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Introduction

» Find exact algorithms for NP-hard problems
» Exponential time
» Speed-up possible?
» Preprocess the input instance
» Aim to reduce the size
» Polynomial time
» Many different NP-hard problems
» Logic problems (CNF-SAT, NAE-SAT,...)

» Graph problems (3-COLORING, VERTEX COVER,...)
> ..

» Study constraint satisfaction problems
» All problems above can be written as a CSP instance



Constraint Satisfaction Problems

CSP(T)
Input A number of constraints over a set of variables V

» Constraint R(xi, ..., xx) applies relation
R C {0, 1}k toxy,....,xx €V

Question Does there exists an assignment f: V — {0,1},
such that all constraints are satisfied?

Constraint language I'
» Specifies the type of constraints

» Can only use constraints R(xi, ..., xx) for R €T
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3-CNF-SAT:

F=((xVyVaz)A(xV-yV-w)A..
—_——

clause (size 3)

Equivalent to CSP(I) for ' = {Ry, R1, Rz, R3}

> R; represents clauses with i negations

R3 is chosen such that R3(x, y, z) is equivalent to (—x V —y V —z)

Rs = 0,11\ {(1.1,1)}
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Example: 3-CNF-SAT

3-CNF-SAT:

F=((xVyVaz)A(xV-yV-w)A..

|\ —

clause (size 3)

Equivalent to CSP(I) for ' = {Ry, R1, Rz, R3}

> R; represents clauses with i negations

Ro ={0,1}°\ {(0,0,0)}
Ri={0,1}°\ {(1,0,0)}
Re={0,11°\ {(1.1,0)}
Rs = {0, 1\ {(1,1, 1)}
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Sparsification

Constraint satisfaction problems are (often) hard
» Preprocess the input
» Reduce the number of constraints
» Find redundant constraints

» Worst-case bound on the number of remaining constraints
» As a function of the number of variables

v

Maintaining the answer
» Keeping all satisfying assignments?
» Not changing satisfiability

Efficiently!

v
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An easy sparsification

d-CNF-SAT:

F=((xVyVaz)A(xV-yV-w)A..
—_——

clause (size d)

Sparsification procedure:
Remove duplicate clauses

Size
» n variables (2n possible literals), d literals per clause
» At most O((2n)?) different possible clauses
» O(n?) for d constant
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Known results

d-CNF-SAT:
F=((xVyVaz)A(xV-yV-w)A..
————
clause (size d)
d-NAE-SAT:

F=(xyz)A(x-y -w)A..

Sparsification

d-oNF-saT | O(n9) no nontrivial sparsification [peilvan Melkebeek]
d-NAE-SAT | O(n971)

» Can prove certain lower bounds
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Lower bounds
Prove that no "better” sparsification exists?

» Needs assumptions, like P # NP
» Stronger assumption: NP & coNP/poly

Under these assumptions, we can prove bounds of the type

There is no O(n?=¢) size sparsification for d-CNF-SAT,
forany e >0



Dichotomy theorem for CSPs

Schaefer’s dichotomy theorem
Depending on properties of the relations in I', CSP(I') is

Polynomial-time solvable

2-SAT HORN-sAT
DUAL-HORN-SAT XOR-SAT

or

NP-hard

3-CNF-SAT 3-NAE-SAT
EXACT-SAT



Sparsification for CSPs: Goal

Find a classification for sparsifiability

Optimal sparsification bound: O(n) constraints

EXACT-SAT (upcoming), ...7?

Optimal sparsification bound: O(n?) constraints
L7

Optimal sparsification bound: O(n?) constraints

d-ONF-SAT, (d 4+ 1)-NAE-SAT, ...?



Exact satisfiability



Exact SAT

Input

Question

A formula in the following form, consisting of
clauses, each consisting of a number of literals.

