix has n + 1 columns
I One for each variable plus one for the constant

I Dimension of row space equals dimension of column space
I Bounded by #columns

I At most n + 1 remaining constraints



Sparsification for Exact SAT

Theorem

There is a polynomial-time algorithm, that given an instance F of
Exact-sat, produces instance F ′ of Exact-sat such that

I Any boolean assignment satisfies F ′ if and only if it satisfies F

I The number of clauses in F ′ is O(n)

The set of clauses of F ′ is a subset of those of F



Generalize the Exact-SAT
sparsification



c-Polynomial Root CSP

Definition

Input A list of polynomial equalities of the form
fi (xi1 , ... , xik ) = 0, where fi has degree at most c .

Question Does there exist a 0/1-assignment to the variables,
such that all equalities are satisfied?

I Exact-sat is 1-Polynomial Root CSP
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I Adapt previous method to higher-degree polynomials!
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Finding redundant polynomial equalities

Create a matrix A
I Column for each multilinear monomial of degree at most c

I Example: degree-2 polynomials over variables x , y , z

I Row for each constraint. Consider the constraints
I f (x , y) = xy + 2y + 3
I g(z , y) = zy + y

Find a basis of the row space of A

I Keep corresponding constraints
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Sparsification for c-Polynomial Root CSP

Correctness
Sparsified instance satisfiable ⇔ Original instance satisfiable

I Let τ be a satisfying assignment for the sparsified instance

I Suppose fi (xi1 , ... , xik ) = 0 was removed

I Then there exist αj ∈ R such that

fi (τ(xi1), ... , τ(xik )) =
∑
j∈B

αj · fj(τ(xj1), ... , τ(xjk ))

Since fj(xj1 , ... , xjk ) = 0 was in the sparsified instance

fj(τ(xj1), ... , τ(xjk )) = 0 ∀j ∈ B
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fi (τ(xi1), ... , τ(xik )) = 0
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Sparsification for c-Polynomial Root CSP

Correctness

Sparsified instance satisfiable ⇔ Original instance satisfiable X

Size
Number of remaining constraints ≤ #columns

I Column for each multilinear monomial of degree ≤ c

I
(n
i

)
multilinear monomials of degree exactly i

I
∑c

i=0

(n
i

)
= O(nc) columns



Sparsification for c-Polynomial Root CSP

Theorem

There is a polynomial-time algorithm, that given an instance F of
c-Polynomial-root CSP, produces instance F ′ of
c-Polynomial-root CSP such that

I Any boolean assignment satisfies F ′ if and only if it satisfies F

I The number of constraints in F ′ is O(nc)

c-Polynomial-root CSP has a O(nc) size sparsification



Relation to earlier results

Problem Special case of Bound
d-cnf-sat d -Polynomial-root CSP O(nd)
d-nae-sat (d − 1)-Polynomial-root CSP O(nd−1)
d-Exact-sat 1-Polynomial-root CSP O(n)

Clause can be replaced by degree-c polynomial equality

I We have seen: d-Exact-sat

I Next: d-nae-sat



(Monotone) d-NAE-SAT

Find polynomial f of degree d − 1 such that

f (x1, ... , xd) = 0⇔ clause (x1, ... , xd) is nae-satisfied

Clause (x1, ... , xd) is nae-satisfied iff

x1 + x2 + ... + xd ∈ {1, 2, ... , d − 1}

Let g(x) := (x − 1) · (x − 2) · · · (x − (d − 1))

I g(x) = 0 for x ∈ {1, 2, ... , d − 1}
I g(0) 6= 0 and g(d) 6= 0

g(x1 + x2 + ... + xd) is the required polynomial
I Can handle negations as well

I Use (1− xi ) for ¬xi
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Generalizations

We can generalize the result for c-Polynomial-root CSP

I Finite fields

I Integers mod m

I . . .

Can we also use polynomial inequalities?
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Polynomial inequalities

Each constraint given by f (x1, ... , xk) 6= 0

I Can represent cnf-sat, let x , y , z ∈ {0, 1}

(¬x ∨ y ∨ z)⇔ (1− x) + y + z 6= 0

I Degree-1 polynomials can represent d-cnf-sat for any d
I Lower bound for d-cnf-sat known

I No O(nd−ε) sparsification for ε > 0

I Polynomial-size sparsification in this case not possible
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Application to q-Coloring



The q-Coloring problem

Can the vertices of a graph be colored with at most q colors?

