Polynomial kernels for hitting forbidden minors using constant treedepth modulators

Astrid Pieterse

TACO day 2018

joint work with Bart M. P. Jansen

April 5, 2018

Introduction

Kernelization (meta) theorems

- Obtain polynomial kernels for a wide variety of problems
- Small parameter

Solution size may be large

► Focus on structural parameters

Introduction

Courcelle's Theorem

All problems that can be expressed in a certain logic are FPT when parameterized by treewidth

Obtain similar results for kernelization?

- ► DOMINATING SET has no polynomial kernel when parameterized by VERTEX COVER [Dom et al. ICALP'09]
 - Large structural parameter
- But is easy to express in most types of logic

Focus on another very general problem

Introduction

Courcelle's Theorem

All problems that can be expressed in a certain logic are FPT when parameterized by treewidth

Obtain similar results for kernelization?

- DOMINATING SET has no polynomial kernel when parameterized by VERTEX COVER [Dom et al. ICALP'09]
 - Large structural parameter
- But is easy to express in most types of logic

Focus on another very general problem

 \mathcal{F} -Minor-Free Deletion

Let ${\mathcal F}$ be a set of connected graphs

Definition

InputA graph G and integer kQuestionDoes there exist $S \subseteq V(G)$ with $|S| \leq k$, such that
no graph in \mathcal{F} is a minor of G - S?

We sometimes say S breaks \mathcal{F}

Generalizes

- $\mathcal{F} = \{K_3\}$: Feedback Vertex Set
- $\mathcal{F} = \{K_2\}$: Vertex Cover
- ▶ $\mathcal{F} = \{K_{3,3}, K_5\}$: Making a graph planar by vertex-deletions

 \mathcal{F} -Minor-Free Deletion

Let ${\mathcal F}$ be a set of connected graphs

Definition

InputA graph G and integer kQuestionDoes there exist $S \subseteq V(G)$ with $|S| \leq k$, such that
no graph in \mathcal{F} is a minor of G - S?

We sometimes say S breaks \mathcal{F}

Generalizes

- $\mathcal{F} = \{K_3\}$: Feedback Vertex Set
- $\mathcal{F} = \{K_2\}$: Vertex Cover

• $\mathcal{F} = \{K_{3,3}, K_5\}$: Making a graph planar by vertex-deletions

- Edge contractions
- Edge/vertex removals

Kernelization

Efficiently reduce the size of an input instance

- Resulting size depends on parameter value
- Provably small (polynomial in k)
- Provably correct

Polynomial kernel

Polynomial-time algorithm that, given instance (X, k), outputs (X', k')

- |X'| and k' are bounded by f(k)
- ▶ X is a yes-instance if and only if X' is a yes-instance

Kernelization

Efficiently reduce the size of an input instance

- Resulting size depends on parameter value
- Provably small (polynomial in k)
- Provably correct

Polynomial kernel

Polynomial-time algorithm that, given instance (X, k), outputs (X', k')

- |X'| and k' are bounded by f(k)
- ▶ X is a yes-instance if and only if X' is a yes-instance

Parameter: modulator

Many problems are easy for some simple graph class ${\cal G}$

▶ Trees, cliques, paths, independent sets, forests, ...

Complexity measure for graphs

- Number of vertices we need to remove until $G \in \mathcal{G}$
- Also called a modulator

Parameter: modulator to constant treedepth

X is a treedepth- η modulator when $td(G - X) \le \eta$ $\blacktriangleright \eta$ is considered a fixed constant Parameter: |X| for optimal X

 $\mathcal F\text{-}\mathrm{MINOR}\text{-}\mathrm{FREE}$ Deletion is easy on graphs of constant treedepth

Polynomial-time solvable

Treedepth

td(G) is the minimum depth of any treedepth decomposition

- Tree T on all vertices of G
- ▶ Any edge in G is between children/ancestors in T

Example of treedepth 3

For any graph G, $tw(G) \leq td(G)$

Treedepth

td(G) is the minimum depth of any treedepth decomposition

- Tree T on all vertices of G
- ▶ Any edge in G is between children/ancestors in T

