
Polynomial kernels for hitting forbidden minors
using constant treedepth modulators

Astrid Pieterse

TACO day 2018

joint work with Bart M. P. Jansen

April 5, 2018

Introduction

Kernelization (meta) theorems

I Obtain polynomial kernels for a wide variety of problems

I Small parameter

Solution size may be large

I Focus on structural parameters

Introduction

Courcelle’s Theorem
All problems that can be expressed in a certain logic are FPT when
parameterized by treewidth

Obtain similar results for kernelization?
I Dominating Set has no polynomial kernel when

parameterized by Vertex Cover [Dom et al. ICALP’09]

I Large structural parameter

I But is easy to express in most types of logic

Focus on another very general problem

Introduction

Courcelle’s Theorem
All problems that can be expressed in a certain logic are FPT when
parameterized by treewidth

Obtain similar results for kernelization?
I Dominating Set has no polynomial kernel when

parameterized by Vertex Cover [Dom et al. ICALP’09]

I Large structural parameter

I But is easy to express in most types of logic

Focus on another very general problem

F-Minor-Free Deletion

Let F be a set of connected graphs

Definition

Input A graph G and integer k
Question Does there exist S ⊆ V (G) with |S | ≤ k , such that

no graph in F is a minor of G − S?

We sometimes say S breaks F

Generalizes

I F = {K3}: Feedback Vertex Set

I F = {K2}: Vertex Cover

I F = {K3,3,K5}: Making a graph planar by vertex-deletions

F-Minor-Free Deletion

Let F be a set of connected graphs

Definition

Input A graph G and integer k
Question Does there exist S ⊆ V (G) with |S | ≤ k , such that

no graph in F is a minor of G − S?

We sometimes say S breaks F

Generalizes

I F = {K3}: Feedback Vertex Set

I F = {K2}: Vertex Cover

I F = {K3,3,K5}: Making a graph planar by vertex-deletions

Graph minors

H is a minor of G if H can be obtained by a sequence of

I Edge contractions

I Edge/vertex removals

G

Graph minors

H is a minor of G if H can be obtained by a sequence of

I Edge contractions

I Edge/vertex removals

Graph minors

H is a minor of G if H can be obtained by a sequence of

I Edge contractions

I Edge/vertex removals

Graph minors

H is a minor of G if H can be obtained by a sequence of

I Edge contractions

I Edge/vertex removals

Graph minors

H is a minor of G if H can be obtained by a sequence of

I Edge contractions

I Edge/vertex removals

Graph minors

H is a minor of G if H can be obtained by a sequence of

I Edge contractions

I Edge/vertex removals

Graph minors

H is a minor of G if H can be obtained by a sequence of

I Edge contractions

I Edge/vertex removals

H

Kernelization

Efficiently reduce the size of an input instance

I Resulting size depends on parameter value

I Provably small (polynomial in k)

I Provably correct

Polynomial kernel

Polynomial-time algorithm that, given instance (X , k), outputs
(X ′, k ′)

I |X ′| and k ′ are bounded by f (k)

I X is a yes-instance if and only if X ′ is a yes-instance

Kernelization

Efficiently reduce the size of an input instance

I Resulting size depends on parameter value

I Provably small (polynomial in k)

I Provably correct

Polynomial kernel

Polynomial-time algorithm that, given instance (X , k), outputs
(X ′, k ′)

I |X ′| and k ′ are bounded by f (k)

I X is a yes-instance if and only if X ′ is a yes-instance

Parameter: modulator

Many problems are easy for some simple graph class G
I Trees, cliques, paths, independent sets, forests, . . .

