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Vertex Cover Kernelization

Kernel

Polynomial time algorithm, that given graph G with parameter €, asking for vertex
cover of size k, outputs

G' k', ' such that
e (¢' has a vertex cover of size k' & G has a vertex cover of size k

G = fE). £ < f(£)

G Poly-time

o .



Results for Vertex Cover kernelization

Parameter

Solution size

Feedback Vertex Set
Solution size above LP

Odd Cycle Transversal
Modulator to d-quasiforest
Modulator to pseudoforest
Modulator to degree 1 or 2

Modulator to cluster graphs
of bounded clique size

Modulator to treedepth-n
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2k
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Polynomial
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Results for Vertex Cover kernelization

Modulator to
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Forest

LP(G) = OPT(G)
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Results for Vertex Cover kernelization

Modulator to
Independent Set
Forest

LP(G) = OPT(G)
Bipartite
d-quasiforest
pseudoforest
degree 1 or 2

cluster graphs of bounded
clique size

treedepth-n
C

Elimination distance-n to C

#Vertices of kernel
2k

0(£3)

Polynomial
Polynomial

0 (£34+9)

0(£12)

0(£>)

0(£%)
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Depends on C
Depends on C
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Elimination Distance

Let C be a graph class, elimination distance to C is ed(G) is
*0,ifGeC

* max ed.(G;) if G consists of connected components Gy, G, ...
 min edq (G —v) + 1 otherwise

veEV(G)
Gives corresponding elimination tree :
Ay
/\ i~ A
N A
} AN

/
/
ed;s(G) = td(G) — 1 when IS is the class containing oniy independent sets



Blocking sets

Subset B of V' (G) such that no optimal vertex cover fully contains B

* Minimal Blocking Set if B is inclusion-wise minimal
* B(G): size of largest minimal blocking set in G

 B(C) = rcr;lch’B(G) for a graph class C (possible infinite)
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Blocking sets

Subset B of I/'(G) such that no optimal vertex cover fully contains B

* Minimal Blocking Set if B is inclusion-wise minimal
* B(G): size of largest minimal blocking set in G

« B(C) = r(r;leag,B(G) for a graph class C (possible infinite)

4(6) = dfor e

Path 2
Size-d cliques d
Treedepth-n graphs 212 + 1



Our results

Kernelization upper and lower bounds based on blocking sets

* No kernel of size O (| X|(¢)—#)
* unless NP € coNP /poly, for C robust

 Efficiently reduce the number of connected componentsin G — X to O(IXIﬁ(C))

Blocking sets versus elimination distance

* Let C hereditary and robust, suppose G has ed-(G) = d, then
- B(G) < (B(C)—1)29 +1if B(C) =2
« B(G) <241+ 1ifB(C) =1
* Tight upper and lower bound



Kernelization
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* So does Vertex Cover parameterized by a modulatorto ed-(G) = d
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Consequences

If Vertex Cover parameterized by modulator to C has a polynomial kernel

* So does Vertex Cover parameterized by a modulator to ed(G) = d
* Forall d, assuming C hereditary and robust

Proof (induction) G
* d = 0: Directly use the polynomial kernel

d > 0: Polynomial kernel implies S(C) constant
* Implies alsoy = (G — X) constant

Reduce the number of connected componentsin G — X to O(|X|")
For every connected components of G — X, add the root to X

G—Xnowhased (G—X)<d
* Apply the induction hypothesis




Consequences

Generalizes existing kernels for Vertex Cover

* New parameter generalizes existing parameters!

In particular, we show that OPT(G) = LP(G) + € implies that there is a modulator
X of size at most 2¢ + 2 such that LP(G — X) = OPT (G — X)



Reducing the number of components in G — X

Theorem
If B(C) = d, we can reduce the number of componentsin G — X to 0(|X|%)
 Outputs G' and k' such that OPT(G) = OPT(G") + k'

e Runs in polynomial time (assuming C sufficiently nice)

 ForallS € X with |S| <d
* Mark [X| + 1 components where N(S) is blocking

 Remove unmarked components



Reducing the number of components in G — X

Simple method (0 (] X|%*1) components)

e ForallS € X with |S| <d
* Mark |X| + 1 components where N (S) is blocking

* Remove unmarked components

Correctness

If C unmarked, then for any minimum vertex cover Y of G — C,

there is a vertex cover Y' in C
e SuchthatY U Y'is a vertex cover of G
* And Y’ has size OPT(C)




Reducing the number of components in G — X

Proof by contradiction
ConsiderB=NX-Y)NnC
« Sufficient to ensure that Y’ contains B

Problem: B could be blocking

Let B’ € B minimal blocking set
Let B” € X — Y suchthat B’ € N(B"")
We marked > |X| components for B"”

They do not use local optimum

Y is not a minimum vertex cover
* Taking all of X and all local optima is better!
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Reducing the number of components in G — X

Theorem
If B(C) = d, we can reduce the number of componentsin G — X to 0(|X|%)
* Outputs G’ and k' such that OPT(G) = OPT(G') + k'

e Runs in polynomial time (assuming C sufficiently nice)

Improved method: “Crowns”
Create auxiliary bipartite graph on size-d subsets S of X and componentsof G — X
* Add connection if N(S5) blockingin C
* Find a maximum matching

* Remove unmatched components
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Blocking sets



Lower bound

Let C hereditary and robust, there exists G with ed-(G) = d and

« B(G) = (B(C) —1)29 + 1if B(C) = 2
« B(G) =291 +1ifB(C) =1

We show the first result by induction
* d = 0: Take any graph G in C witnessing 5(C) / \

 d > 0: We use the following construction ! H !

+ size2|y| —1=2((B(C) - D2¢ " +1) -1
= (B(C)—1)29 +1
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Lower bound

Let C hereditary and robust, there exists G with ed-(G) = d and

Opti
c B(G) = (B(C) — D29+ 1if B(C) = 2 vertex cover
o — »d-1 . _ increases by at
(G)=2""+1ifp(C)=1 ® mostone

We show the first result by induction
* d = 0: Take any graph G in C witnessing 5(C)

 d > 0: We use the following construction ! H !
G

+ size2|y| —1=2((B(C) - D2¢ " +1) -1
= (B(C)—1)29 +1

edc(G) =d-—1
pG) =1Y|=3
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Lower bound

Let C hereditary and robust, there exists G with ed-(G) = d and
Optimum
* B(G) = (B(C) = 1)2° + 1if B(C) = 2 vertex cover
_ . i b
» B(G) =291+ 1ifB(C) =1 nereases vl
We show the first result by induction
* d = 0: Take any graph G in C witnessing 5(C)

 d > 0: We use the following construction ! ! ! !

+ size2|y| —1=2((B(C) - D2¢ " +1) -1
= (B(C)—1)29 +1

G
edc(G) <d
BG) =2|Y|—-1=5



Upper bound

Let C hereditary and robust, suppose G has ed(G) = d, then
« B(G) < (B(C)—1)29 + 1if B(C) = 2
« B(G) <2% 1 +1ifB(C) =1

Proof idea
* |f r root of decomposition

* Minimal blocking set interacts with few componentsof G — r
e Similar to treedepth case



summary

Link between bounded blocking set size and polynomial kernels
* Bounded blocking set size necessary
* But not sufficient

Polynomial kernel parameterized by modulator to C implies polynomial kernel
parameterized by modulator to ed,. = d.

* Under mild assumptions on C
* Generalizes known vertex cover kernels
* Tight analysis of blocking set size of graphs where ed(G) = d
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