
Elimination Distances, Blocking Sets, and 
Kernels for Vertex Cover

Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse



Vertex Cover Kernelization

Kernel

Polynomial time algorithm, that given graph 𝐺 with parameter ℓ, asking for vertex 
cover of size 𝑘, outputs

𝐺′, 𝑘′, ℓ′ such that

• 𝐺′ has a vertex cover of size 𝑘′ ⇔ 𝐺 has a vertex cover of size 𝑘

• 𝐺′ ≤ 𝑓(ℓ), ℓ′ ≤ 𝑓(ℓ)

G

ℓ

G’
ℓ’

Poly-time



Results for Vertex Cover kernelization

Parameter #Vertices of kernel

Solution size 2𝑘

Feedback Vertex Set 𝑂(ℓ3) [Jansen, Bodlaender, STACS 2011]

Solution size above LP Polynomial [Kratsch, Wahlström, FOCS 2012]

Odd Cycle Transversal Polynomial [Kratsch, Wahlström, FOCS 2012]

Modulator to 𝑑-quasiforest 𝑂(ℓ3𝑑+9) [Hols,Kratsch, IPEC 2017]

Modulator to pseudoforest 𝑂(ℓ12) [Fomin, Strømme, WG 2016]

Modulator to degree 1 or 2 𝑂(ℓ5) [Majumdar et al., IPEC 2015]

Modulator to cluster graphs 
of bounded clique size

𝑂(ℓ𝑑) [Majumdar et al., IPEC 2015]

Modulator to treedepth-𝜂 ℓ2
𝑂(𝜂2) [Bougeret, Sau, IPEC 2017]
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Elimination Distance

Let 𝐶 be a graph class, elimination distance to 𝐶 is 𝑒𝑑𝐶 𝐺 is

• 0, if 𝐺 ∈ 𝐶

• max 𝑒𝑑𝐶(𝐺𝑖) if 𝐺 consists of connected components 𝐺1, 𝐺2, …

• min
𝑣∈𝑉(𝐺)

𝑒𝑑𝐶 𝐺 − 𝑣 + 1 otherwise

Gives corresponding elimination tree 

𝑒𝑑𝐼𝑆 𝐺 = 𝑡𝑑 𝐺 − 1 when 𝐼𝑆 is the class containing only independent sets



Blocking sets

Subset 𝐵 of 𝑉(𝐺) such that no optimal vertex cover fully contains 𝐵

• Minimal Blocking Set if 𝐵 is inclusion-wise minimal
• 𝛽(𝐺): size of largest minimal blocking set in 𝐺

• 𝛽 𝐶 = max
𝐺∈𝐶

𝛽(𝐺) for a graph class 𝐶 (possible infinite)
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Blocking sets

Subset 𝐵 of 𝑉(𝐺) such that no optimal vertex cover fully contains 𝐵

• Minimal Blocking Set if 𝐵 is inclusion-wise minimal
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𝐵

𝛽 𝐺 = 𝑑 for cliques



Our results

Kernelization upper and lower bounds based on blocking sets

• No kernel of size 𝑂( 𝑋 𝛽 𝐶 −𝜀)
• unless 𝑁𝑃 ⊆ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦, for 𝐶 robust

• Efficiently reduce the number of connected components in 𝐺 − 𝑋 to 𝑂 𝑋 𝛽 𝐶

Blocking sets versus elimination distance

• Let 𝐶 hereditary and robust, suppose 𝐺 has 𝑒𝑑𝐶 𝐺 = 𝑑, then
• 𝛽 𝐺 ≤ 𝛽 𝐶 − 1 2d + 1 if 𝛽 𝐶 ≥ 2

• 𝛽 𝐺 ≤ 2𝑑−1 + 1 if 𝛽 𝐶 = 1

• Tight upper and lower bound



Kernelization



Consequences

If Vertex Cover parameterized by modulator to 𝐶 has a polynomial kernel

• So does Vertex Cover parameterized by a modulator to 𝑒𝑑𝐶 𝐺 = 𝑑
• For all 𝑑, assuming 𝐶 hereditary and robust

Proof (induction)

• 𝑑 = 0: Directly use the polynomial kernel

• 𝑑 > 0: Polynomial kernel implies 𝛽 𝐶 constant
• Implies also 𝛾 = 𝛽(𝐺 − 𝑋) constant

• Reduce the number of connected components in 𝐺 − 𝑋 to 𝑂( 𝑋 𝛾)

• For every connected components of 𝐺 − 𝑋, add the root to 𝑋

• 𝐺 − 𝑋 now has 𝑒𝑑𝐶 𝐺 − 𝑋 < 𝑑
• Apply the induction hypothesis
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Consequences

Generalizes existing kernels for Vertex Cover

• New parameter generalizes existing parameters!

