Elimination Distances, Blocking Sets, and Kernels for Vertex Cover

Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse

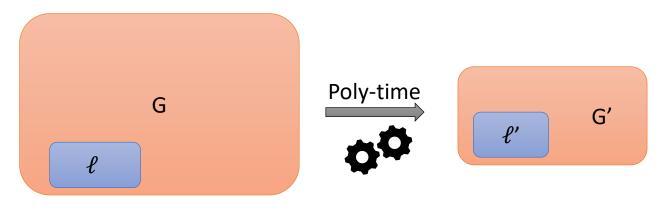
Vertex Cover Kernelization

Kernel

Polynomial time algorithm, that given graph G with parameter ℓ , asking for vertex cover of size k, outputs

 G', k', ℓ' such that

- G' has a vertex cover of size $k' \Leftrightarrow G$ has a vertex cover of size k
- $|G'| \le f(\ell), \ell' \le f(\ell)$

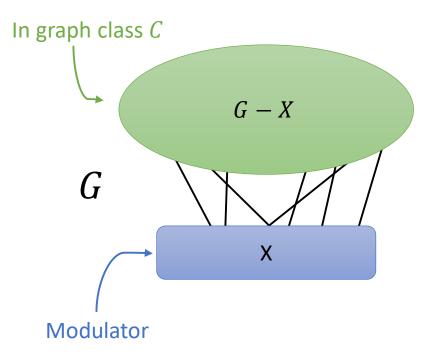


Results for Vertex Cover kernelization

Parameter	#Vertices of kernel	
Solution size	2 <i>k</i>	
Feedback Vertex Set	$O(\ell^3)$	[Jansen, Bodlaender, STACS 2011]
Solution size above LP	Polynomial	[Kratsch, Wahlström, FOCS 2012]
Odd Cycle Transversal	Polynomial	[Kratsch, Wahlström, FOCS 2012]
Modulator to <i>d</i> -quasiforest	$O(\ell^{3d+9})$	[Hols,Kratsch, IPEC 2017]
Modulator to pseudoforest	$O(\ell^{12})$	[Fomin, Strømme, WG 2016]
Modulator to degree 1 or 2	$O(\ell^5)$	[Majumdar et al., IPEC 2015]
Modulator to cluster graphs of bounded clique size	$O(\ell^d)$	[Majumdar et al., IPEC 2015]
Modulator to treedepth- η	$\ell^{2^{O(\eta^2)}}$	[Bougeret, Sau, IPEC 2017]

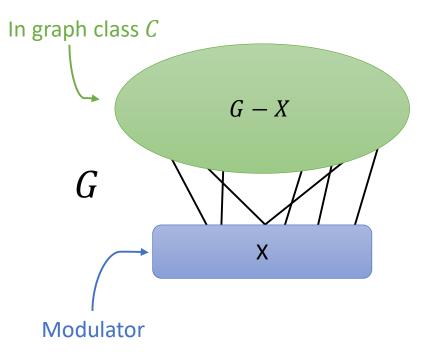
Results for Vertex Cover kernelization

Modulator to	#Vertices of kernel
Independent Set	2 <i>k</i>
Forest	$O(\ell^3)$
LP(G) = OPT(G)	Polynomial
Bipartite	Polynomial
<i>d</i> -quasiforest	$O(\ell^{3d+9})$
pseudoforest	$O(\ell^{12})$
degree 1 or 2	$O(\ell^5)$
cluster graphs of bounded clique size	$O(\ell^d)$
treedepth- η	$\ell^{2^{O(\eta^2)}}$



Results for Vertex Cover kernelization

Modulator to	#Vertices of kernel
Independent Set	2 <i>k</i>
Forest	$O(\ell^3)$
LP(G) = OPT(G)	Polynomial
Bipartite	Polynomial
<i>d</i> -quasiforest	$O(\ell^{3d+9})$
pseudoforest	$O(\ell^{12})$
degree 1 or 2	$O(\ell^5)$
cluster graphs of bounded clique size	$O(\ell^d)$
treedepth- η	$\ell^{2^{O(\eta^2)}}$
С	Depends on C
Elimination distance- η to C	Depends on C