(=x, 2y) A=y, 2) A(x, 2)
——

clause

Does there exists a boolean assignment, such that
each clause contains exactly one true literal?
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Let 0 := false, 1 := true

(=x,2y) A (7, 2) A (%, 2)

Satisfied by x =1,y =0,z=0
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(=x,7y) A (I =-x)+(1-y)=1
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(x,2) X+ z =1

is satisfied
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Sparsification for Exact SAT: Example
Example
Let 0 := false, 1 := true

(=x,2y) A (7, 2) A (%, 2)

Satisfied by x =1,y =0,z=0

(=x,—y) A (1 —x)+ (1 -y)=1 x+y=1
(my,2) A & (1-y)+z =1 & Z—y:0+
(x,2) X+ z =1 x+z=1
is satisfied

» (x, z) is always satisfied when the other clauses are

» |t is redundant
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Sparsification for Exact SAT

Can we do this in general?

x+y=1 x+y—1=0 1 1 0 -1
z—y=0 & z—y=0 |0 -1 1 O
x+z=1 x+z—-1=0 1 0 1 -1

Find redundant constraints by looking at the matrix

1 1 0 -1
0 -1 1 0
1 0 1 -1

Find a basis of the row space

1 1 0 -1
0 -1 1 0
1 0 1 -1

= N < X



Sparsification for Exact SAT

» Write down linear equation for each constraint



Sparsification for Exact SAT

» Write down linear equation for each constraint

» Problem asks to find 0/1-solution to linear system

1 1 0 ~1 X 8
0 -1 1 0 ﬁ 0
1 0 1 -1 =
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Sparsification for Exact SAT

» Write down linear equation for each constraint
» Problem asks to find 0/1-solution to linear system
» Compute basis of the row space of the matrix

» Keep constraints corresponding to rows in the basis
» Remove others

Remaining constraints: (x,y) and (—y, z)



Sparsification for Exact SAT

Correctness
Removed clauses are implied by remaining ones

Size
» The matrix has n+ 1 columns
» One for each variable plus one for the constant
» Dimension of row space equals dimension of column space
» Bounded by #columns
» At most n+ 1 remaining constraints



Sparsification for Exact SAT

Theorem

There is a polynomial-time algorithm, that given an instance F of
EXACT-SAT, produces instance F’ of EXACT-SAT such that

» Any boolean assignment satisfies F’ if and only if it satisfies F

» The number of clauses in F’is O(n)

The set of clauses of F' is a subset of those of F



Generalize the Exact-SAT

sparsification



c-Polynomial Root CSP

Definition

Input A list of polynomial equalities of the form
fi(xiy, ..., xi.) = 0, where f; has degree at most c.

Question Does there exist a 0/1-assignment to the variables,
such that all equalities are satisfied?



c-Polynomial Root CSP

Definition

Input A list of polynomial equalities of the form
fi(xiy, ..., xi.) = 0, where f; has degree at most c.

Question Does there exist a 0/1-assignment to the variables,
such that all equalities are satisfied?

» EXACT-SAT is 1-Polynomial Root CSP
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Sparsification for c-Polynomial Root CSP

Find redundant constraints in a similar way as for EXACT-SAT

» Each constraint is given by a degree-c polynomial
f(x,y,z)=0

» Find a subset S of relevant equalities

» Equalities not in S are combinations of those in S
» Adapt previous method to higher-degree polynomials!

» Remove redundant constraints
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Finding redundant polynomial equalities

Create a matrix A
» Column for each multilinear monomial of degree at most ¢
» Example: degree-2 polynomials over variables x, y, z
» Row for each constraint. Consider the constraints
» f(x,y)=xy+2y+3
> glzy)=2zy+y

Xy xz yz x y z 1
1 0 0 0 2 0 3\f
A=|0 0 1 0 1 0 O0]g



Finding redundant polynomial equalities

Create a matrix A
» Column for each multilinear monomial of degree at most ¢
» Example: degree-2 polynomials over variables x, y, z
» Row for each constraint. Consider the constraints
» f(x,y)=xy+2y+3
> glzy)=2zy+y
Find a basis of the row space of A

» Keep corresponding constraints

Xy xz yz x y z 1
1 0 0 0 2 0 3\f
A=|0 0 1 0 1 0 O0]g
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Sparsification for c-Polynomial Root CSP

Correctness
Sparsified instance satisfiable < Original instance satisfiable

> Let 7 be a satisfying assignment for the sparsified instance
» Suppose fi(xj, ..., ;) = 0 was removed
» Then there exist a; € R such that

fi(r(xi), o 7(xi,)) Z aj - f(7(x3,), o 7(%G,))

JjeB
Since fi(xj,, ..., xj,) = 0 was in the sparsified instance
fi(r(xy), - 7(x3)) =0V € B

Thereby
(), e 7(3,)) = 0



Sparsification for c-Polynomial Root CSP

Correctness
Sparsified instance satisfiable < Original instance satisfiable \/

Size

Number of remaining constraints < #columns
» Column for each multilinear monomial of degree < ¢
» (") multilinear monomials of degree exactly i
» >0 o (7) = O(n°) columns