I Focus on q = 3

I red, green, blue

Can be seen as a CSP (domain
{0, 1, 2})

I Variable for each vertex

I Constraint for each edge

Trivial sparsification O(n2)

I Matching lower bound
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Another complexity measure

Bound sparsification size by more interesting parameter

I Measures complexity of input graph

I Size of a Vertex Cover
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Bound sparsification size by more interesting parameter

I Measures complexity of input graph
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Another complexity measure

Bound sparsification size by more interesting parameter

I Measures complexity of input graph

I Size of a Vertex Cover

Why Vertex Cover? Alternatives:
I Treewidth

I No polynomial bound

I Deletion distance to (disjoint union of) paths
I No polynomial bound [Jansen,Kratsch]



Kernelization

Efficiently reduce the size of an input instance

I Resulting size depends on parameter value

I Provably small

I Provably correct

Kernel for 3-Coloring

Polynomial-time algorithm that, given graph G with vertex cover
of size k, outputs G ′ such that

I |G ′| is bounded by f (k)

I G is 3-Colorable if and only if G ′ is 3-Colorable
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Kernel for 3-Coloring

Previous work

Jansen and Kratsch [Inf Comput. 2013] showed that

I 3-Coloring parameterized by VC has a kernel with O(k3)
edges and vertices

Using the tools for CSPs, this can be improved!

Theorem

3-Coloring parameterized by Vertex Cover has a kernel with O(k2)
edges and vertices
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Simple kernel for 3-Coloring



Kernel for 3-Coloring: first idea

We have graph G , with vertex cover vc
The remaining vertices form independent set is

I is may be large compared to vc
I Find redundant vertices in is

I Low-degree vertices can always be
colored

I They are redundant

I Coloring can be extended to vertex in
is iff ≤ 2 colors used in neighborhood

I Consider v and z , note N(z) ⊆ N(v)
I z is redundant
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Kernel for 3-Coloring

Build the kernel G ′ as follows

I Start with G ′ = G
I For each triple v1, v2, v3 ∈ vc

I Check if they have a common
neighbor in is in G

I If so, mark one such neighbor

I Remove all unmarked nodes from is
z
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G ′
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Kernel for 3-Coloring

Correctness
(⇒) Clearly if G is 3-colorable, so is G ′



Kernel for 3-Coloring

Correctness
(⇐) Suppose G ′ is 3-colorable, we show how to color G

I Each vertex of vc receives the same color as in G ′

I Let v ∈ is
I N(v) ⊆ vc is already colored
I Assign v with a color not used in N(v)

z

a

b

c

d

e

x

z

w

v

u

y

G

a

b

c

d

e

v

G ′

Is this always possible?



Kernel for 3-Coloring

Correctness
(⇐) Suppose G ′ is 3-colorable, we show how to color G

I Each vertex of vc receives the same color as in G ′

I Let v ∈ is
I N(v) ⊆ vc is already colored
I Assign v with a color not used in N(v)

z

a

b

c

d

e

x

z

w

v

u

y

G

a

b

c

d

e

v

G ′

a

b

c

d

e

Is this always possible?



Kernel for 3-Coloring

Correctness
(⇐) Suppose G ′ is 3-colorable, we show how to color G

I Each vertex of vc receives the same color as in G ′

I Let v ∈ is
I N(v) ⊆ vc is already colored
I Assign v with a color not used in N(v)

z

a

b

c

d

e

x

z

w

v

y

G

a

b

c

d

e

v

G ′

a

b

c

d

e

u

Is this always possible?



Kernel for 3-Coloring

Correctness
(⇐) Suppose G ′ is 3-colorable, we show how to color G

I Each vertex of vc receives the same color as in G ′

I Let v ∈ is
I N(v) ⊆ vc is already colored
I Assign v with a color not used in N(v)

z

a

b

c

d

e

x

z

w

y

G

a

b

c

d

e

v

G ′

a

b

c

d

e

u

v

Is this always possible?



Kernel for 3-Coloring

Correctness
(⇐) Suppose G ′ is 3-colorable, we show how to color G

I Each vertex of vc receives the same color as in G ′

I Let v ∈ is
I N(v) ⊆ vc is already colored
I Assign v with a color not used in N(v)

z

a

b

c

d

e

x

z

y

G

a

b

c

d

e

v

G ′

a

b

c

d

e

u

v

w

Is this always possible?



Kernel for 3-Coloring

Correctness
(⇐) Suppose G ′ is 3-colorable, we show how to color G

I Each vertex of vc receives the same color as in G ′

I Let v ∈ is
I N(v) ⊆ vc is already colored
I Assign v with a color not used in N(v)

z

a

b

c

d

e

z

y

G

a

b

c

d

e

v

G ′

a

b

c

d

e

u

v

w

x

Is this always possible?



Kernel for 3-Coloring

Correctness
(⇐) Suppose G ′ is 3-colorable, we show how to color G

I Each vertex of vc receives the same color as in G ′

I Let v ∈ is
I N(v) ⊆ vc is already colored
I Assign v with a color not used in N(v)

z

a

b

c

d

e

z

G

a

b

c

d

e

v

G ′

a

b

c

d

e

u

v

w

x

y

Is this always possible?