Elimination Distance

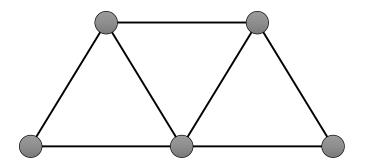
Let C be a graph class, elimination distance to C is $ed_C(G)$ is

- 0, if $G \in C$
- $\max ed_C(G_i)$ if G consists of connected components $G_1, G_2, ...$
- $\min_{v \in V(G)} ed_C(G v) + 1$ otherwise

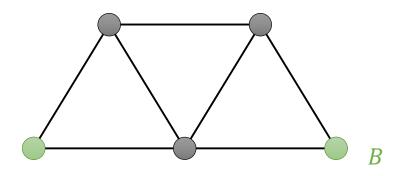
Gives corresponding elimination tree

 $ed_{IS}(G) = td(G) - 1$ when IS is the class containing only independent sets

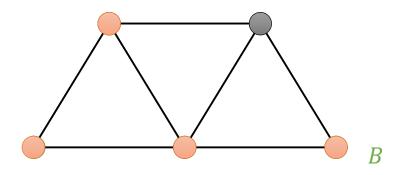
- Minimal Blocking Set if *B* is inclusion-wise minimal
 - $\beta(G)$: size of largest minimal blocking set in G
 - $\beta(C) = \max_{G \in C} \beta(G)$ for a graph class C (possible infinite)



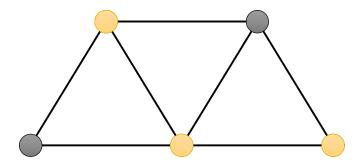
- Minimal Blocking Set if *B* is inclusion-wise minimal
 - $\beta(G)$: size of largest minimal blocking set in G
 - $\beta(C) = \max_{G \in C} \beta(G)$ for a graph class *C* (possible infinite)



- Minimal Blocking Set if *B* is inclusion-wise minimal
 - $\beta(G)$: size of largest minimal blocking set in G
 - $\beta(C) = \max_{G \in C} \beta(G)$ for a graph class C (possible infinite)



- Minimal Blocking Set if *B* is inclusion-wise minimal
 - $\beta(G)$: size of largest minimal blocking set in G
 - $\beta(C) = \max_{G \in C} \beta(G)$ for a graph class C (possible infinite)



- Minimal Blocking Set if *B* is inclusion-wise minimal
 - $\beta(G)$: size of largest minimal blocking set in G
 - $\beta(C) = \max_{G \in C} \beta(G)$ for a graph class C (possible infinite)

- Minimal Blocking Set if *B* is inclusion-wise minimal
 - $\beta(G)$: size of largest minimal blocking set in G
 - $\beta(C) = \max_{G \in C} \beta(G)$ for a graph class C (possible infinite)

С	β (C)
Path	2
Size-d cliques	d
Treedepth- η graphs	$2^{\eta-2} + 1$

Subset B of V(G) such that no optimal vertex cover fully contains B

- Minimal Blocking Set if *B* is inclusion-wise minimal
 - $\beta(G)$: size of largest minimal blocking set in G
 - $\beta(C) = \max_{G \in C} \beta(G)$ for a graph class *C* (possible infinite)

С	β (C)
Path	2
Size-d cliques	d
Treedepth- η graphs	$2^{\eta-2} + 1$

 $\beta(G) = 2$ for paths

Subset B of V(G) such that no optimal vertex cover fully contains B

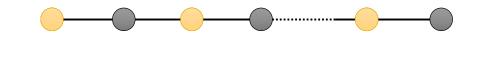
- Minimal Blocking Set if *B* is inclusion-wise minimal
 - $\beta(G)$: size of largest minimal blocking set in G
 - $\beta(C) = \max_{G \in C} \beta(G)$ for a graph class *C* (possible infinite)