Treedepth of a path is logarithmic

For any graph G, $tw(G) \leq td(G)$

Treedepth

td(G) is the minimum depth of any treedepth decomposition

- Tree T on all vertices of G
- ▶ Any edge in G is between children/ancestors in T

Treedepth of a path is logarithmic

For any graph G, $tw(G) \leq td(G)$

Previous work

Parameterized by solution size

Whether a polynomial kernel exists is an open problem

Parameterized by treewidth

► VERTEX COVER has no polynomial kernel [Bodlaender et.al. 2009]

Parameterized by pseudo forest modulator

► FEEDBACK VERTEX SET has a polynomial kernel [Jansen et al. 2014] Parameterized by *d*-quasi forest modulator

► VERTEX COVER has a polynomial kernel [Hols,Kratsch IPEC'17]

Previous work

Parameterized by treewidth- η modulator [Jansen, Bodlaender STACS'11]

- ▶ Polynomial kernel for VERTEX COVER for $\eta = 1$
- ▶ No polynomial kernel for VERTEX COVER for $\eta \ge 2$

Parameterized by treedepth- η modulator

- ► Polynomial kernel for VERTEX COVER [Bougeret, Sau IPEC'17]
 - ▶ Kernelization of FEEDBACK VERTEX SET left open

Our results

Let ${\mathcal F}$ be a set of connected graphs

Theorem

 \mathcal{F} -MINOR-FREE DELETION has a polynomial kernel parameterized by a treedepth- η modulator

- Kernel of size $O(|X|^{g(\eta,\mathcal{F})})$ for some function g
- Resolves the question about FVS

Lower bound

VERTEX COVER parameterized by a treedepth- η modulator has no kernel of size $O(|X|^{2^{\eta-4}-\varepsilon})$, unless $NP \subseteq coNP/poly$

• g is exponential in η , and this cannot be avoided

Our results

Let ${\mathcal F}$ be a set of connected graphs

Theorem

 $\mathcal{F}\text{-}\mathrm{MINOR}\text{-}\mathrm{FREE}$ Deletion has a polynomial kernel parameterized by a treedepth- η modulator

- Kernel of size $O(|X|^{g(\eta,\mathcal{F})})$ for some function g
- Resolves the question about FVS

Lower bound

VERTEX COVER parameterized by a treedepth- η modulator has no kernel of size $O(|X|^{2\eta-4-\varepsilon})$, unless $NP \subseteq coNP/poly$

• g is exponential in η , and this cannot be avoided

Kernel for \mathcal{F} -Minor-Free Deletion

Kernel: general idea

Given G with modulator X

If X not given, use approximation

First reduce the number of connected components of G - X

Components could still be large

Then apply induction on $\boldsymbol{\eta}$

Lemma

There is a polynomial-time algorithm that transforms G into induced subgraph G', and returns an integer Δ such that

- $opt(G') + \Delta = opt(G)$
- G' X has at most $|X|^{O(1)}$ connected components

Kernel: general idea

Given G with modulator X

If X not given, use approximation

First reduce the number of connected components of G - X

Components could still be large

Then apply induction on $\boldsymbol{\eta}$

Lemma

There is a polynomial-time algorithm that transforms G into induced subgraph G', and returns an integer Δ such that

•
$$opt(G') + \Delta = opt(G)$$

• G' - X has at most $|X|^{O(1)}$ connected components

Theorem

\mathcal{F} -MINOR-FREE DELETION has a polynomial kernel parameterized by a treedepth- η modulator

We do induction on η , using the Lemma

Base case

If $\eta = 1$, every connected component is a single vertex

- Given G and budget k, apply lemma to obtain G' and Δ
- Let the kernel be G' with budget $k \Delta$
- G' has at most $|X| + |X|^{O(1)} = |X|^{O(1)}$ vertices

Theorem

 \mathcal{F} -MINOR-FREE DELETION has a polynomial kernel parameterized by a treedepth- η modulator

