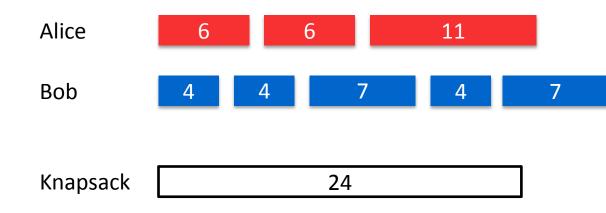
The Subset Sum Game Revisited

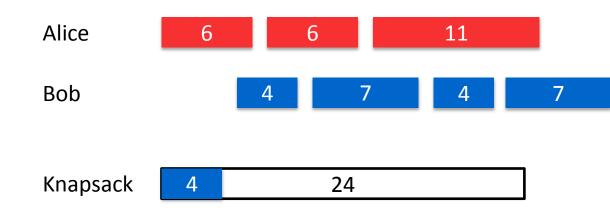
<u>Astrid Pieterse¹ and Gerhard J. Woeginger²</u>

¹ Eindhoven University of Technology
² RWTH Aachen

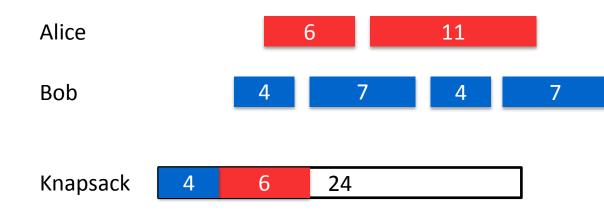
Items b_1, \ldots, b_m



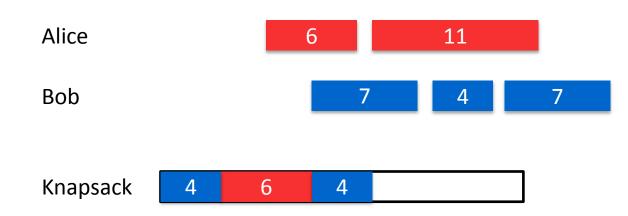
Items b_1, \ldots, b_m



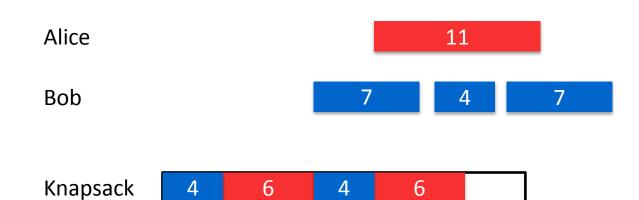
Items b_1, \ldots, b_m



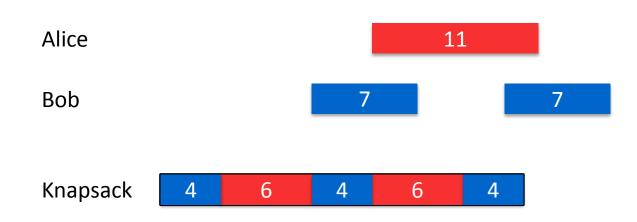
Items b_1, \ldots, b_m



Items b_1, \ldots, b_m

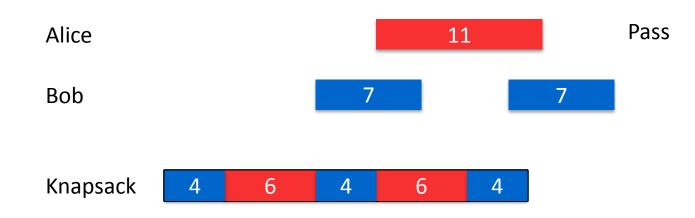


Items b_1, \ldots, b_m

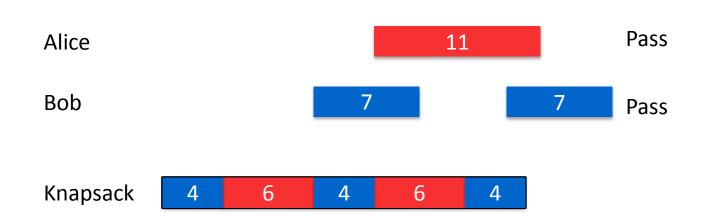


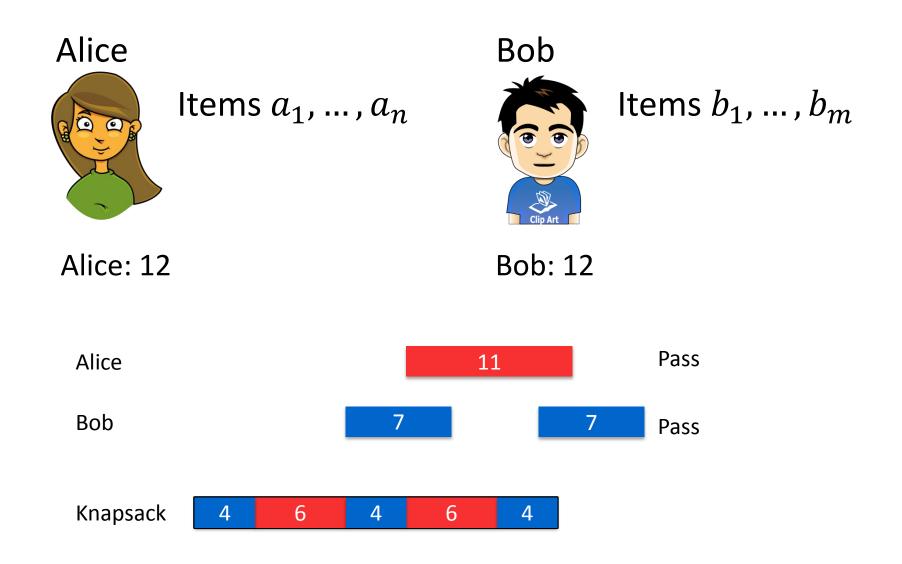
Items a_1, \ldots, a_n

Items b_1, \ldots, b_m



Items b_1, \ldots, b_m





Motivation

Players compete over a resource

- Processing time
- Bandwidth

Player strategies

Players know

- Other player's goal
- Items

We will be Alice

• Goal: Maximize our weight (Selfish)