С	β (C)
Path	2
Size-d cliques	d
Treedepth- η graphs	$2^{\eta-2} + 1$

 $\beta(G) = 2$ for paths

- Minimal Blocking Set if *B* is inclusion-wise minimal
 - $\beta(G)$: size of largest minimal blocking set in G
 - $\beta(C) = \max_{G \in C} \beta(G)$ for a graph class C (possible infinite)

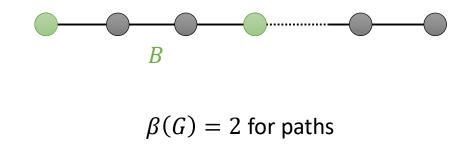
С	β (C)
Path	2
Size-d cliques	d
Treedepth- η graphs	$2^{\eta-2} + 1$



 $\beta(G) = 2$ for paths

- Minimal Blocking Set if *B* is inclusion-wise minimal
 - $\beta(G)$: size of largest minimal blocking set in G
 - $\beta(C) = \max_{G \in C} \beta(G)$ for a graph class *C* (possible infinite)

С	β (C)
Path	2
Size-d cliques	d
Treedepth- η graphs	$2^{\eta-2} + 1$

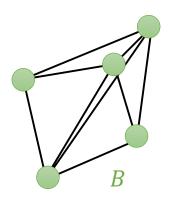


- Minimal Blocking Set if *B* is inclusion-wise minimal
 - $\beta(G)$: size of largest minimal blocking set in G
 - $\beta(C) = \max_{G \in C} \beta(G)$ for a graph class C (possible infinite)

С	β (C)
Path	2
Size-d cliques	d
Treedepth- η graphs	$2^{\eta-2} + 1$

- Minimal Blocking Set if *B* is inclusion-wise minimal
 - $\beta(G)$: size of largest minimal blocking set in G
 - $\beta(C) = \max_{G \in C} \beta(G)$ for a graph class C (possible infinite)

С	β (C)
Path	2
Size-d cliques	d
Treedepth- η graphs	$2^{\eta-2} + 1$



 $\beta(G) = d$ for cliques

Our results

Kernelization upper and lower bounds based on blocking sets

- No kernel of size $O(|X|^{\beta(C)-\varepsilon})$
 - unless $NP \subseteq coNP/poly$, for C robust
- Efficiently reduce the number of connected components in G X to $O(|X|^{\beta(C)})$

Blocking sets versus elimination distance

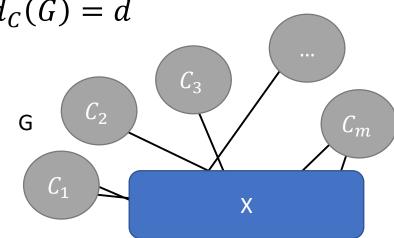
- Let C hereditary and robust, suppose G has $ed_C(G) = d$, then
 - $\beta(G) \le (\beta(C) 1)2^{d} + 1 \text{ if } \beta(C) \ge 2$
 - $\beta(G) \le 2^{d-1} + 1$ if $\beta(C) = 1$
 - Tight upper and lower bound

Kernelization

If Vertex Cover parameterized by modulator to C has a polynomial kernel

- So does Vertex Cover parameterized by a modulator to $ed_C(G) = d$
 - For all *d*, assuming *C* hereditary and robust

- d = 0: Directly use the polynomial kernel
- d > 0: Polynomial kernel implies $\beta(C)$ constant
 - Implies also $\gamma = \beta(G X)$ constant
- Reduce the number of connected components in G X to $O(|X|^{\gamma})$
- For every connected components of G X, add the root to X
- G X now has $ed_C(G X) < d$
 - Apply the induction hypothesis



If Vertex Cover parameterized by modulator to C has a polynomial kernel

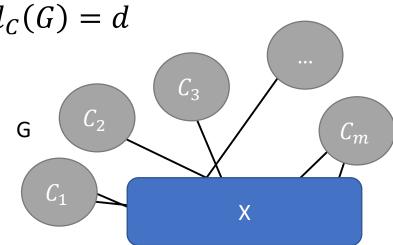
- So does Vertex Cover parameterized by a modulator to $ed_C(G) = d$
 - For all *d*, assuming *C* hereditary and robust