Kernel for 3-Coloring

Correctness
(⇐) Suppose G ′ is 3-colorable, we show how to color G

I Each vertex of vc receives the same color as in G ′

I Let v ∈ is
I N(v) ⊆ vc is already colored
I Assign v with a color not used in N(v)

z

a

b

c

d

e

G

a

b

c

d

e

v

G ′

a

b

c

d

e

u

v

w

x

y

z

Is this always possible?



Kernel for 3-Coloring

Correctness
(⇐) Suppose G ′ is 3-colorable, we show how to color G

I Each vertex of vc receives the same color as in G ′

I Let v ∈ is
I N(v) ⊆ vc is already colored
I Assign v with a color not used in N(v)

z

a

b

c

d

e

G

a

b

c

d

e

v

G ′

a

b

c

d

e

u

v

w

x

y

z

Is this always possible?



Is this always possible?

Yes! Proof: Suppose not

I Coloring of vc cannot be extended to some x

I Pick r , g , b ∈ N(x) with colors red,green,blue

I r ,g ,b have common neighbor x

I Some common neighbor was marked

I G ′ contains vertex y such that r , g , b ∈ N(y)

I Contradiction
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Kernel for 3-Coloring

Size
Number of vertices

I vc: Exactly k by definition

I is: At most
(k
3

)
= O(k3)

Number of edges

I Within vc: O(k2)

I Between vc and is: can be improved to O(k3)



Improved kernel for 3-Coloring



Kernel: general idea

We have graph G , with vertex cover vc
The remaining vertices form independent set is

I is may be large compared to vc

I Find more redundant vertices
I Any coloring of G − u can be

extended to G

I Similarly, find redundant edges

I Improve on previous kernel
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Kernel: general idea

Vertices in is can be colored independently

I Each vertex in is corresponds to a constraint
I Neighborhood does not use all 3 colors

I Gives constraints on the coloring of vc
I If some coloring of vc satisfies all constraints, it

can be extended to is
I Previously, ensured by marking vertices
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For all S ⊆ N(v) with |S | = 3, some color is used twice for S
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Finding redundant vertices
using constraints



Finding redundant constraints

If constraints are given by degree-c polynomial equalities
I We have seen a sparsification!

I c-Polynomial root CSP on k variables

I There are at most O(kc) relevant constraints



Modeling vertices as constraints

Polynomial equalities
I Create 3 boolean variables for each vertex in vc.

I a a a ∈ {0, 1} indicate the color of a

I For each vertex v in is, S ⊆ N(v) with |S | = 3
I Constraint: S does not use all 3 colors.

Which polynomial to use?

I Needs to have degree ≤ 2
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Polynomial equalities for 3-Coloring

I 3 variables for each vertex in vc a a a

Let v ∈ is, for each S ⊆ N(v) : |S | = 3
I Polynomial equality of degree 2

I For S = {a, d , e}:

a ∧ d + a ∧ e + d ∧ e +

a ∧ + ∧ + ∧d a e d e

∧ + ∧ + ∧a d a e d e +

≡2 1

I Expresses: a,d , and e do not use all 3 colors
I Three equal colors gives 3 ≡2 1
I Two equal colors gives 1
I Three different colors gives 0
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Kernel for 3-Coloring

I Model vertices in is by constraints
I Use Theorem to find subset of relevant constraints
I Keep only vertices and edges used for relevant constraints
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Kernel size

I Number of constraints O(#varsdegree)
I 3 · k variables
I degree 2

I Number of constraints O((3k)2)

I Constraint corresponds to ≤ 1 vertex and ≤ 3 edges

I O(k2) vertices and edges

Theorem

There exists a polynomial-time algorithm that when given graph G
with vertex cover S of size k , outputs graph G ′ such that

I G ′ is 3-Colorable if and only if G is 3-Colorable, and

I G ′ has O(k2) vertices and edges.



q-Coloring

Coloring with q colors

Theorem

q-Coloring parameterized by Vertex Cover has a kernel with
O(kq−1) vertices and edges.

Can we do better?

Theorem

q-Coloring parameterized by Vertex Cover has no kernel of bitsize
O(kq−1−ε), unless NP ⊆ coNP/poly.
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Conclusion

Summary
I Sparsification upper and lower bounds for a number of CSPs

I Using low-degree polynomial equalities

I Application to q-Coloring parameterized by Vertex Cover
I Kernel with O(kq−1) vertices and edges

Open problems
I Full classification of sparsifiability of CSPs

I Non-boolean domain?

I Sparsifiability of H-Coloring
I How is this influenced by the graph structure?

Thank you!
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