Complexity measure for graphs

I Number of vertices we need to remove until G ∈ G
I Also called a modulator

X

Parameter: modulator to constant treedepth

X is a treedepth-η modulator when td(G − X) ≤ η
I η is considered a fixed constant

Parameter: |X | for optimal X

F-Minor-Free Deletion is easy on graphs of constant
treedepth

I Polynomial-time solvable

Treedepth

td(G) is the minimum depth of any treedepth decomposition

I Tree T on all vertices of G

I Any edge in G is between children/ancestors in T

Example of treedepth 3

G T
r

For any graph G , tw(G) ≤ td(G)

Treedepth

td(G) is the minimum depth of any treedepth decomposition

I Tree T on all vertices of G

I Any edge in G is between children/ancestors in T

Treedepth of a path is logarithmic

G T

For any graph G , tw(G) ≤ td(G)

Treedepth

td(G) is the minimum depth of any treedepth decomposition

I Tree T on all vertices of G

I Any edge in G is between children/ancestors in T

Treedepth of a path is logarithmic

G T

For any graph G , tw(G) ≤ td(G)

Previous work

Parameterized by solution size

I Whether a polynomial kernel exists is an open problem

Parameterized by treewidth

I Vertex Cover has no polynomial kernel [Bodlaender et.al. 2009]

Parameterized by pseudo forest modulator

I Feedback Vertex Set has a polynomial kernel [Jansen et al. 2014]

Parameterized by d-quasi forest modulator

I Vertex Cover has a polynomial kernel [Hols,Kratsch IPEC’17]

Previous work

Parameterized by treewidth-η modulator [Jansen,Bodlaender STACS’11]

I Polynomial kernel for Vertex Cover for η = 1

I No polynomial kernel for Vertex Cover for η ≥ 2

Parameterized by treedepth-η modulator
I Polynomial kernel for Vertex Cover [Bougeret,Sau IPEC’17]

I Kernelization of Feedback Vertex Set left open

Our results

Let F be a set of connected graphs

Theorem

F-Minor-Free Deletion has a polynomial kernel
parameterized by a treedepth-η modulator

I Kernel of size O(|X |g(η,F)) for some function g

I Resolves the question about FVS

Lower bound

Vertex Cover parameterized by a treedepth-η modulator has
no kernel of size O(|X |2η−4−ε), unless NP ⊆ coNP/poly

I g is exponential in η, and this cannot be avoided

Our results

Let F be a set of connected graphs

Theorem

F-Minor-Free Deletion has a polynomial kernel
parameterized by a treedepth-η modulator

I Kernel of size O(|X |g(η,F)) for some function g

I Resolves the question about FVS

Lower bound

Vertex Cover parameterized by a treedepth-η modulator has
no kernel of size O(|X |2η−4−ε), unless NP ⊆ coNP/poly

I g is exponential in η, and this cannot be avoided

Kernel for F -Minor-Free Deletion

Kernel: general idea

Given G with modulator X

I If X not given, use approximation

First reduce the number of connected components of G − X

I Components could still be large

Then apply induction on η

Lemma

There is a polynomial-time algorithm that transforms G into
induced subgraph G ′, and returns an integer ∆ such that

I opt(G ′) + ∆ = opt(G)

I G ′ − X has at most |X |O(1) connected components

Kernel: general idea

Given G with modulator X

I If X not given, use approximation

First reduce the number of connected components of G − X

I Components could still be large

Then apply induction on η

Lemma

There is a polynomial-time algorithm that transforms G into
induced subgraph G ′, and returns an integer ∆ such that

I opt(G ′) + ∆ = opt(G)

I G ′ − X has at most |X |O(1) connected components

Kernel: using Lemma

Theorem

F-Minor-Free Deletion has a polynomial kernel
parameterized by a treedepth-η modulator

We do induction on η, using the Lemma

Base case
If η = 1, every connected component is a single vertex

I Given G and budget k , apply lemma to obtain G ′ and ∆

I Let the kernel be G ′ with budget k −∆

I G ′ has at most |X |+ |X |O(1) = |X |O(1) vertices

Kernel: using Lemma

Theorem

F-Minor-Free Deletion has a polynomial kernel
parameterized by a treedepth-η modulator

We do induction on η, using the Lemma

Base case
If η = 1, every connected component is a single vertex

I Given G and budget k , apply lemma to obtain G ′ and ∆

I Let the kernel be G ′ with budget k −∆

I G ′ has at most |X |+ |X |O(1) = |X |O(1) vertices

X

Kernel: using Lemma

Step: η > 1
Apply lemma, find G ′ with only few components in G ′ − X
I For each component of G ′ − X , select root vertex r