Strategies for Bob

• Selfish

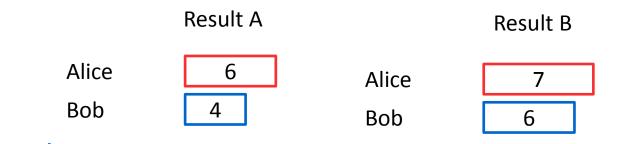
Result A

Result B

• Hostile

Strategies for Bob

• Selfish



• Hostile

Strategies for Bob

• Selfish



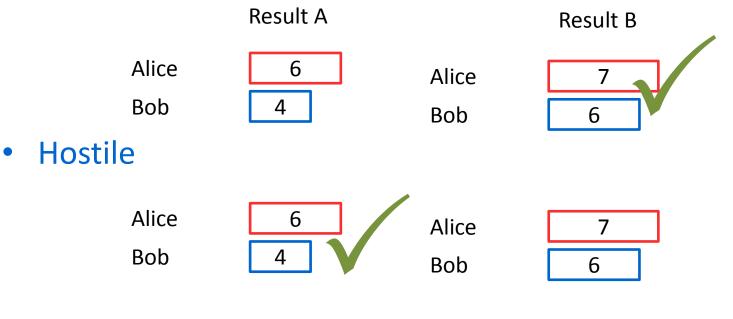
• Hostile

Strategies for Bob

• Selfish

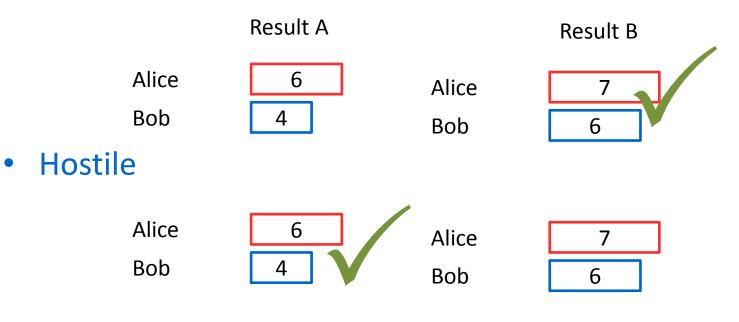
Strategies for Bob

• Selfish



Strategies for Bob

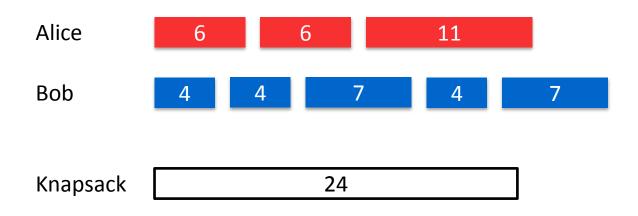
• Selfish



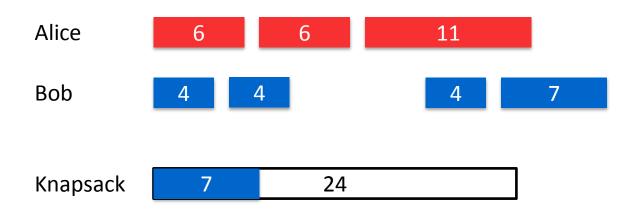
• Greedy