Proof (induction)

- d = 0: Directly use the polynomial kernel
- d > 0: Polynomial kernel implies $\beta(C)$ constant

• Implies also $\gamma = \beta(G - X)$ constant

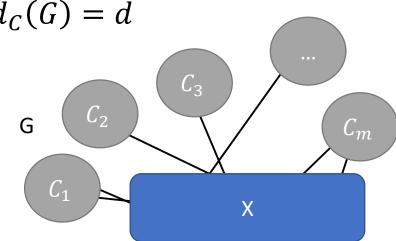
- Reduce the number of connected components in G X to $O(|X|^{\gamma})$
- For every connected components of G X, add the root to X
- G X now has $ed_C(G X) < d$
 - Apply the induction hypothesis



If Vertex Cover parameterized by modulator to C has a polynomial kernel

- So does Vertex Cover parameterized by a modulator to $ed_C(G) = d$
 - For all *d*, assuming *C* hereditary and robust

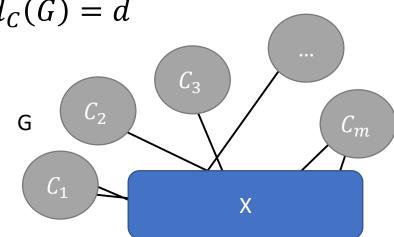
- d = 0: Directly use the polynomial kernel
- d > 0: Polynomial kernel implies $\beta(C)$ constant
 - Implies also $\gamma = \beta(G X)$ constant
- Reduce the number of connected components in G X to $O(|X|^{\gamma})$
- For every connected components of G X, add the root to X
- G X now has $ed_C(G X) < d$
 - Apply the induction hypothesis



If Vertex Cover parameterized by modulator to C has a polynomial kernel

- So does Vertex Cover parameterized by a modulator to $ed_C(G) = d$
 - For all *d*, assuming *C* hereditary and robust

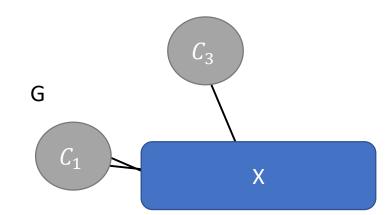
- d = 0: Directly use the polynomial kernel
- d > 0: Polynomial kernel implies $\beta(C)$ constant
 - Implies also $\gamma = \beta(G X)$ constant
- Reduce the number of connected components in G X to $O(|X|^{\gamma})$
- For every connected components of G X, add the root to X
- G X now has $ed_C(G X) < d$
 - Apply the induction hypothesis



If Vertex Cover parameterized by modulator to C has a polynomial kernel

- So does Vertex Cover parameterized by a modulator to $ed_C(G) = d$
 - For all *d*, assuming *C* hereditary and robust

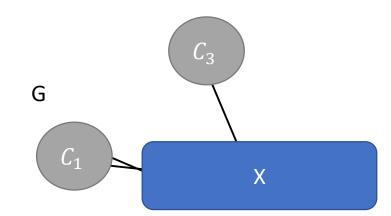
- d = 0: Directly use the polynomial kernel
- d > 0: Polynomial kernel implies $\beta(C)$ constant
 - Implies also $\gamma = \beta(G X)$ constant
- Reduce the number of connected components in G X to $O(|X|^{\gamma})$
- For every connected components of G X, add the root to X
- G X now has $ed_C(G X) < d$
 - Apply the induction hypothesis



If Vertex Cover parameterized by modulator to C has a polynomial kernel

- So does Vertex Cover parameterized by a modulator to $ed_C(G) = d$
 - For all *d*, assuming *C* hereditary and robust