I Can be found efficiently

I Add r to X , obtain X ′

Now X ′ is a treedepth-(η − 1) modulator

I |X ′| = |X |O(1)

Apply IH with X ′

I Gives kernel of size |X ′|O(1) = |X |O(1)

X

Kernel: using Lemma

Step: η > 1
Apply lemma, find G ′ with only few components in G ′ − X
I For each component of G ′ − X , select root vertex r

I Can be found efficiently

I Add r to X , obtain X ′

Now X ′ is a treedepth-(η − 1) modulator

I |X ′| = |X |O(1)

Apply IH with X ′

I Gives kernel of size |X ′|O(1) = |X |O(1)

X

Kernel: using Lemma

Step: η > 1
Apply lemma, find G ′ with only few components in G ′ − X
I For each component of G ′ − X , select root vertex r

I Can be found efficiently

I Add r to X , obtain X ′

Now X ′ is a treedepth-(η − 1) modulator

I |X ′| = |X |O(1)

Apply IH with X ′

I Gives kernel of size |X ′|O(1) = |X |O(1)

X

Kernel: using Lemma

Step: η > 1
Apply lemma, find G ′ with only few components in G ′ − X
I For each component of G ′ − X , select root vertex r

I Can be found efficiently

I Add r to X , obtain X ′

Now X ′ is a treedepth-(η − 1) modulator

I |X ′| = |X |O(1)

Apply IH with X ′

I Gives kernel of size |X ′|O(1) = |X |O(1)

X ′

Kernel: using Lemma

Step: η > 1
Apply lemma, find G ′ with only few components in G ′ − X
I For each component of G ′ − X , select root vertex r

I Can be found efficiently

I Add r to X , obtain X ′

Now X ′ is a treedepth-(η − 1) modulator

I |X ′| = |X |O(1)

Apply IH with X ′

I Gives kernel of size |X ′|O(1) = |X |O(1)

X ′

Kernel: using Lemma

Step: η > 1
Apply lemma, find G ′ with only few components in G ′ − X
I For each component of G ′ − X , select root vertex r

I Can be found efficiently

I Add r to X , obtain X ′

Now X ′ is a treedepth-(η − 1) modulator

I |X ′| = |X |O(1)

Apply IH with X ′

I Gives kernel of size |X ′|O(1) = |X |O(1)

X ′

Kernel: using Lemma

Step: η > 1
Apply lemma, find G ′ with only few components in G ′ − X
I For each component of G ′ − X , select root vertex r

I Can be found efficiently

I Add r to X , obtain X ′

Now X ′ is a treedepth-(η − 1) modulator

I |X ′| = |X |O(1)

Apply IH with X ′

I Gives kernel of size |X ′|O(1) = |X |O(1)

Theorem

F-Minor-free Deletion has a polynomial kernel
parameterized by a treedepth-η modulator

using

Lemma

There is a polynomial-time algorithm that transforms G into
induced subgraph G ′, and returns an integer ∆ such that

I opt(G ′) + ∆ = opt(G)

I G ′ − X has at most |X |O(1) connected components

Towards a proof sketch of the Lemma

Example: F = {K3}.
I Feedback Vertex Set (abbreviated as FVS)

Try to remove connected components of G − X

I Exists an FVS in G [C] disconnecting C from X
I Remove C
I Reduce budget by opt(C)

X

C

Towards a proof sketch of the Lemma

Example: F = {K3}.
I Feedback Vertex Set (abbreviated as FVS)

Try to remove connected components of G − X

I Exists an FVS in G [C] disconnecting C from X
I Remove C
I Reduce budget by opt(C)

X

C
opt(C)

Towards a proof sketch of the Lemma

Example: F = {K3}.
I Feedback Vertex Set (abbreviated as FVS)

Try to remove connected components of G − X

I Exists an FVS in G [C] disconnecting C from X
I Remove C
I Reduce budget by opt(C)

X

Towards a proof sketch of the Lemma

Example: F = {K3}.
I Feedback Vertex Set (abbreviated as FVS)

Try to remove connected components of G − X

I Exists an FVS in G [C] disconnecting C from X
I Remove C
I Reduce budget by opt(C)

X

Solutions in G : property

Let S be an optimal Feedback Vertex Set in G

I Also works if S is an F-deletion

Lemma

There exist ≤ |X | components C in G − X such that

I S is not locally optimal in C

Any optimal FVS is locally optimal for most components!