• Play the largest item that fits

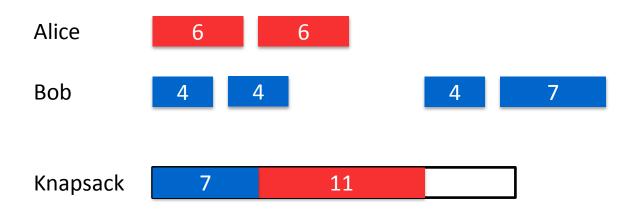
Alice plays selfish



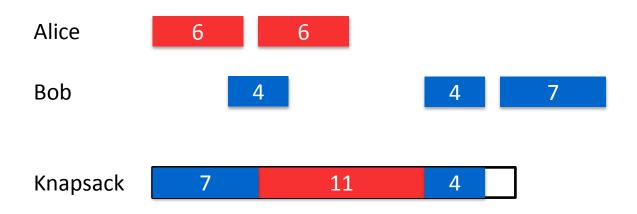
Alice plays selfish



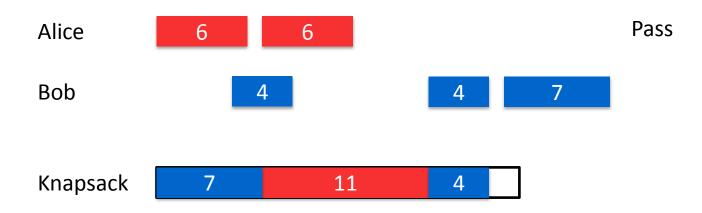
Alice plays selfish



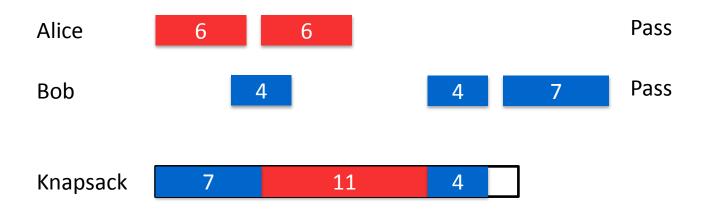
Alice plays selfish



Alice plays selfish

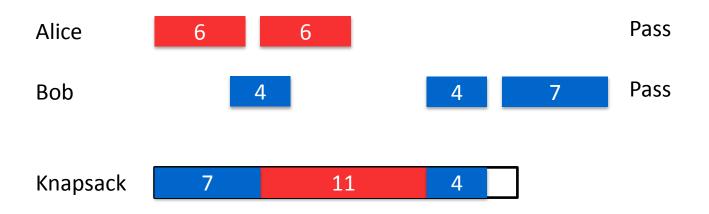


Alice plays selfish



Alice plays selfish

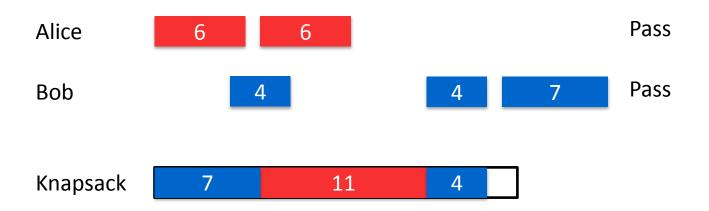
• Does it matter if Bob is selfish or hostile?