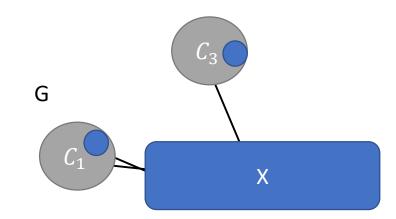
- d = 0: Directly use the polynomial kernel
- d > 0: Polynomial kernel implies $\beta(C)$ constant
 - Implies also $\gamma = \beta(G X)$ constant
- Reduce the number of connected components in G X to $O(|X|^{\gamma})$
- For every connected components of G X, add the root to X
- G X now has $ed_C(G X) < d$
 - Apply the induction hypothesis



If Vertex Cover parameterized by modulator to C has a polynomial kernel

- So does Vertex Cover parameterized by a modulator to $ed_C(G) = d$
 - For all *d*, assuming *C* hereditary and robust

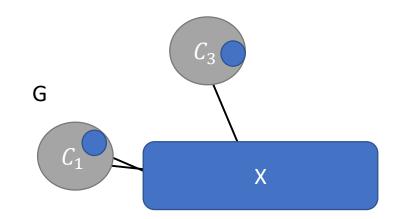
- d = 0: Directly use the polynomial kernel
- d > 0: Polynomial kernel implies $\beta(C)$ constant
 - Implies also $\gamma = \beta(G X)$ constant
- Reduce the number of connected components in G X to $O(|X|^{\gamma})$
- For every connected components of G X, add the root to X
- G X now has $ed_C(G X) < d$
 - Apply the induction hypothesis



If Vertex Cover parameterized by modulator to C has a polynomial kernel

- So does Vertex Cover parameterized by a modulator to $ed_C(G) = d$
 - For all *d*, assuming *C* hereditary and robust

- d = 0: Directly use the polynomial kernel
- d > 0: Polynomial kernel implies $\beta(C)$ constant
 - Implies also $\gamma = \beta(G X)$ constant
- Reduce the number of connected components in G X to $O(|X|^{\gamma})$
- For every connected components of G X, add the root to X
- G X now has $ed_C(G X) < d$
 - Apply the induction hypothesis



Generalizes existing kernels for Vertex Cover

• New parameter generalizes existing parameters!

In particular, we show that $OPT(G) = LP(G) + \ell$ implies that there is a modulator X of size at most $2\ell + 2$ such that LP(G - X) = OPT(G - X)

Theorem

If $\beta(C) = d$, we can reduce the number of components in G - X to $O(|X|^d)$

- Outputs G' and k' such that OPT(G) = OPT(G') + k'
- Runs in polynomial time (assuming C sufficiently nice)

Simple method ($O(|X|^{d+1})$ components)

- For all $S \subseteq X$ with $|S| \le d$
 - Mark |X| + 1 components where N(S) is blocking
- Remove unmarked components

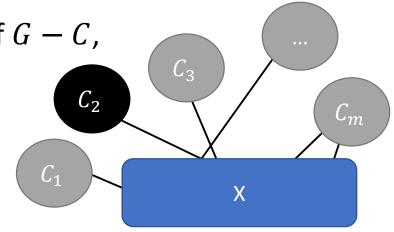
Simple method ($O(|X|^{d+1})$ components)

- For all $S \subseteq X$ with $|S| \le d$
 - Mark |X| + 1 components where N(S) is blocking
- Remove unmarked components

Correctness

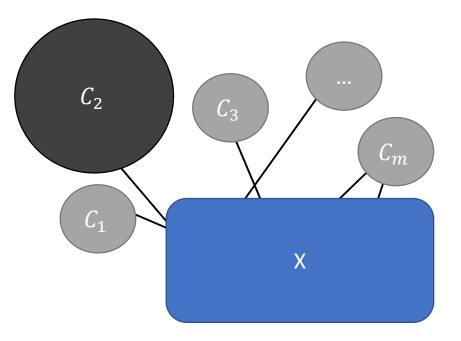
If *C* unmarked, then for any minimum vertex cover *Y* of G - C, there is a vertex cover *Y'* in *C*

- Such that $Y \cup Y'$ is a vertex cover of G
- And Y' has size OPT(C)



