Optimal data reduction for graph coloring using low-degree polynomials

Astrid Pieterse

Networks Training Week

October 31, 2017

The q-Coloring problem

Can the vertices of a graph be colored with at most q colors?

- ▶ Focus on q = 3
- red, green, blue

NP-hard, use a parameterized approach

Which parameter(s)?

- Number of colors
 - Uninteresting
- Structural parameters
 - ▶ In this talk: Vertex Cover

The q-Coloring problem

Can the vertices of a graph be colored with at most q colors?

- ▶ Focus on q = 3
- red, green, blue

NP-hard, use a parameterized approach

Which parameter(s)?

- Number of colors
 - Uninteresting
- Structural parameters
 - ▶ In this talk: Vertex Cover

The q-Coloring problem

Can the vertices of a graph be colored with at most q colors?

- ▶ Focus on q = 3
- red, green, blue

NP-hard, use a parameterized approach

Which parameter(s)?

- Number of colors
 - Uninteresting
- Structural parameters
 - In this talk: Vertex Cover

Vertex Cover

Vertex Cover

Vertex Cover

Kernelization

Efficiently reduce the size of an input instance

- Resulting size depends on parameter value
- Provably small
- Provably correct

Kernel for 3-Coloring

Polynomial-time algorithm that, given instance (G, k), outputs (G', k') such that

- |G'| and k' are bounded by f(k)
- ► G is 3-Colorable if and only if G' is 3-Colorable

Previous work

Jansen and Kratsch ${\scriptstyle [Inf\ Comput.\ 2013]}$ showed that

▶ 3-Coloring parameterized by VC has a kernel of bitsize $O(k^3)$

Theorem

3-Coloring parameterized by Vertex Cover has a kernel with $O(k^2)$ vertices and bitsize $O(k^2 \log k)$.

Matching lower bound

Previous work

Jansen and Kratsch [Inf Comput. 2013] showed that

▶ 3-Coloring parameterized by VC has a kernel of bitsize $O(k^3)$

Theorem

3-Coloring parameterized by Vertex Cover has a kernel with $O(k^2)$ vertices and bitsize $O(k^2 \log k)$.

Matching lower bound

Previous work

Jansen and Kratsch [Inf Comput. 2013] showed that

▶ 3-Coloring parameterized by VC has a kernel of bitsize $O(k^3)$

Theorem

3-Coloring parameterized by Vertex Cover has a kernel with $O(k^2)$ vertices and bitsize $O(k^2 \log k)$.

Matching lower bound

- ▶ IS may be large compared to VC
- ► Find redundant vertices in IS
 - Any coloring of G u can be extended to G
 - Example: *u* and *w*
- Similarly, find redundant edges

- ▶ IS may be large compared to VC
- ► Find redundant vertices in IS
 - ► Any coloring of G − u can be extended to G
 - ► Example: *u* and *w*
- Similarly, find redundant edges

- ▶ IS may be large compared to VC
- ► Find redundant vertices in IS
 - ► Any coloring of G u can be extended to G
 - Example: *u* and *w*
- Similarly, find redundant edges

- ▶ IS may be large compared to VC
- Find redundant vertices in IS
 - ► Any coloring of G u can be extended to G
 - Example: u and w
- Similarly, find redundant edges

- ▶ IS may be large compared to VC
- Find redundant vertices in IS
 - ► Any coloring of G u can be extended to G
 - Example: u and w
- Similarly, find redundant edges

Vertices in IS can be colored independently

- Each vertex in IS corresponds to a constraint
 - Neighborhood does not use all 3 colors
- Gives constraints on the coloring of VC
 - If some coloring of VC satisfies all constraints, it can be extended to IS

Alternatively, if for all $S \subseteq N(v)$ with |S| = 3

coloring can be extended to v

Vertices in IS can be colored independently

- Each vertex in IS corresponds to a constraint
 - Neighborhood does not use all 3 colors
- Gives constraints on the coloring of VC
 - If some coloring of VC satisfies all constraints, it can be extended to IS

Alternatively, if for all $S \subseteq N(v)$ with |S| = 3

Some color is used twice for S

coloring can be extended to v

Vertices in IS can be colored independently

- Each vertex in IS corresponds to a constraint
 - Neighborhood does not use all 3 colors
- Gives constraints on the coloring of VC
 - If some coloring of VC satisfies all constraints, it can be extended to IS

Alternatively, if for all $S \subseteq N(v)$ with |S| = 3

Some color is used twice for S

coloring can be extended to v

Vertices in IS can be colored independently

- Each vertex in IS corresponds to a constraint
 - Neighborhood does not use all 3 colors
- Gives constraints on the coloring of VC
 - If some coloring of VC satisfies all constraints, it can be extended to IS