In particular, we show that OPT G = 𝐿𝑃 𝐺 + ℓ implies that there is a modulator 
𝑋 of size at most 2ℓ + 2 such that 𝐿𝑃 𝐺 − 𝑋 = 𝑂𝑃𝑇(𝐺 − 𝑋)



Reducing the number of components in 𝐺 − 𝑋

Theorem

If 𝛽 𝐶 = 𝑑, we can reduce the number of components in 𝐺 − 𝑋 to 𝑂( 𝑋 𝑑)

• Outputs 𝐺′ and 𝑘′ such that 𝑂𝑃𝑇 𝐺 = 𝑂𝑃𝑇 𝐺′ + 𝑘′

• Runs in polynomial time (assuming 𝐶 sufficiently nice)

Simple method (𝑂( 𝑋 𝑑+1) components)

• For all 𝑆 ⊆ 𝑋 with 𝑆 ≤ 𝑑
• Mark 𝑋 + 1 components where 𝑁(𝑆) is blocking

• Remove unmarked components



Reducing the number of components in 𝐺 − 𝑋

Simple method (𝑂( 𝑋 𝑑+1) components)

• For all 𝑆 ⊆ 𝑋 with 𝑆 ≤ 𝑑
• Mark 𝑋 + 1 components where 𝑁(𝑆) is blocking

• Remove unmarked components

Correctness

If 𝐶 unmarked, then for any minimum vertex cover 𝑌 of 𝐺 − 𝐶, 

there is a vertex cover 𝑌′ in 𝐶

• Such that 𝑌 ∪ 𝑌′ is a vertex cover of 𝐺

• And 𝑌′ has size 𝑂𝑃𝑇(𝐶)

𝐶2

𝐶3

𝐶1

…

𝐶𝑚
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Reducing the number of components in 𝐺 − 𝑋

Proof by contradiction

Consider B = 𝑁 𝑋 − 𝑌 ∩ 𝐶

• Sufficient to ensure that 𝑌′ contains 𝐵

Problem: 𝐵 could be blocking

• Let 𝐵′ ⊆ 𝐵 minimal blocking set

• Let 𝐵′′ ⊆ 𝑋 − 𝑌 such that 𝐵′ ⊆ 𝑁(𝐵′′)

• We marked > |𝑋| components for 𝐵′′

• They do not use local optimum

• 𝑌 is not a minimum vertex cover
• Taking all of 𝑋 and all local optima is better!

𝐶2 𝐶3

𝐶1

…

𝐶𝑚
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Reducing the number of components in 𝐺 − 𝑋

Theorem

If 𝛽 𝐶 = 𝑑, we can reduce the number of components in 𝐺 − 𝑋 to 𝑂( 𝑋 𝑑)

• Outputs 𝐺′ and 𝑘′ such that 𝑂𝑃𝑇 𝐺 = 𝑂𝑃𝑇 𝐺′ + 𝑘′

• Runs in polynomial time (assuming 𝐶 sufficiently nice)

Improved method: “Crowns”

Create auxiliary bipartite graph on size-𝑑 subsets 𝑆 of 𝑋 and components of 𝐺 − 𝑋

• Add connection if 𝑁(𝑆) blocking in 𝐶
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Lower bound
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• 𝛽 𝐺 = 𝛽 𝐶 − 1 2d + 1 if 𝛽 𝐶 ≥ 2

• 𝛽 𝐺 = 2𝑑−1 + 1 if 𝛽 𝐶 = 1

We show the first result by induction

• 𝑑 = 0: Take any graph 𝐺 in 𝐶 witnessing 𝛽(𝐶)

• 𝑑 > 0: We use the following construction

• Size 2 𝑌 − 1 = 2 𝛽 𝐶 − 1 2𝑑−1 + 1 − 1

= 𝛽 𝐶 − 1 2𝑑 + 1
𝐺
𝑒𝑑𝐶 𝐺 = 𝑑 − 1
𝛽 𝐺 = 𝑌 = 3

𝑌
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Upper bound

Let 𝐶 hereditary and robust, suppose 𝐺 has 𝑒𝑑𝐶 𝐺 = 𝑑, then

• 𝛽 𝐺 ≤ 𝛽 𝐶 − 1 2d + 1 if 𝛽 𝐶 ≥ 2

• 𝛽 𝐺 ≤ 2𝑑−1 + 1 if 𝛽 𝐶 = 1

Proof idea

• If 𝑟 root of decomposition

• Minimal blocking set interacts with few components of 𝐺 − 𝑟
• Similar to treedepth case



Summary

Link between bounded blocking set size and polynomial kernels

• Bounded blocking set size necessary

• But not sufficient

Polynomial kernel parameterized by modulator to 𝐶 implies polynomial kernel 
parameterized by modulator to 𝑒𝑑𝐶 = 𝑑.

• Under mild assumptions on 𝐶

• Generalizes known vertex cover kernels

• Tight analysis of blocking set size of graphs where 𝑒𝑑𝐶 𝐺 = 𝑑
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