Result: Alice: 11, Bob: 11

Alice plays selfish

• Does it matter if Bob is selfish or hostile?



Result: Alice: 11, Bob: 11

Previously: Alice: 12, Bob: 12

Previous work

Introduced by Darmann, Nicosia, Pferschy & Schauer

Greedy strategy [Darmann et al.]

- Gives at least 1/2 the maximum weight
- Greedy with lookahead

Optimal strategy against selfish Bob may pack smaller items before larger items [Darmann et al.]

- But not against greedy
- Packs items in non-increasing order

Our results

SSG against hostile/selfish

- *PSPACE* complete
- No α -approximation unless P = NP

SSG against greedy

- Solvable in pseudo polynomial time
- Has a PTAS
- Has no FPTAS unless P = NP

PTAS against greedy player

Definition: PTAS

Polynomial time approximation scheme

• Trade-off: running time - approximation factor

Algorithm that for given $\varepsilon > 0$

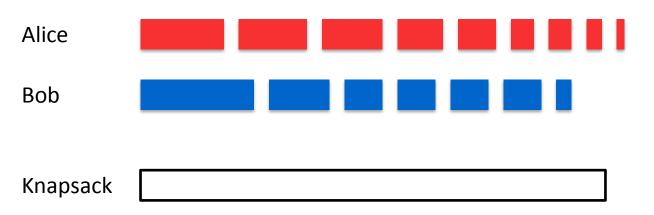
- Finds strategy for Alice
 - with value at least $(1 \varepsilon) * OPT$
- Runs in polynomial time in n for ε constant
 - $O(n^{1/\varepsilon})$ allowed

PTAS against greedy

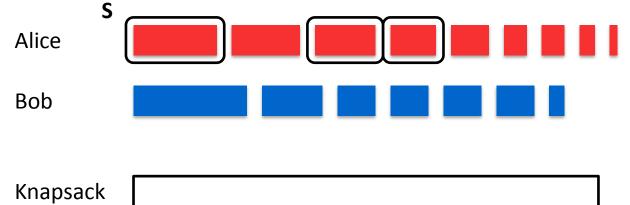
Idea

- Pack in non-increasing order
- Try all possibilities to pack the first few items
 - Large items are important
- Pack smaller items greedily
- Choose the best strategy

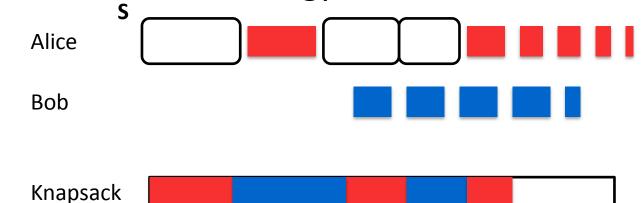
- For each $S \subseteq$ Alice-items with $|S| \leq 1/\varepsilon$
 - Choose items of *S* large to small
 - Continue greedily
- If impossible to pack S
 - Discard
- Pick the best strategy



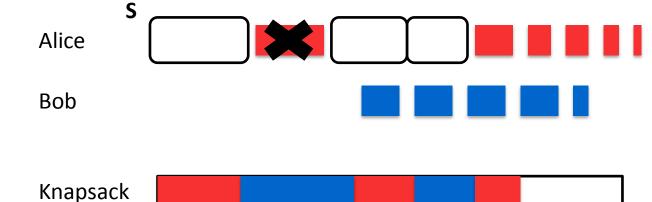
- For each $S \subseteq$ Alice-items with $|S| \leq 1/\varepsilon$
 - Choose items of *S* large to small
 - Continue greedily
- If impossible to pack S
 - Discard
- Pick the best strategy