Sparsification for c-Polynomial Root CSP

Theorem

There is a polynomial-time algorithm, that given an instance F of
c-PoLYNOMIAL-ROOT CSP, produces instance F’ of
c-POLYNOMIAL-ROOT CSP such that

» Any boolean assignment satisfies F’ if and only if it satisfies F

» The number of constraints in F’ is O(n°)

c-POLYNOMIAL-ROOT CSP has a O(n) size sparsification



Relation to earlier results

Problem Special case of

d-CNF-SAT d-PoLYNOMIAL-ROOT CSP
d-NAE-SAT (d — 1)-PorLyNoMIAL-ROOT CSP
d-EXACT-SAT 1-PoLyNOMIAL-ROOT CSP

Clause can be replaced by degree-c polynomial equality
» We have seen: d-EXACT-SAT
> Next: d-NAE-SAT

Bound
O(n9)
O(nd—l)
O(n)
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(Monotone) d-NAE-SAT

Find polynomial f of degree d — 1 such that
f(x1,....x4) = 0 < clause (x1, ..., x4) is NAE-satisfied
Clause (x1, ..., Xq) is NAE-satisfied iff

x1+x+ ... +x4€{1,2,...,d -1}

Let g(x) i =(x—1)-(x—2)---(x—(d — 1))
» g(x)=0forxe{1,2,...,d — 1}
> £(0) # 0 and g(d) #0

g(x1 + x2+ ... + x4) is the required polynomial

» Can handle negations as well
» Use (1 — x;) for —x;
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We can generalize the result for c-PoLyNOMIAL-ROOT CSP
» Finite fields

> Integers mod m

> ..

Can we also use polynomial inequalities?
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Polynomial inequalities

Each constraint given by f(x1,...,xx) # 0
» Can represent CNF-SAT, let x,y,z € {0,1}

(xVyVz)e(l-x)+y+z#0

» Degree-1 polynomials can represent d-CNF-SAT for any d
» Lower bound for d-CNF-SAT known
» No O(n9~¢) sparsification for & > 0

» Polynomial-size sparsification in this case not possible
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The g-Coloring problem

Can the vertices of a graph be colored with at most g colors?
» Focuson g =3

> red, green, blue

Can be seen as a CSP (domain
{0,1,2})
» Variable for each vertex

» Constraint for each edge

Trivial sparsification O(n?)

» Matching lower bound



Another complexity measure

Bound sparsification size by more interesting parameter
» Measures complexity of input graph

» Size of a Vertex Cover



Another complexity measure

Bound sparsification size by more interesting parameter
» Measures complexity of input graph

» Size of a Vertex Cover



Another complexity measure

Bound sparsification size by more interesting parameter
» Measures complexity of input graph

» Size of a Vertex Cover

Vertex cover



Another complexity measure

Bound sparsification size by more interesting parameter
» Measures complexity of input graph

» Size of a Vertex Cover

Vertex cover

Independent set



Another complexity measure

Bound sparsification size by more interesting parameter
» Measures complexity of input graph

» Size of a Vertex Cover

Why Vertex Cover? Alternatives:
> Treewidth
» No polynomial bound
» Deletion distance to (disjoint union of) paths
» No polynomial bound ansen Kratsch]



Kernelization

Efficiently reduce the size of an input instance
» Resulting size depends on parameter value
» Provably small

» Provably correct



Kernelization

Efficiently reduce the size of an input instance
» Resulting size depends on parameter value
» Provably small

» Provably correct

Kernel for 3-Coloring

Polynomial-time algorithm that, given graph G with vertex cover
of size k, outputs G’ such that

» |G| is bounded by f(k)
» G is 3-Colorable if and only if G’ is 3-Colorable
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Previous work
Jansen and Kratsch [inf comput. 2013) showed that

» 3-Coloring parameterized by VC has a kernel with O(k?)
edges and vertices



Kernel for 3-Coloring

Previous work
Jansen and Kratsch [inf comput. 2013) showed that

» 3-Coloring parameterized by VC has a kernel with O(k?)
edges and vertices

Using the tools for CSPs, this can be improved!

Theorem

3-Coloring parameterized by Vertex Cover has a kernel with O(k?)
edges and vertices



Simple kernel for 3-Coloring
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Is this always possible?