We do induction on $\eta,$ using the Lemma

Base case

If $\eta = 1$, every connected component is a single vertex

- Given G and budget k, apply lemma to obtain G' and Δ
- Let the kernel be G' with budget $k \Delta$
- G' has at most $|X| + |X|^{O(1)} = |X|^{O(1)}$ vertices

Step: $\eta > 1$ Apply lemma, find *G*' with only few components in *G*' - *X*

- For each component of G' X, select root vertex r
 - Can be found efficiently

Step: $\eta > 1$

Apply lemma, find G' with only few components in G' - X

- For each component of G' X, select root vertex r
 - Can be found efficiently

Step: $\eta > 1$

Apply lemma, find G' with only few components in G' - X

- For each component of G' X, select root vertex r
 - Can be found efficiently
- ► Add *r* to *X*, obtain *X'*

Step: $\eta > 1$

Apply lemma, find G' with only few components in G' - X

- For each component of G' X, select root vertex r
 - Can be found efficiently
- Add r to X, obtain X'

Step: $\eta > 1$

Apply lemma, find G' with only few components in G' - X

- For each component of G' X, select root vertex r
 - Can be found efficiently
- Add r to X, obtain X'

Now X' is a treedepth-(η − 1) modulator
$$|X'| = |X|^{O(1)}$$

Apply IH with X'

• Gives kernel of size $|X'|^{O(1)} = |X|^{O(1)}$

Step: $\eta > 1$

Apply lemma, find G' with only few components in G' - X

- For each component of G' X, select root vertex r
 - Can be found efficiently
- Add r to X, obtain X'

Now X' is a treedepth-
$$(\eta - 1)$$
 modulator
 $|X'| = |X|^{O(1)}$

Apply IH with X'

• Gives kernel of size $|X'|^{O(1)} = |X|^{O(1)}$

Step: $\eta > 1$

Apply lemma, find G' with only few components in G' - X

- For each component of G' X, select root vertex r
 - Can be found efficiently
- Add r to X, obtain X'

Apply IH with X'

• Gives kernel of size $|X'|^{O(1)} = |X|^{O(1)}$
Theorem

\mathcal{F} -MINOR-FREE DELETION has a polynomial kernel parameterized by a treedepth- η modulator

using

Lemma

There is a polynomial-time algorithm that transforms G into induced subgraph G', and returns an integer Δ such that

•
$$opt(G') + \Delta = opt(G)$$

• G' - X has at most $|X|^{O(1)}$ connected components

Example: $\mathcal{F} = \{K_3\}$.

▶ FEEDBACK VERTEX SET (abbreviated as FVS)

- Exists an FVS in G[C] disconnecting C from X
 - Remove C
 - Reduce budget by opt(C)

Example: $\mathcal{F} = \{K_3\}$.

▶ FEEDBACK VERTEX SET (abbreviated as FVS)

- Exists an FVS in G[C] disconnecting C from X
 - Remove C
 - Reduce budget by opt(C)

Example: $\mathcal{F} = \{K_3\}$.

▶ FEEDBACK VERTEX SET (abbreviated as FVS)

- Exists an FVS in G[C] disconnecting C from X
 - Remove C
 - Reduce budget by opt(C)

Example: $\mathcal{F} = \{K_3\}$.

▶ FEEDBACK VERTEX SET (abbreviated as FVS)

- Exists an FVS in G[C] disconnecting C from X
 - Remove C
 - Reduce budget by opt(C)

Let S be an optimal Feedback Vertex Set in G

• Also works if S is an \mathcal{F} -deletion

Lemma

There exist $\leq |X|$ components C in G - X such that

► S is not locally optimal in C

Let S be an optimal Feedback Vertex Set in G

• Also works if S is an \mathcal{F} -deletion

Lemma

There exist $\leq |X|$ components C in G - X such that

► S is not locally optimal in C

Let S be an optimal Feedback Vertex Set in G

• Also works if S is an \mathcal{F} -deletion

Lemma

There exist $\leq |X|$ components C in G - X such that

► S is not locally optimal in C

Let S be an optimal Feedback Vertex Set in G

• Also works if S is an \mathcal{F} -deletion

Lemma

There exist $\leq |X|$ components C in G - X such that

► S is not locally optimal in C

Consider which $x \rightsquigarrow x'$ -connections are made by *C* for $x, x' \in X$

After removing some optimal FVS

No optimal FVS breaks $u \rightsquigarrow v$ in C

Consider which $x \rightsquigarrow x'$ -connections are made by *C* for $x, x' \in X$

After removing some optimal FVS

Some optimal FVS breaks $x \rightsquigarrow v$ and $x \rightsquigarrow u$ in C

...