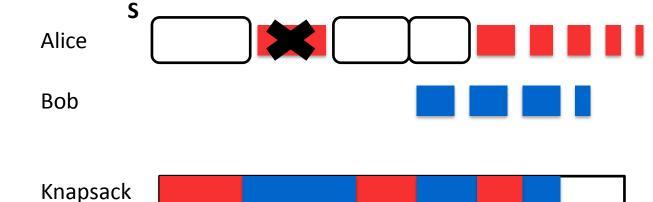
- For each $S \subseteq$ Alice-items with $|S| \leq 1/\varepsilon$
 - Choose items of *S* large to small
 - Continue greedily
- If impossible to pack S
 - Discard
- Pick the best strategy



- For each $S \subseteq$ Alice-items with $|S| \leq 1/\varepsilon$
 - Choose items of *S* large to small
 - Continue greedily
- If impossible to pack S
 - Discard
- Pick the best strategy

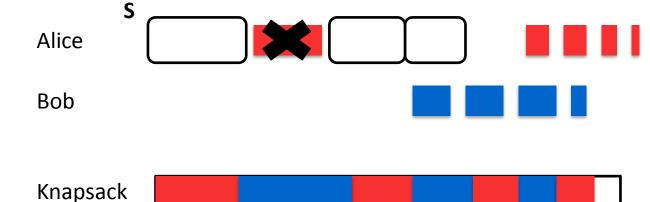


- For each $S \subseteq$ Alice-items with $|S| \leq 1/\varepsilon$
 - Choose items of *S* large to small
 - Continue greedily
- If impossible to pack S
 - Discard
- Pick the best strategy



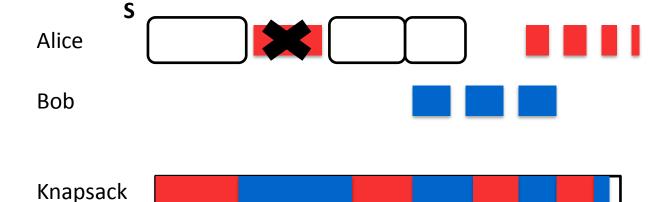
PTAS

- For each $S \subseteq$ Alice-items with $|S| \leq 1/\varepsilon$
 - Choose items of *S* large to small
 - Continue greedily
- If impossible to pack S
 - Discard
- Pick the best strategy



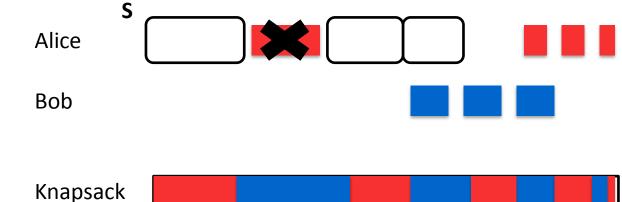
PTAS

- For each $S \subseteq$ Alice-items with $|S| \leq 1/\varepsilon$
 - Choose items of *S* large to small
 - Continue greedily
- If impossible to pack S
 - Discard
- Pick the best strategy



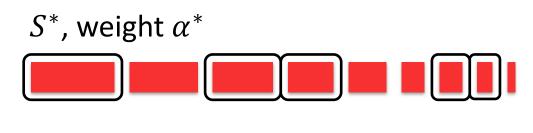
PTAS

- For each $S \subseteq$ Alice-items with $|S| \leq 1/\varepsilon$
 - Choose items of *S* large to small
 - Continue greedily
- If impossible to pack S
 - Discard
- Pick the best strategy



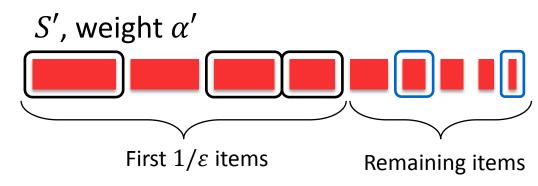
Approximation factor

- S* : optimal strategy
- Non-increasing order



S' :

- First $1/\varepsilon$ items of S^*
- Continue greedily



PTAS considered S'

• Finds a strategy of weight at least lpha'