X

Solutions in G : property

Let S be an optimal Feedback Vertex Set in G

I Also works if S is an F-deletion

Lemma

There exist ≤ |X | components C in G − X such that

I S is not locally optimal in C

Any optimal FVS is locally optimal for most components!

X

Solutions in G : property

Let S be an optimal Feedback Vertex Set in G

I Also works if S is an F-deletion

Lemma

There exist ≤ |X | components C in G − X such that

I S is not locally optimal in C

Any optimal FVS is locally optimal for most components!

X

Solutions in G : property

Let S be an optimal Feedback Vertex Set in G

I Also works if S is an F-deletion

Lemma

There exist ≤ |X | components C in G − X such that

I S is not locally optimal in C

Any optimal FVS is locally optimal for most components!

X

Removing components of G − X

Consider which x x ′-connections are made by C for x , x ′ ∈ X

I After removing some optimal FVS

No optimal FVS breaks u v in C

u
v

C

x
w

Removing components of G − X

Consider which x x ′-connections are made by C for x , x ′ ∈ X

I After removing some optimal FVS

Some optimal FVS breaks x v and x u in C

u
v

C

x
w

Removing components of G − X

Suppose opt(C) never breaks u v , v w ,u w ,w x ,. . .
I Select a number of representative components

I Mark |X |c other components that do not break u v
I Mark |X |c other components that do not break v w
I . . .

I Remove C , decrease budget by opt(C)

u
v

C

x
w X

G

· · · · · ·

Removing components of G − X

Suppose C was removed by this rule

I If S is a FVS in G ′, S ∪ SC is a FVS in G

u
v

C

x
w X

G

· · · · · ·

Removing components of G − X

Suppose C was removed by this rule

I If S is a FVS in G ′, S ∪ SC is a FVS in G

u
v

x
w X

G ′

C
· · · · · ·

Removing components of G − X

Suppose C was removed by this rule

I If S is a FVS in G ′, S ∪ SC is a FVS in G

u
v

x
w X

G ′

C
· · · · · ·

S

Removing components of G − X

Suppose C was removed by this rule

I If S is a FVS in G ′, S ∪ SC is a FVS in G

X − S

u
v

x
w

G ′ − S

C
· · · · · ·

Removing components of G − X

Suppose C was removed by this rule

I If S is a FVS in G ′, S ∪ SC is a FVS in G

u
v

C

x
w X − S

G − (S ∪ SC)

· · · · · ·

Removing components of G − X

Suppose C was removed by this rule

I If S is a FVS in G ′, S ∪ SC is a FVS in G

u
v

C

x
w X − S

G − (S ∪ SC)

· · · · · ·

Removing components of G − X

Suppose C was removed by this rule

I If S is a FVS in G ′, S ∪ SC is a FVS in G

u
v

C

x
w

· · ·
Selected for u vSelected for x w

· · ·

X − S

G − (S ∪ SC)

Removing components of G − X

Suppose C was removed by this rule

I If S is a FVS in G ′, S ∪ SC is a FVS in G

u
v

C

x
w

· · ·· · ·
x w remains u v remains

X − S

G − (S ∪ SC)

Removing components of G − X

Suppose C was removed by this rule

I If S is a FVS in G ′, S ∪ SC is a FVS in G

u
v

C

x
w

· · ·· · ·
x w remains u v remains

X − S

G − (S ∪ SC)

Removing components of G − X

Suppose C was removed by this rule

I If S is a FVS in G ′, S ∪ SC is a FVS in G

u
v

C

x
w

· · ·· · ·
x w remains u v remains

X − S

G − (S ∪ SC)

Removing components of G − X

Suppose C was removed by this rule

I If S is a FVS in G ′, S ∪ SC is a FVS in G

u
v

C

x
w

· · ·· · ·
x w remains u v remains

X − S

G − (S ∪ SC)

Removing components of G − X

Suppose C was removed by this rule

I If S is a FVS in G ′, S ∪ SC is a FVS in G

X − S

u
v

x
w

· · ·· · ·

G ′ − S

C

Removing components of G − X : rules so far

Cases we handled

I Some optimal FVS in C breaks all connections of C to X
I Any optimal FVS in C leaves connections u v ,v w ,. . .