Alternatively, if for all $S \subseteq N(v)$ with |S| = 3

Some color is used twice for S

coloring can be extended to \boldsymbol{v}

Vertices in IS can be colored independently

- Each vertex in IS corresponds to a constraint
 - Neighborhood does not use all 3 colors
- Gives constraints on the coloring of VC
 - If some coloring of VC satisfies all constraints, it can be extended to IS

Alternatively, if for all $S \subseteq N(v)$ with |S| = 3

Some color is used twice for S

coloring can be extended to v

Vertices in IS can be colored independently

- Each vertex in IS corresponds to a constraint
 - Neighborhood does not use all 3 colors
- Gives constraints on the coloring of VC
 - If some coloring of VC satisfies all constraints, it can be extended to IS

Alternatively, if for all $S \subseteq N(v)$ with |S| = 3

Some color is used twice for S

coloring can be extended to v

Finding redundant constraints

Finding redundant constraints

Let L be a set of polynomial equalities of degree at most d, over n boolean variables.

$$L = \{ x_1 x_2 + x_2 x_3 + x_4 \equiv_2 0 \\ x_1 + 1 \equiv_2 0 \\ x_3 x_1 + 1 \equiv_2 0 \\ \dots \\ \}$$

Theorem [Jansen and P. MFCS 2016]

There is a polynomial-time algorithm that outputs $L' \subseteq L$, s.t.

An assignment satisfies L if and only if it satisfies L' and

$$\blacktriangleright |L'| \le n^d + 1$$

Let x, y, $z \in \{0, 1\}$ (where 0 is false, 1 is true), let

$$L = \{ x + y = 1 \\ z - y = 0 \\ x + z = 1 \\ \}$$

Let x, y, $z \in \{0, 1\}$ (where 0 is false, 1 is true), let

$$L = \{ x + y = 1 \\ \frac{z - y = 0}{x + z = 1} + \}$$

Let $x, y, z \in \{0, 1\}$ (where 0 is false, 1 is true), let

$$L = \{ x + y = 1 \\ \frac{z - y = 0}{x + z = 1} + \}$$

The last constraint is redundant

Let x, y, $z \in \{0, 1\}$ (where 0 is false, 1 is true), let

The last constraint is redundant

Finding redundant constraints

$$L := \{y + 1 \equiv_2 0, x + y + xy \equiv_2 0, x \equiv_2 0\}$$

Represent the equalities in a matrix:

	X	у	xy	1
f	(0	1	0	1
g	1	1	1	0
:	÷	÷	÷	÷
h	1	0	0	0)

Apply gaussian elimination to find a basis of the row-space

Size bounded by #columns!

Modeling vertices as constraints

Polynomial equalities

Create 3 boolean variables for each vertex in VC.

For each vertex v in IS, $S \subseteq N(v)$ with |S| = 3

Constraint: S does not use all 3 colors.

Which polynomial to use?

• Needs to have degree ≤ 2

Modeling vertices as constraints

Polynomial equalities

Create 3 boolean variables for each vertex in VC.

For each vertex v in IS, $S \subseteq N(v)$ with |S| = 3

Constraint: S does not use all 3 colors.

Which polynomial to use?

• Needs to have degree ≤ 2

S variables for each vertex in VC
a a
a a
a a
a a
b Polynomial equality of degree 2
a For S = {a, d, e}

 $(a) \wedge (d) + (a) \wedge (e) + (d) \wedge (e) + (a) \wedge (e) + (d) \wedge (e) + (a) \wedge (e) + (d) \wedge (e) \equiv_2 1$

- Three equal colors gives $3 \equiv_2 1$
- Two equal colors gives 1
- Three different colors gives 0

► 3 variables for each vertex in VC a a a a Let $v \in IS$, for each $S \subseteq N(v) : |S| = 3$ ► Polynomial equality of degree 2 ► For $S = \{a, d, e\}$: a \land + a \land e + d \land e + a \land + a \land e + d \land e + a \land + a \land e + d \land e + a \land e + d \land e = 1

- Three equal colors gives $3 \equiv_2 1$
- Two equal colors gives 1
- Three different colors gives 0

▶ 3 variables for each vertex in VC Let $v \in IS$, for each $S \subseteq N(v) : |S| = 3$ ▶ Polynomial equality of degree 2 ▶ For $S = \{a, d, e\}$: $a \land d + a \land e + d \land e + a \land e$

- Three equal colors gives $3 \equiv_2 1$
- Two equal colors gives 1
- Three different colors gives 0

