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Kernelization

Polynomial time preprocessing

Goal: obtain kernels that are small

• Every problem that is FPT has a kernel

• But only some problems have polynomial-size kernels
• Under some complexity-theoretic assumptions
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Beyond kernelization

Turing kernelization

• Allow creation of multiple instances 

Approximate kernelization

• Relax the equivalence constraint

This talk: Approximate Turing Kernelization



Turing Kernelization

A Turing Kernel of size 𝑓 for a problem 𝑄 is an algorithm that solves a given 
instance (𝑥, ℓ) in time polynomial in |𝑥| + ℓ, when given access to an oracle that 
decides membership of 𝑄 for any instance with size at most 𝑓(ℓ) in a single step. 
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Turing Kernelization: Example

CLIQUE parameterized by vertex cover 

Input Graph 𝐺, with vertex cover 𝑋 of size ℓ, integer 𝑘

Question Does 𝐺 have a clique of size 𝑘?

Parameter ℓ

No polynomial kernel [Bodlaender, Jansen, Kratsch 2012]

• Simple Turing kernel with ℓ + 1 vertices

𝐺
𝑋
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Towards approximate kernelization

Move from decision problems to optimization problems

𝑥’ℓ’
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Approximate kernelization

Parameterized optimization problem 𝑄

• Instances are pairs (𝑥, ℓ), solutions are strings. A problem is a function 𝑄, where 
𝑄(𝑥, ℓ, 𝑠) is the value of solution 𝑠

• Goal find OPT𝑄 𝑥, ℓ = min{𝑄(𝑥, ℓ, 𝑠)} for minimization problems

Subtlety

• If the parameter is also the optimized value, so ℓ = 𝑘

Vertex Cover by solution size: 𝑄 𝑥, 𝑘, 𝑠 =
∞ if 𝑠 is not a vertex cover

min 𝑠 , 𝑘 + 1 otherwise

𝛼-approximate kernel

Solution lifting algorithm satisfies 
𝑄 𝑥,ℓ,𝑠

𝑂𝑃𝑇𝑄(𝑥,ℓ)
≤ 𝛼

𝑄 𝑥′,ℓ′,𝑠′

𝑂𝑃𝑇𝑄 𝑥′,ℓ′
for minimization problem
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𝑥

Approximate Turing Kernelization

𝛼-approximate Turing Kernel

• Turing kernel, but
• The oracle is 𝑐-approximate for some (unknown) 𝑐

• The output must be guaranteed to be 𝛼 ⋅ 𝑐-approximate

𝑛

ℓ

Poly time

𝛼 ⋅ 𝑐-approximate 
solution

𝑐-approx.
oracle

Instances of 
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Approximate Turing Kernels, when?

When is it possible to aim for a 𝛼-approximate Turing kernel

• The problem is 𝛼-FPT-approximable

• -approximable in polynomial time

It is only useful, when

• The best-known Turing kernel is too large
• Ideally, evidence that no polynomial Turing kernel exists

• The best-known 𝛼-approximate kernel is also large
• Ideally, proof of nonexistence, but this seems much harder to come by
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• The problem is 𝛼-FPT-approximable

• -approximable in polynomial time

It is only useful, when

• The best-known Turing kernel is too large
• Ideally, evidence that no polynomial Turing kernel exists

• The best-known 𝛼-approximate kernel is also large
• Ideally, proof of nonexistence, but this seems much harder to come by

Theorem
If a decidable problem has an 𝛼-approximate Turing kernel, it has an 𝛼-
approximation algorithm that runs in FPT time.

Proof
Simply run the 𝛼-approximate Turing kernel, replacing oracle calls by calls to any 
algorithm solving the problem. Running time is bounded by

𝑓(size of TK)⋅running time of approxTK = 𝑓 ℓ ⋅poly(𝑛)



Approximate Turing Kernels, when?