Show $\alpha' \geq (1 - \varepsilon) \cdot \alpha^*$

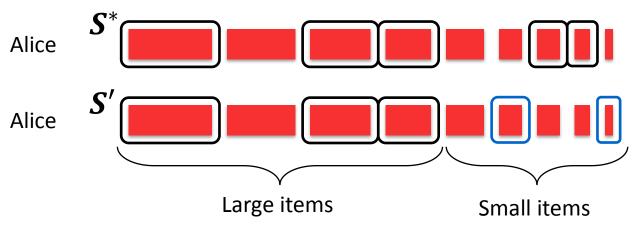
Approximation factor

Weight of the first $1/\varepsilon$ items

• Equal

Weight of the remaining items

- Remaining items are small: $a_i \leq \varepsilon \cdot \alpha^*$
 - Else, first $1/\varepsilon$ items have weight at least α^*



Approximation factor

Difference: mistake by greedy when packing small

Lemma

Difference between greedy and selfish strategy is bounded by the size of the largest item of Alice (when playing against greedy Bob)

- Size of largest item $\leq \varepsilon \alpha^*$
- Thus $\alpha' \ge (1 \varepsilon) \alpha^*$

Running time

Try all size $1/\varepsilon$ subsets

• $O(n^{1/\varepsilon})$

Continue greedily

• $O(n^2)$

Polynomial in n for ε constant

Theorem

The subset sum game against a greedy adversary has a PTAS

Note: not an FPTAS

No FPTAS

PTAS with running time polynomial in

- n
- 1/ε

Theorem The subset sum game against a greedy adversary has no FPTAS, unless P = NP

FPTAS gives polynomial-time algorithm for PARTITION

Inapproximability against the selfish player

Inapproximability

Theorem

A constant-factor approximation for the weight of Alice against selfish, implies P = NP.

Reduction from Partition (NP-hard)

- Input: Items $X = x_1, x_2, \dots, x_n$ with $\sum x_i = 2U$
- Question: Does there exist $S \subset X$ with sum U?
 - Partition X into 2 sets with equal sum

Proof strategy

Given instance for Partition

- Construct an instance for the Subset Sum game
- If yes-instance for Partition
 - Alice can pack at most *n*
- If no-instance for Partition
 - Alice can pack more than n/α
- Run α -approximation algorithm for Subset Sum game
 - Weight less than *n*, return yes
 - Weight more than *n*, return no

Given x_1, \ldots, x_n for partition, with sum 2U

Give to Alice

• *M* items of weight 1

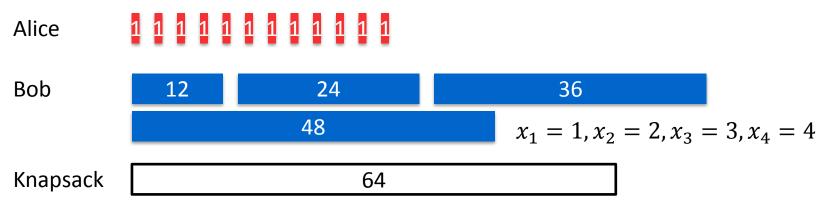
Give to Bob

• An item of weight $M * x_i$ for each $i \in [n]$

R = 3, n = 4, U = 5

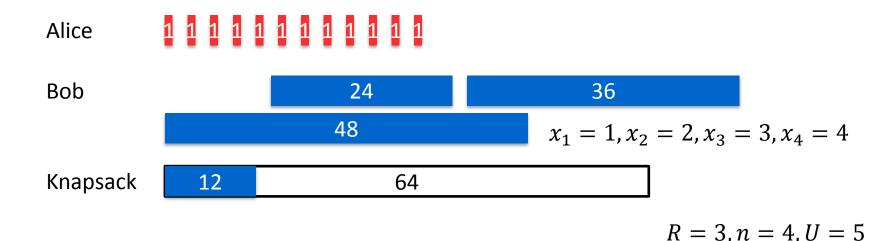
Let the capacity be c = M * U + n

- Partition was a yes-instance
 - Bob packs $M \cdot U = c n$
 - Alice can only pack weight n