Suppose opt(C) never breaks $u \rightsquigarrow v, v \rightsquigarrow w, u \rightsquigarrow w, w \rightsquigarrow x, \dots$

- Select a number of representative components
 - Mark $|X|^c$ other components that do not break $u \rightsquigarrow v$
 - Mark $|X|^c$ other components that do not break $v \rightsquigarrow w$
- Remove C, decrease budget by opt(C)

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

G'

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

G'

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

Suppose C was removed by this rule

• If S is a FVS in G', $S \cup S_C$ is a FVS in G

G'-S

Removing components of G - X: rules so far

Cases we handled

- ▶ Some optimal FVS in C breaks all connections of C to X
- Any optimal FVS in C leaves connections $u \rightsquigarrow v, v \rightsquigarrow w, \ldots$
 - and no others

Any other options to consider?

Removing components of G - X: rules so far

Cases we handled

- ▶ Some optimal FVS in C breaks all connections of C to X
- Any optimal FVS in C leaves connections $u \rightsquigarrow v, v \rightsquigarrow w, \ldots$
 - and no others

Any other options to consider?

- Some solution may break u → v and v → w
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

- Some solution may break u → v and v → w
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

- Some solution may break u → v and v → w
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

- Some solution may break u → v and v → w
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

- Some solution may break u → v and v → w
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

- Some solution may break u → v and v → w
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

- Some solution may break u → v and v → w
- Another breaks $u \rightsquigarrow w$ and $u \rightsquigarrow v$

Removing components of G - X: using classification

Let
$$L = \{u \rightsquigarrow x, u \rightsquigarrow w, x \rightsquigarrow w\}$$

- Suppose no optimal FVS in C breaks all connections in L
 - but any proper subset of L can be broken
- If there are many other such components
 - Remove C, decrease budget by opt(C).

G

Removing components of G - X: using classification

Let
$$L = \{u \rightsquigarrow x, u \rightsquigarrow w, x \rightsquigarrow w\}$$

- Suppose no optimal FVS in C breaks all connections in L
 - but any proper subset of L can be broken
- If there are many other such components
 - Remove C, decrease budget by opt(C).

G'

Removing components of G - X: using classification

Let
$$L = \{u \rightsquigarrow x, u \rightsquigarrow w, x \rightsquigarrow w\}$$

- Suppose no optimal FVS in C breaks all connections in L
 - but any proper subset of L can be broken
- If there are many other such components
 - Remove C, decrease budget by opt(C).

G'-S

Let
$$L = \{u \rightsquigarrow x, u \rightsquigarrow w, x \rightsquigarrow w\}$$

Suppose no optimal FVS in C breaks all connections in L

G' - S

- but any proper subset of L can be broken
- If there are many other such components
 - Remove C, decrease budget by opt(C).

Let
$$L = \{u \rightsquigarrow x, u \rightsquigarrow w, x \rightsquigarrow w\}$$

- but any proper subset of L can be broken
- If there are many other such components
 - Remove C, decrease budget by opt(C).

Let
$$L = \{u \rightsquigarrow x, u \rightsquigarrow w, x \rightsquigarrow w\}$$

- but any proper subset of L can be broken
- If there are many other such components
 - Remove C, decrease budget by opt(C).

Let
$$L = \{u \rightsquigarrow x, u \rightsquigarrow w, x \rightsquigarrow w\}$$

- but any proper subset of L can be broken
- If there are many other such components
 - Remove C, decrease budget by opt(C).

Let
$$L = \{u \rightsquigarrow x, u \rightsquigarrow w, x \rightsquigarrow w\}$$

- but any proper subset of L can be broken
- If there are many other such components
 - Remove C, decrease budget by opt(C).