When is it possible to aim for a 𝛼-approximate Turing kernel

• The problem is 𝛼-FPT-approximable

• But not 𝛼-approximable in polynomial time

It is only useful, when

• The best-known Turing kernel is too large
• Ideally, evidence that no polynomial Turing kernel exists

• The best-known 𝛼-approximate kernel is also large
• Ideally, proof of nonexistence, but this seems much harder to come by



Problem #Vertices in kernel

INDEPENDENT SET 𝑂
ℓ2

𝜀

VERTEX COVER 𝑂
ℓ

𝜀

CONNECTED VERTEX COVER

𝑂
ℓ2

𝜀

3+𝜀

𝜀

EDGE CLIQUE COVER 𝑂
ℓ4

𝜀

EDGE-DISJOINT TRIANGLE PACKING 𝑂
ℓ2

𝜀

VERTEX-DISJOINT 𝐻-PACKING

FOR CONNECTED 𝐻 𝑂
ℓ

𝜀

𝑉 𝐻 −1

CLIQUE COVER 𝑂
ℓ4

𝜀2

FEEDBACK VERTEX SET 𝑂
ℓ2

𝜀2

EDGE DOMINATING SET 𝑂
ℓ2

𝜀2

Our results
These problems parameterized by treewidth ℓ
have (1 + 𝜀)-approximate Turing Kernels

• Assuming tree decomposition on input

• For all 0 < 𝜀 ≤ 1

Plus a general statement concerning 
“sufficiently friendly” problems
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Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable) 

Polynomial kernels rare, parameterized by treewidth

• VERTEX COVER and INDEPENDENT SET are 𝑀𝐾[2] hard

• No good approximate kernels known
• Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]
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Treewidth

Tree decomposition of 𝐺

• Tree 𝑇 with nodes each node 𝑡 has 
bag 𝑋𝑡 ⊆ 𝑉(𝐺)
• For each edge 𝑢𝑣 in 𝐺, exists bag 

such that 𝑢 ∈ 𝑋𝑡 , 𝑣 ∈ 𝑋𝑡
• For each 𝑢 ∈ 𝑉(𝐺), bags in which 
𝑢 occurs form connected subgraph 
of 𝑇

• Each 𝑢 ∈ 𝑉(𝐺) occurs in at least 
one bag

• Width: size largest bag – 1
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Nice tree decompositions

A rooted tree decomposition is nice if each node 𝑡 is one of the following types

• Leaf – The node has no children, and 𝑋𝑡 = ∅
• 𝑉(𝐺𝑡) = 𝑉(𝐺𝑡 − 𝑋𝑡) = ∅

• Join – The node has children 𝑡1 and 𝑡2 and 𝑋𝑡1 = 𝑋𝑡2 = 𝑋𝑡
• 𝑉(𝐺𝑡) = 𝑉(𝐺𝑡1) ∪ 𝑉(𝐺𝑡2) and 𝑉(𝐺𝑡1) ∖ 𝑋𝑡, 𝑉(𝐺𝑡2) ∖ 𝑋𝑡 disjoint

• Introduce – The node has one child  𝑡1 and 𝑋𝑡 = 𝑋𝑡1 ∪ {𝑣}
• 𝑉 𝐺𝑡 = 𝑉 𝐺𝑡1 ∪ {𝑣}, but 𝑉(𝐺𝑡1) ∖ 𝑋𝑡 = 𝑉(𝐺𝑡2) ∖ 𝑋𝑡

• Forget – The node has one child 𝑡1 and 𝑋𝑡 = 𝑋𝑡1 ∖ {𝑣}
• 𝑉 𝐺𝑡 = 𝑉 𝐺𝑡1 , but 𝑉(𝐺𝑡1) ∖ 𝑋𝑡 = 𝑣 ∪ 𝑉(𝐺𝑡2) ∖ 𝑋𝑡

Every tree decomposition can efficiently be made nice, 

without increasing its width

• We will assume 𝑋𝑟 = ∅

𝑢, 𝑣

𝑢, 𝑣

𝑢, 𝑣

join

𝑢 forget

𝑢𝑣

∅∅

introduce

introduce

leaf



Approximate Turing kernel for 

Independent Set



Independent Set

Overview

1. Find a good separator 𝑋, separate the graph into (small) A and B

2. Ask the oracle for a solution 𝑆𝐴 of part A

3. Recurse to find an approximate solution 𝑆𝐵 for part B

4. Show 𝑆𝐴 ∪ 𝑆𝐵 is a c(1 + 𝜀)-approximate solution

Theorem

Independent Set has a (1 + 𝜀)-approximate Turing Kernel with 𝑂
ℓ2

𝜀
vertices.