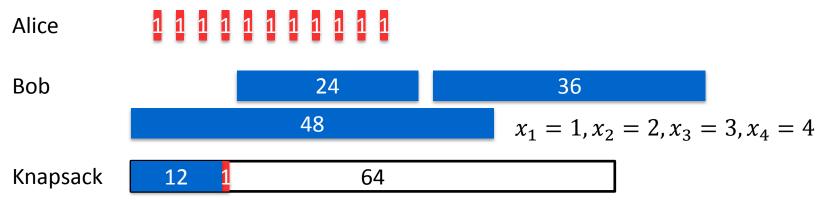


R = 3, n = 4, U = 5

- Partition was a yes-instance
 - Bob packs $M \cdot U = c n$
 - Alice can only pack weight n

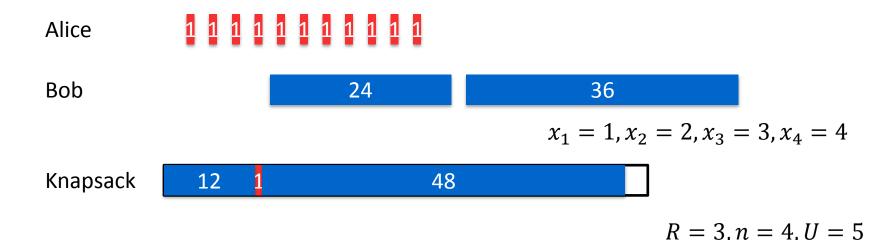


- Partition was a yes-instance
 - Bob packs $M \cdot U = c n$
 - Alice can only pack weight n

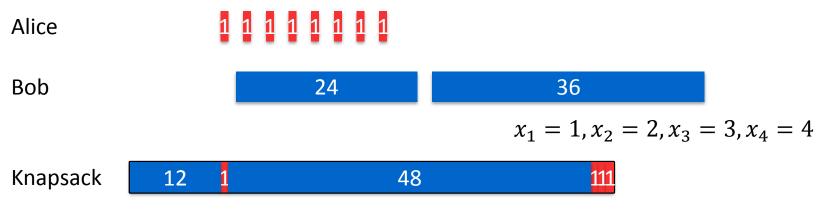


R = 3, n = 4, U = 5

- Partition was a yes-instance
 - Bob packs $M \cdot U = c n$
 - Alice can only pack weight n

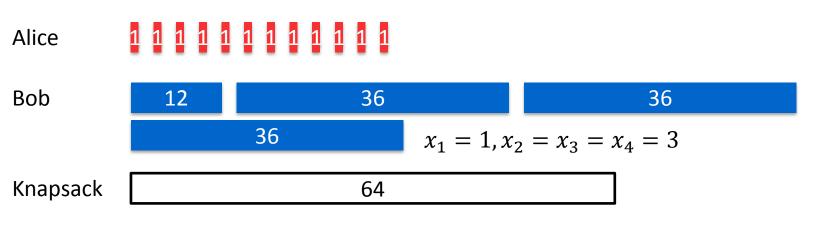


- Partition was a yes-instance
 - Bob packs $M \cdot U = c n$
 - Alice can only pack weight n



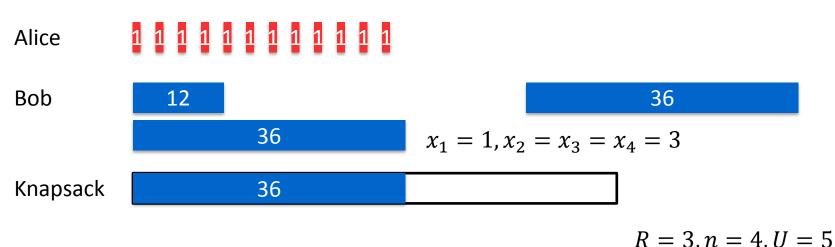
R = 3, n = 4, U = 5

- Partition was a yes-instance
 - Bob packs $M \cdot U = c n$
 - Alice can only pack weight n
- Partition was a no-instance
 - Bob can pack at most M(U-1)
 - Alice can place at least weight M