I and no others

Any other options to consider?

Removing components of G − X : rules so far

Cases we handled

I Some optimal FVS in C breaks all connections of C to X
I Any optimal FVS in C leaves connections u v ,v w ,. . .

I and no others

Any other options to consider?

Classifying components

I Some solution may break u v and v w

I Another breaks u w and u v

I ...

u v
w

For each set L of possible connections, indicate if there exists an
optimal FVS in C that breaks all connections in L.

Classifying components

I Some solution may break u v and v w

I Another breaks u w and u v

I ...

u v
w

For each set L of possible connections, indicate if there exists an
optimal FVS in C that breaks all connections in L.

Classifying components

I Some solution may break u v and v w

I Another breaks u w and u v

I ...

u v
w

For each set L of possible connections, indicate if there exists an
optimal FVS in C that breaks all connections in L.

Classifying components

I Some solution may break u v and v w

I Another breaks u w and u v

I ...

u v
w

For each set L of possible connections, indicate if there exists an
optimal FVS in C that breaks all connections in L.

Classifying components

I Some solution may break u v and v w

I Another breaks u w and u v

I ...

u v
w

For each set L of possible connections, indicate if there exists an
optimal FVS in C that breaks all connections in L.

Classifying components

I Some solution may break u v and v w

I Another breaks u w and u v

I ...

u v
w

For each set L of possible connections, indicate if there exists an
optimal FVS in C that breaks all connections in L.

Classifying components

I Some solution may break u v and v w

I Another breaks u w and u v

I ...

u v
w

For each set L of possible connections, indicate if there exists an
optimal FVS in C that breaks all connections in L.

Removing components of G − X : using classification

Let L = {u x , u w , x w}
I Suppose no optimal FVS in C breaks all connections in L

I but any proper subset of L can be broken

I If there are many other such components
I Remove C , decrease budget by opt(C).

u
v

C

x
w X

G

.

Removing components of G − X : using classification

Let L = {u x , u w , x w}
I Suppose no optimal FVS in C breaks all connections in L

I but any proper subset of L can be broken

I If there are many other such components
I Remove C , decrease budget by opt(C).

u
v

C

x
w X

G ′

.

Removing components of G − X : using classification

Let L = {u x , u w , x w}
I Suppose no optimal FVS in C breaks all connections in L

I but any proper subset of L can be broken

I If there are many other such components
I Remove C , decrease budget by opt(C).

u
v

C

x
w X − S

G ′ − S

.

Removing components of G − X : using classification

Let L = {u x , u w , x w}
I Suppose no optimal FVS in C breaks all connections in L

I but any proper subset of L can be broken

I If there are many other such components
I Remove C , decrease budget by opt(C).

u
v

C

x
w X − S

G ′ − S

. . .

components where S does not break L

. . .

Removing components of G − X : using classification

Let L = {u x , u w , x w}
I Suppose no optimal FVS in C breaks all connections in L

I but any proper subset of L can be broken

I If there are many other such components
I Remove C , decrease budget by opt(C).

u
v

C

x
w X − S

G ′ − S

. . .

components where S does not break L

. . .

Choose SC based on S

Removing components of G − X : using classification

Let L = {u x , u w , x w}
I Suppose no optimal FVS in C breaks all connections in L

I but any proper subset of L can be broken

I If there are many other such components
I Remove C , decrease budget by opt(C).

u
v

C

x
w X − S

G ′ − S

. . .

components where S does not break L

. . .

Choose SC based on S

Removing components of G − X : using classification

Let L = {u x , u w , x w}
I Suppose no optimal FVS in C breaks all connections in L

I but any proper subset of L can be broken

I If there are many other such components
I Remove C , decrease budget by opt(C).

u
v

C

x
w X − S

G − (S ∪ SC)

. . .

components where S does not break L

. . .