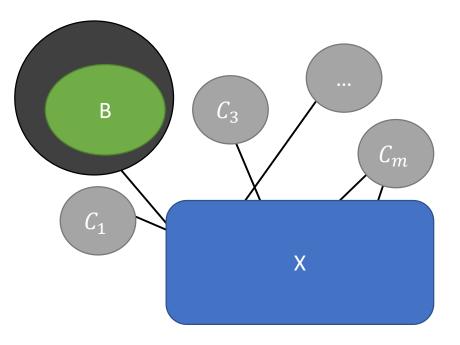
Proof by contradiction

- Sufficient to ensure that Y' contains B
 Problem: B could be blocking
- Let $B' \subseteq B$ minimal blocking set
- Let $B'' \subseteq X Y$ such that $B' \subseteq N(B'')$
- We marked > |X| components for B''
- They do not use local optimum
- *Y* is not a minimum vertex cover
 - Taking all of *X* and all local optima is better!



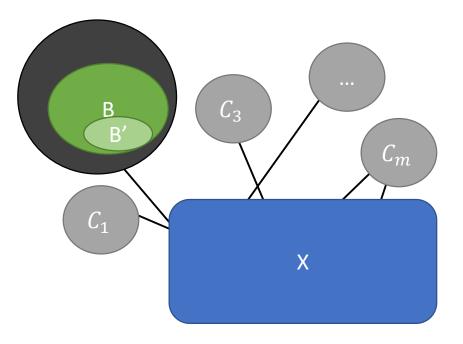
Proof by contradiction

- Sufficient to ensure that Y' contains B
 Problem: B could be blocking
- Let $B' \subseteq B$ minimal blocking set
- Let $B'' \subseteq X Y$ such that $B' \subseteq N(B'')$
- We marked > |X| components for B''
- They do not use local optimum
- *Y* is not a minimum vertex cover
 - Taking all of X and all local optima is better!



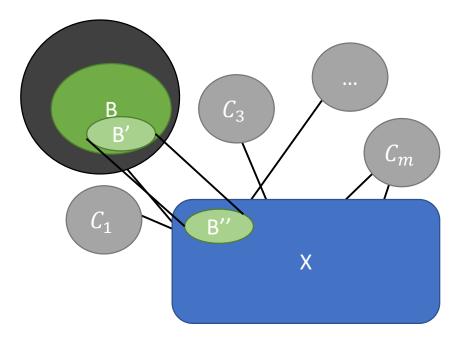
Proof by contradiction

- Sufficient to ensure that Y' contains B
 Problem: B could be blocking
- Let $B' \subseteq B$ minimal blocking set
- Let $B'' \subseteq X Y$ such that $B' \subseteq N(B'')$
- We marked > |X| components for B''
- They do not use local optimum
- *Y* is not a minimum vertex cover
 - Taking all of X and all local optima is better!



Proof by contradiction

- Sufficient to ensure that Y' contains B
 Problem: B could be blocking
- Let $B' \subseteq B$ minimal blocking set
- Let $B'' \subseteq X Y$ such that $B' \subseteq N(B'')$
- We marked > |X| components for B''
- They do not use local optimum
- *Y* is not a minimum vertex cover
 - Taking all of *X* and all local optima is better!



Theorem

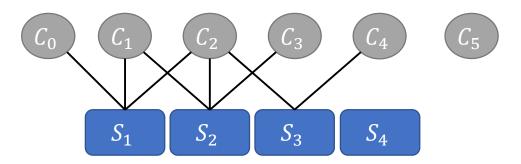
If $\beta(C) = d$, we can reduce the number of components in G - X to $O(|X|^d)$

- Outputs G' and k' such that OPT(G) = OPT(G') + k'
- Runs in polynomial time (assuming C sufficiently nice)

Improved method: "Crowns"

Create auxiliary bipartite graph on size-d subsets S of X and components of G - X

- Add connection if N(S) blocking in C
- Find a maximum matching
- Remove unmatched components



