TUE Technische Universiteit Eindhoven University of Technology

leaves

leaves

root

Kernelization

Astrid Pieterse

leaves

S

Where innovation starts

About me

- PhD student since September 1st, 2015
- Eindhoven
- Supervisor: Bart Jansen
- Promotor: Mark de Berg

Before that

- Mathematics and Computer Science bachelor
- Computer Science and Engineering Master

Algorithms

- Find fast algorithms to solve problems
- Some problems are NP-hard
- Solve them anyway?
- Parameterized problem
 - Input (x, k)
 - -k is the parameter
 - -x is the normal input

What parameter?

Problem *easy* if k small

(Almost) acyclic?

Solution size

Number of nodes Technische Universiteit Eindhoven University of Technolog

Can we do preprocessing?

- Reduce input size
- Polynomial time
- Size of x' depends only on k
 - and is hopefully small (polynomial)
- Kernelization

Methods have been found to

- Find such a preprocessing
- Show it does not exist

Technische Universiteit **Eindhoven** University of Technology

Example: Vertex Cover Subset of vertices such that every edge is covered

Does *G* have a vertex cover of size *k*?

Parameter: *k*

Correct vertex cover

Technische Universiteit **Eindhoven** University of Technology

Example: Vertex Cover Subset of vertices such that every edge is covered

Does *G* have a vertex cover of size *k*?

Parameter: *k*

• Remove vertex without edges

• Remove vertex without edges

- Remove vertex without edges
- Suppose degree > *k*

- Remove vertex without edges
- Suppose degree > *k*
 - Add v to cover, decrease k

- Remove vertex without edges
- Suppose degree > *k*
 - Add v to cover, decrease k

- Remove vertex without edges
- Suppose degree > *k*
 - Add v to cover, decrease k
 - Remove v

- Remove vertex without edges
- Suppose degree > *k*
 - Add v to cover, decrease k
 - Remove v

k = 2

Je Technische Universiteit Eindhoven University of Technolog

k = 1

Rules to reduce input size

- Remove vertex without edges
- Suppose degree > *k*
 - Add v to cover, decrease k
 - Remove v
 - Apply these rules exhaustively
 - Every vertex has degree $\leq k$
 - By k vertices we cover $\leq k^2$ edges

• 2 Options

- Many edges: output *no*
- Else: instance of size $O(k^2)$!

In this case, a combination of smart rules can provably shrink the instance size!

• But in other cases we can prove this is impossible

Master thesis

Technische Universiteit **Eindhoven** University of Technology

- Considered several graph problems
- and one from logic

Current work

- Constraint satisfaction problems
 - Number of *constraints* over variables $(x \lor y \lor z) \land (\neg x \lor \neg y) \land \cdots$
 - Can express many other problems
 - Including graph problems
 - But often NP-hard
 - When is *kernelization* possible?
 - Parameter: number of variables