Removing components of G − X : using classification

Let L = {u x , u w , x w}
I Suppose no optimal FVS in C breaks all connections in L

I but any proper subset of L can be broken

I If there are many other such components
I Remove C , decrease budget by opt(C).

u
v

C

x
w X − S

G − (S ∪ SC)

. . .

components where S does not break L

. . .

Removing components of G − X : using classification

Let L = {u x , u w , x w}
I Suppose no optimal FVS in C breaks all connections in L

I but any proper subset of L can be broken

I If there are many other such components
I Remove C , decrease budget by opt(C).

u
v

C

x
w X − S

G − (S ∪ SC)

. . .

components where S does not break u w

. . .

Removing components of G − X : using classification

Let L = {u x , u w , x w}
I Suppose no optimal FVS in C breaks all connections in L

I but any proper subset of L can be broken

I If there are many other such components
I Remove C , decrease budget by opt(C).

u
v

C

x
w X − S

G − (S ∪ SC)

. . .

components where S does not break u w

. . .

Removing components of G − X : using classification

Let L = {u x , u w , x w}
I Suppose no optimal FVS in C breaks all connections in L

I but any proper subset of L can be broken

I If there are many other such components
I Remove C , decrease budget by opt(C).

u
v

C

x
w X − S

G ′ − S

.

Towards a reduction rule

Behaviour of components described by which sets L can be broken

I Use previous rule

I For each L, mark poly(|X |) representative components

I Remove unmarked components

But there are many sets to consider

I Subsets of u v connections

I Exponentially many such sets

Ideally: only need to consider sets of constant size γ

I Dependent on F and η

Towards a reduction rule

Behaviour of components described by which sets L can be broken

I Use previous rule

I For each L, mark poly(|X |) representative components

I Remove unmarked components

But there are many sets to consider

I Subsets of u v connections

I Exponentially many such sets

Ideally: only need to consider sets of constant size γ

I Dependent on F and η

Towards a reduction rule

Behaviour of components described by which sets L can be broken

I Use previous rule

I For each L, mark poly(|X |) representative components

I Remove unmarked components

But there are many sets to consider

I Subsets of u v connections

I Exponentially many such sets

Ideally: only need to consider sets of constant size γ

I Dependent on F and η

Towards a reduction rule

Do we need large sets?

I What if a FVS cannot break very large set L

I but can break L \ {u v} for all u, v

Main effort in our paper: Showing that this does not happen

Main Lemma (sketch)

Let L be a set of u v connections, let C be a graph of constant
treedepth. If no optimal FVS in C breaks all connections in L, then
there exists L′ ⊆ L such that

I |L′| ≤ γ
I No optimal FVS of C breaks all connections in L′

Towards a reduction rule

Do we need large sets?

I What if a FVS cannot break very large set L

I but can break L \ {u v} for all u, v

Main effort in our paper: Showing that this does not happen

Main Lemma (sketch)

Let L be a set of u v connections, let C be a graph of constant
treedepth. If no optimal FVS in C breaks all connections in L, then
there exists L′ ⊆ L such that

I |L′| ≤ γ
I No optimal FVS of C breaks all connections in L′

Removing components of G − X

Reduction rule (sketch)

For each set L with |L| ≤ γ of u v -connections, mark poly(|X |)
connected components C of G − X s.t.

I There is no optimal FVS in C that breaks all connections in L

Remove all unmarked components

This leaves polynomially many components in G − X .

Removing components of G − X

Reduction rule (sketch)

For each set L with |L| ≤ γ of u v -connections, mark poly(|X |)
connected components C of G − X s.t.

I There is no optimal FVS in C that breaks all connections in L

Remove all unmarked components

This leaves polynomially many components in G − X .

Conclusion

F-Minor-Free Deletion parameterized by a treedepth-η
modulator has a polynomial kernel

I Graphs in F must be connected

Future work
Find the most general graph class G such that

I Vertex Cover parameterized by a modulator to G has a
polynomial kernel