Reducing the number of components in G - X

Theorem

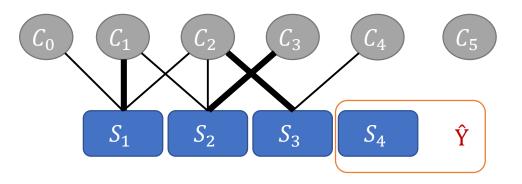
If $\beta(C) = d$, we can reduce the number of components in G - X to $O(|X|^d)$

- Outputs G' and k' such that OPT(G) = OPT(G') + k'
- Runs in polynomial time (assuming C sufficiently nice)

Improved method: "Crowns"

Create auxiliary bipartite graph on size-d subsets S of X and components of G - X

- Add connection if N(S) blocking in C
- Find a maximum matching
- Remove unmatched components



Reducing the number of components in G - X

Theorem

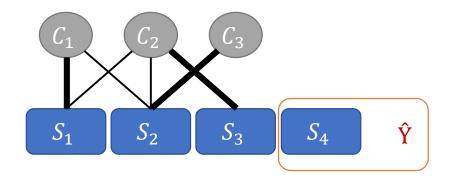
If $\beta(C) = d$, we can reduce the number of components in G - X to $O(|X|^d)$

- Outputs G' and k' such that OPT(G) = OPT(G') + k'
- Runs in polynomial time (assuming C sufficiently nice)

Improved method: "Crowns"

Create auxiliary bipartite graph on size-d subsets S of X and components of G - X

- Add connection if N(S) blocking in C
- Find a maximum matching
- Remove unmatched components



Blocking sets

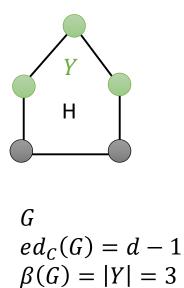
Let C hereditary and robust, there exists G with $ed_C(G) = d$ and

- $\beta(G) = (\beta(C) 1)2^{d} + 1 \text{ if } \beta(C) \ge 2$
- $\beta(G) = 2^{d-1} + 1$ if $\beta(C) = 1$

- d = 0: Take any graph G in C witnessing $\beta(C)$
- d > 0: We use the following construction • Size $2|Y| - 1 = 2((\beta(C) - 1)2^{d-1} + 1) - 1$

Size
$$2|Y| - 1 = 2((\beta(C) - 1)2^{d-1} + 1) - 1$$

= $(\beta(C) - 1)2^d + 1$



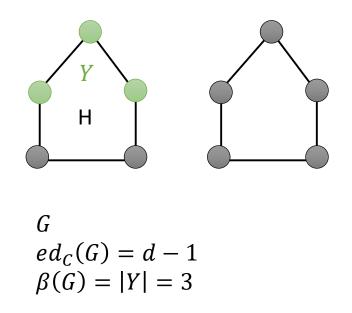
Let C hereditary and robust, there exists G with $ed_C(G) = d$ and

- $\beta(G) = (\beta(C) 1)2^{d} + 1 \text{ if } \beta(C) \ge 2$
- $\beta(G) = 2^{d-1} + 1$ if $\beta(C) = 1$

- d = 0: Take any graph G in C witnessing $\beta(C)$
- d > 0: We use the following construction

• Size
$$2|Y| - 1 = 2((\beta(C) - 1)2^{d-1} + 1) - 1$$

= $(\beta(C) - 1)2^d + 1$

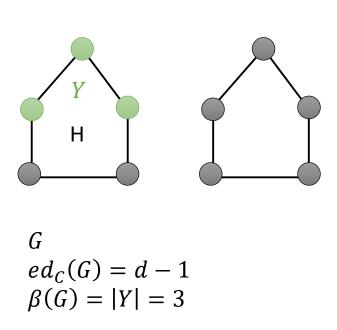


Let C hereditary and robust, there exists G with $ed_C(G) = d$ and

- $\beta(G) = (\beta(C) 1)2^{d} + 1 \text{ if } \beta(C) \ge 2$
- $\beta(G) = 2^{d-1} + 1$ if $\beta(C) = 1$