Let
$$L = \{u \rightsquigarrow x, u \rightsquigarrow w, x \rightsquigarrow w\}$$

- but any proper subset of L can be broken
- If there are many other such components
 - ▶ Remove *C*, decrease budget by opt(*C*).

Let
$$L = \{u \rightsquigarrow x, u \rightsquigarrow w, x \rightsquigarrow w\}$$

- but any proper subset of L can be broken
- If there are many other such components
 - ▶ Remove *C*, decrease budget by opt(*C*).

Let
$$L = \{u \rightsquigarrow x, u \rightsquigarrow w, x \rightsquigarrow w\}$$

- Suppose no optimal FVS in C breaks all connections in L
 - but any proper subset of L can be broken
- If there are many other such components
 - Remove C, decrease budget by opt(C).

G' - S

Behaviour of components described by which sets L can be broken

- Use previous rule
- ► For each *L*, mark poly(|*X*|) representative components
- Remove unmarked components

But there are many sets to consider

- Subsets of $u \rightsquigarrow v$ connections
- Exponentially many such sets

Ideally: only need to consider sets of constant size γ

• Dependent on $\mathcal F$ and η

Behaviour of components described by which sets L can be broken

- Use previous rule
- ► For each *L*, mark poly(|*X*|) representative components
- Remove unmarked components

But there are many sets to consider

- Subsets of $u \rightsquigarrow v$ connections
- Exponentially many such sets

Ideally: only need to consider sets of constant size γ

 \blacktriangleright Dependent on ${\cal F}$ and η

Behaviour of components described by which sets L can be broken

- Use previous rule
- ► For each *L*, mark poly(|*X*|) representative components
- Remove unmarked components

But there are many sets to consider

- Subsets of $u \rightsquigarrow v$ connections
- Exponentially many such sets

Ideally: only need to consider sets of constant size γ

• Dependent on ${\mathcal F}$ and η

Do we need large sets?

- What if a FVS cannot break very large set L
- but can break $L \setminus \{u \rightsquigarrow v\}$ for all u, v

Main effort in our paper: Showing that this does not happen

Main Lemma (sketch)

Let *L* be a set of $u \rightsquigarrow v$ connections, let *C* be a graph of constant treedepth. If no optimal FVS in *C* breaks all connections in *L*, then there exists $L' \subseteq L$ such that

- $|L'| \le \gamma$
- ▶ No optimal FVS of *C* breaks all connections in *L*′

Do we need large sets?

- What if a FVS cannot break very large set L
- but can break $L \setminus \{u \rightsquigarrow v\}$ for all u, v

Main effort in our paper: Showing that this does not happen

Main Lemma (sketch)

Let *L* be a set of $u \rightsquigarrow v$ connections, let *C* be a graph of constant treedepth. If no optimal FVS in *C* breaks all connections in *L*, then there exists $L' \subseteq L$ such that

- $\blacktriangleright |L'| \le \gamma$
- No optimal FVS of C breaks all connections in L'

Removing components of G - X

Reduction rule (sketch)

For each set *L* with $|L| \leq \gamma$ of $u \rightsquigarrow v$ -connections, mark poly(|X|) connected components *C* of G - X s.t.

► There is no optimal FVS in *C* that breaks all connections in *L* Remove all unmarked components

This leaves polynomially many components in G - X.

Removing components of G - X

Reduction rule (sketch)

For each set *L* with $|L| \leq \gamma$ of $u \rightsquigarrow v$ -connections, mark poly(|X|) connected components *C* of G - X s.t.

► There is no optimal FVS in *C* that breaks all connections in *L* Remove all unmarked components

This leaves polynomially many components in G - X.

Conclusion

 \mathcal{F} -MINOR-FREE DELETION parameterized by a treedepth- η modulator has a polynomial kernel

• Graphs in \mathcal{F} must be connected

Future work

Find the most general graph class ${\mathcal G}$ such that

► VERTEX COVER parameterized by a modulator to *G* has a polynomial kernel