Yes! Proof: Suppose not
» Coloring of vC cannot be extended to some x
» Pick r, g, b € N(x) with colors red,green,blue

r.g,b have common neighbor x

v

» Some common neighbor was marked
» G’ contains vertex y such that r, g, b € N(y)

» Contradiction

G/




Kernel for 3-Coloring

Size
Number of vertices
» vC: Exactly k by definition
> 1S: At most (13‘) = O(k3)
Number of edges
» Within vc: O(k?)
» Between vC and 18: can be improved to O(k3)



Improved kernel for 3-Coloring
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Kernel: general idea

We have graph G, with vertex cover vC
The remaining vertices form independent set 1S

» IS may be large compared to vC
» Find more redundant vertices

» Any coloring of G — u can be
extended to G

» Similarly, find redundant edges

» Improve on previous kernel
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Kernel: general idea

Vertices in 1S can be colored independently

» Each vertex in IS corresponds to a constraint
» Neighborhood does not use all 3 colors
» Gives constraints on the coloring of vC

» |If some coloring of VC satisfies all constraints, it @
can be extended to 1S
» Previously, ensured by marking vertices

Alternatively:

For all S € N(v) with |S| = 3, some color is used twice for S

)

coloring can be extended to v

®



Finding redundant vertices
using constraints



Finding redundant constraints

If constraints are given by degree-c polynomial equalities
» We have seen a sparsification!
» c-PoLyNOMIAL ROOT CSP on k variables

» There are at most O(k€) relevant constraints



Modeling vertices as constraints

Polynomial equalities

» Create 3 boolean variables for each vertex in vcC.

> ..@e {0, 1} indicate the color of a
» For each vertex v in1s, S C N(v) with |S| =3
» Constraint: S does not use all 3 colors.
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Modeling vertices as constraints

Polynomial equalities
» Create 3 boolean variables for each vertex in vC.
> ..@e {0, 1} indicate the color of a
» For each vertex v in1s, S C N(v) with |S| =3
» Constraint: S does not use all 3 colors.

®

Which polynomial to use?
» Needs to have degree < 2



Polynomial equalities for 3-Coloring

» 3 variables for each vertex in vC ..@
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Polynomial equalities for 3-Coloring

» 3 variables for each vertex in vC ..@

Let v €15, for each S C N(v):|S| =3
» Polynomial equality of degree 2
» For S ={a d, e}:

@0 @00 @O+
@0 00 @O
@00 @@ +@®-=1

» Expresses: a,d, and e do not use all 3 colors

» Three equal colors gives 3=, 1
» Two equal colors gives 1
» Three different colors gives 0
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Kernel for 3-Coloring

» Model vertices in IS by constraints
» Use Theorem to find subset of relevant constraints

» Keep only vertices and edges used for relevant constraints

uw: 0

Earerd}
C(a, d, e)

C.(a, c,d)

y:
C.(a, c,e)



Kernel size

v

Number of constraints O(# vars?esree)

» 3. k variables
> degree 2

Number of constraints O((3k)?)
» Constraint corresponds to < 1 vertex and < 3 edges
O(Kk?) vertices and edges

v

v

Theorem

There exists a polynomial-time algorithm that when given graph G
with vertex cover S of size k, outputs graph G’ such that

» G’ is 3-Colorable if and only if G is 3-Colorable, and
» G’ has O(k?) vertices and edges.
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g-Coloring

Coloring with g colors

Theorem

g-Coloring parameterized by Vertex Cover has a kernel with
O(k971) vertices and edges.

Can we do better?

Theorem

g-Coloring parameterized by Vertex Cover has no kernel of bitsize
O(k9=1=%), unless NP C coNP/poly.



Conclusion

Summary
» Sparsification upper and lower bounds for a number of CSPs
» Using low-degree polynomial equalities
» Application to g-Coloring parameterized by Vertex Cover
» Kernel with O(k971) vertices and edges

Open problems
» Full classification of sparsifiability of CSPs
» Non-boolean domain?
» Sparsifiability of H-Coloring
» How is this influenced by the graph structure?
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Summary
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» Using low-degree polynomial equalities
» Application to g-Coloring parameterized by Vertex Cover
» Kernel with O(k971) vertices and edges

Open problems
» Full classification of sparsifiability of CSPs
» Non-boolean domain?
» Sparsifiability of H-Coloring
» How is this influenced by the graph structure?

Thank you!