We show the first result by induction

- d = 0: Take any graph G in C witnessing $\beta(C)$
- d > 0: We use the following construction • Size $2|Y| - 1 = 2((\beta(C) - 1)2^{d-1} + 1) - 1$ $= (\beta(C) - 1)2^d + 1$



Optimum vertex cover increases by at most one

Let C hereditary and robust, there exists G with $ed_C(G) = d$ and

- $\beta(G) = (\beta(C) 1)2^{d} + 1 \text{ if } \beta(C) \ge 2$
- $\beta(G) = 2^{d-1} + 1$ if $\beta(C) = 1$

- d = 0: Take any graph G in C witnessing $\beta(C)$
- d > 0: We use the following construction

• Size
$$2|Y| - 1 = 2((\beta(C) - 1)2^{d-1} + 1) - 1$$

= $(\beta(C) - 1)2^d + 1$

	Optimum
	vertex cover
	increases by at
	most one
	\
Т н Т Т	T
G	
$ed_C(G) = d - 1$	
$\beta(G) = Y = 3$	

Let C hereditary and robust, there exists G with $ed_C(G) = d$ and

- $\beta(G) = (\beta(C) 1)2^{d} + 1 \text{ if } \beta(C) \ge 2$
- $\beta(G) = 2^{d-1} + 1$ if $\beta(C) = 1$

- d = 0: Take any graph G in C witnessing $\beta(C)$
- d > 0: We use the following construction

• Size
$$2|Y| - 1 = 2((\beta(C) - 1)2^{d-1} + 1) - 1$$

= $(\beta(C) - 1)2^d + 1$

	Optimum vertex cover increases by at most one
Н	
G $ed_{C}(G) \leq d$ $\beta(G) = 2 Y - 1 = 5$	5

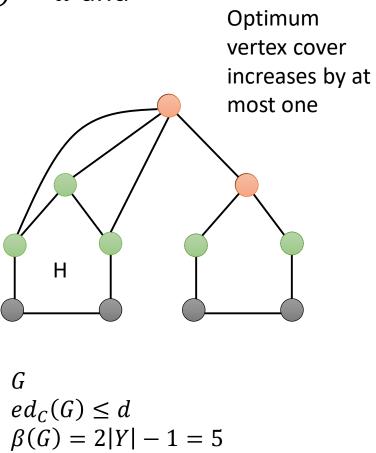
Let C hereditary and robust, there exists G with $ed_C(G) = d$ and

- $\beta(G) = (\beta(C) 1)2^{d} + 1 \text{ if } \beta(C) \ge 2$
- $\beta(G) = 2^{d-1} + 1$ if $\beta(C) = 1$

- d = 0: Take any graph G in C witnessing $\beta(C)$
- d > 0: We use the following construction

• Size
$$2|Y| - 1 = 2((\beta(C) - 1)2^{d-1} + 1) - 1$$

= $(\beta(C) - 1)2^d + 1$



Upper bound

Let C hereditary and robust, suppose G has $ed_C(G) = d$, then

- $\beta(G) \leq (\beta(C) 1)2^d + 1$ if $\beta(C) \geq 2$
- $\beta(G) \leq 2^{d-1} + 1$ if $\beta(C) = 1$

Proof idea

- If *r* root of decomposition
- Minimal blocking set interacts with few components of G-r
 - Similar to treedepth case

Summary

Link between bounded blocking set size and polynomial kernels

- Bounded blocking set size necessary
- But not sufficient

Polynomial kernel parameterized by modulator to C implies polynomial kernel parameterized by modulator to $ed_C = d$.

- Under mild assumptions on C
- Generalizes known vertex cover kernels
- Tight analysis of blocking set size of graphs where $ed_C(G) = d$

Summary

Link between bounded blocking set size and polynomial kernels

- Bounded blocking set size necessary
- But not sufficient

Polynomial kernel parameterized by modulator to C implies polynomial kernel parameterized by modulator to $ed_C = d$.

- Under mild assumptions on C
- Generalizes known vertex cover kernels
- Tight analysis of blocking set size of graphs where $ed_C(G) = d$

THANK YOU