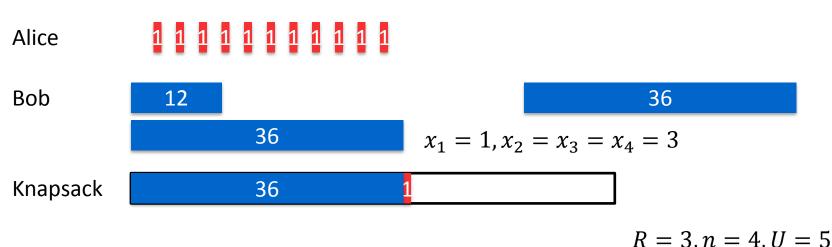


R = 3, n = 4, U = 5

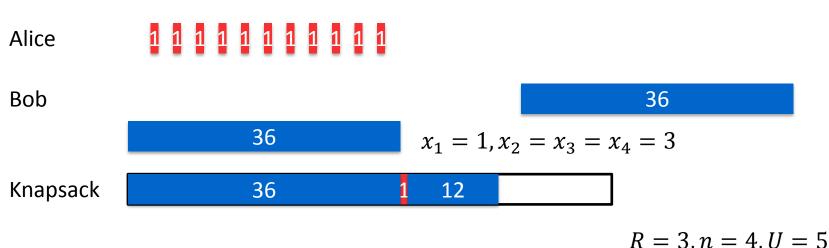
- Partition was a yes-instance
 - Bob packs $M \cdot U = c n$
 - Alice can only pack weight n
- Partition was a no-instance
 - Bob can pack at most M(U-1)
 - Alice can place at least weight M



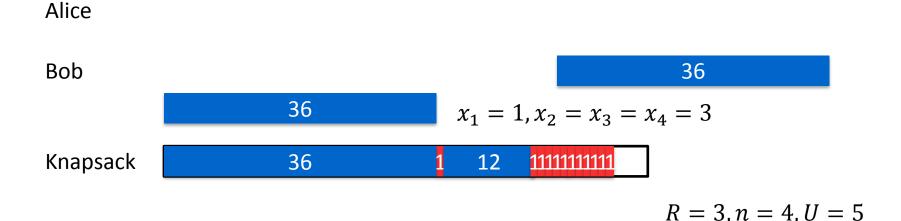
- Partition was a yes-instance
 - Bob packs $M \cdot U = c n$
 - Alice can only pack weight n
- Partition was a no-instance
 - Bob can pack at most M(U-1)
 - Alice can place at least weight M



- Partition was a yes-instance
 - Bob packs $M \cdot U = c n$
 - Alice can only pack weight n
- Partition was a no-instance
 - Bob can pack at most M(U-1)
 - Alice can place at least weight M



- Partition was a yes-instance
 - Bob packs $M \cdot U = c n$
 - Alice can only pack weight n
- Partition was a no-instance
 - Bob can pack at most M(U-1)
 - Alice can place at least weight M



α-approximation for Subset Sum game ↓ polynomial-time algorithm for Partition

Theorem

A constant-factor approximation for the weight of Alice against selfish, implies P = NP.

The same holds against a hostile player

Pseudo-polynomial time algorithm

Algorithm against greedy

Theorem

The game against greedy is solvable in time $O(n^2m^2c^4)$

Use dynamic programming

- $[i, j, W_A, W_B] \coloneqq$ Maximum weight Alice can obtain
- It is Alice's turn
- Weight of Alice is W_A , weight of Bob W_B
- Alice just packed *i*, Bob *j*

Take state with best-reachable W_A

Reachability

Check whether a state is reachable from another

- $[i, j, W_A, W_B]$ to $[i', j', W'_A, W'_B]$
- *i* < *i*′
- j < j'
- $W'_A = W_A + a_i$
- $W'_B = W_B + b_{j'}$
- The items still fit
- $b_{j'}$ was the largest available Bob-item
 - Thus the Greedy choice

Conclusion

SSG against hostile/selfish

- *PSPACE* complete
- No α -approximation unless P = NP

SSG against greedy

- Solvable in pseudo polynomial time
- Has a PTAS
- Has no FPTAS unless P = NP