3 variables for each vertex in VC
3 variables for each vertex in VC
Let v ∈ IS, for each S ⊆ N(v) : |S| = 3
Polynomial equality of degree 2
For S = {a, d, e}:
a ∧ d + a ∧ e + d ∧ e +
a ∧ d + a ∧ e + d ∧ e +
a ∧ d + a ∧ e + d ∧ e +
a ∧ d + a ∧ e + d ∧ e =

- Three equal colors gives $3 \equiv_2 1$
- Two equal colors gives 1
- Three different colors gives 0

Model vertices in IS by constraints

- Use Theorem to find subset L' of relevant constraints
- Keep only vertices and edges used for relevant constraints

- Model vertices in IS by constraints
- ▶ Use Theorem to find subset L' of relevant constraints
- Keep only vertices and edges used for relevant constraints

- Model vertices in IS by constraints
- ▶ Use Theorem to find subset L' of relevant constraints
- Keep only vertices and edges used for relevant constraints

- Model vertices in IS by constraints
- Use Theorem to find subset L' of relevant constraints
- Keep only vertices and edges used for relevant constraints

- Model vertices in IS by constraints
- Use Theorem to find subset L' of relevant constraints
- Keep only vertices and edges used for relevant constraints

- Model vertices in IS by constraints
- Use Theorem to find subset L' of relevant constraints
- Keep only vertices and edges used for relevant constraints

- Model vertices in IS by constraints
- Use Theorem to find subset L' of relevant constraints
- Keep only vertices and edges used for relevant constraints

Kernel size

- Number of constraints O(#vars^{degree})
 - ▶ 3 · k variables
 - degree 2
- Number of constraints O((3k)²)
- ▶ Constraint corresponds to ≤ 1 vertex and ≤ 3 edges
- Encode graph in $O(k^2 \log k)$ bits

Theorem

3-Coloring parameterized by Vertex Cover has a kernel with $O(k^2)$ vertices and bitsize $O(k^2 \log k)$.

q-Coloring

Coloring with q colors

Theorem

q-Coloring parameterized by Vertex Cover has a kernel with $O(k^{q-1})$ vertices and bitsize $O(k^{q-1} \log k)$.

Can we do better?

Theorem

q-Coloring parameterized by Vertex Cover has no kernel of bitsize $O(k^{q-1-\varepsilon})$, unless NP \subseteq coNP/poly.

q-Coloring

Coloring with q colors

Theorem

q-Coloring parameterized by Vertex Cover has a kernel with $O(k^{q-1})$ vertices and bitsize $O(k^{q-1} \log k)$.

Can we do better?

Theorem

q-Coloring parameterized by Vertex Cover has no kernel of bitsize $O(k^{q-1-\varepsilon})$, unless NP \subseteq coNP/poly.

q-Coloring has

- a kernel with bitsize $O(k^{q-1} \log k)$
- ▶ no kernel with bitsize $O(k^{q-1-\varepsilon})$ unless NP \subseteq coNP/poly

Technique

q-Coloring has

- a kernel with bitsize $O(k^{q-1} \log k)$
- ▶ no kernel with bitsize $O(k^{q-1-\varepsilon})$ unless NP \subseteq coNP/poly

Technique

q-Coloring has

- a kernel with bitsize $O(k^{q-1} \log k)$
- ▶ no kernel with bitsize $O(k^{q-1-\varepsilon})$ unless NP \subseteq coNP/poly

Technique

q-Coloring has

- a kernel with bitsize $O(k^{q-1} \log k)$
- ▶ no kernel with bitsize $O(k^{q-1-\varepsilon})$ unless NP \subseteq coNP/poly

Technique

q-Coloring has

- a kernel with bitsize $O(k^{q-1} \log k)$
- ▶ no kernel with bitsize $O(k^{q-1-\varepsilon})$ unless NP \subseteq coNP/poly

Technique

Polynomial for *q*-Coloring

For 3-Coloring:

$$a \wedge d + a \wedge e + d \wedge e + d \wedge e + d \wedge a + e \wedge a + e \wedge d \equiv_2 0$$

Formula:

 $y_{1,1} \cdot y_{2,2} + y_{1,1} \cdot y_{3,2} + y_{2,1} \cdot y_{1,2} + y_{2,1} \cdot y_{3,2} + y_{3,1} \cdot y_{1,2} + y_{3,1} \cdot y_{2,2} \equiv_2 0$ In general:

$$\sum_{\substack{i_1,\ldots,i_{q-1}\in[q]\\\text{distinct}}}\prod_{k=1}^{q-1}y_{i_k,k}\equiv_2 0$$