𝐺

𝐵

𝐴

X



Independent Set

Overview

1. Find a good separator 𝑿, separate the graph into (small) A and B

2. Ask the oracle for a solution 𝑆𝐴 of part A

3. Recurse to find an approximate solution 𝑆𝐵 for part B

4. Show 𝑆𝐴 ∪ 𝑆𝐵 is a c(1 + 𝜀)-approximate solution

Theorem

Independent Set has a (1 + 𝜀)-approximate Turing Kernel with 𝑂
ℓ2

𝜀
vertices.

𝐺

𝐵

𝐴

X



Finding a separator

What is a good separator? Separate the graph into 𝑋, 𝐴 and 𝐵, such that

• 𝑋 ≤ ℓ + 1
• Use a bag in the tree decomposition!

• |𝐴| is small 
• |𝐴| will determine the size of the kernel

• 𝐴 = 𝑂
ℓ2

𝜀

• The part of an optimal solution in 𝐺[𝐴] is sufficiently large 
• By discarding 𝑋, we loose out on value at most |𝑋|

• |𝑋| should be small, compared to IS(G[A])

𝐺

𝐵

𝐴

X



Size of 𝐴

Proof

Various options, immediate from alternative definition of TW

Conclusion

If  𝐴 ≥
ℓ+1 2

𝜀
, then 𝐼𝑆 𝐴 ≥

ℓ+1

𝜀
≥

|𝑋|

𝜀

𝐺

𝐵

𝐴

X

Theorem
A graph with 𝑛 vertices and treewidth ℓ, has an 

independent set of size at least 
𝑛

ℓ+1



Finding a separator

Find a node 𝑡 in 𝑇 such that 
ℓ+1 2

𝜀
≤ 𝐺𝑡 − X𝑡 ≤

10 ℓ+1 2

𝜀

• Let 𝐴 ≔ 𝐺𝑡 − 𝑋𝑡, 𝑋 ≔ 𝑋𝑡

• Recurse as long as 𝐺𝑡 − X𝑡 too large
• Join node – Recurse on subtree with at least half the vertices

• Introduce/forget node – Recurse on subtree

• Leaf node – Contradicts 𝐺𝑡 − X𝑡 large
𝐺

𝐵

𝐴

X

Various separator theorems for treewidth are known; we show 
this one for completeness.



Independent Set

Overview

1. Find a good separator 𝑋, separate the graph into (small) A and B

2. Ask the oracle for a solution 𝑺𝑨 of part A

3. Recurse to find an approximate solution 𝑺𝑩 for part B

4. Show 𝑆𝐴 ∪ 𝑆𝐵 is a c(1 + 𝜀)-approximate solution

Theorem

Independent Set has a (1 + 𝜀)-approximate Turing Kernel with 𝑂
ℓ2

𝜀
vertices.

𝐺

𝐵

𝐴

X



Independent Set

Overview

1. Find a good separator 𝑋, separate the graph into (small) A and B

2. Ask the oracle for a solution 𝑆𝐴 of part A

3. Recurse to find an approximate solution 𝑆𝐵 for part B

4. Show 𝑺𝑨 ∪ 𝑺𝑩 is a 𝐜(𝟏 + 𝜺)-approximate solution

Theorem

Independent Set has a (1 + 𝜀)-approximate Turing Kernel with 𝑂
ℓ2

𝜀
vertices.

𝐺

𝐵

𝐴

X



Independent Set: Correctness

Consider an optimal solution 𝑆, then 
𝑆 = 𝑆 ∩ 𝐴 + 𝑆 ∩ 𝐵 + 𝑆 ∩ X ≤ 𝑜𝑝𝑡 𝐺 𝐴 + 𝑜𝑝𝑡(𝐺[𝐵]) + |𝑋|

≤ 𝑐 𝑆𝐴 + 𝑐 1 + 𝜀 𝑆𝐵 + 𝜀 𝑆𝐴

≤ 𝑐 1 + 𝜀 𝑆𝐴 + 𝑆𝐵

Crucial point: Lower bound for IS on graphs of low treewidth



Independent Set: Correctness

Consider an optimal solution 𝑆, then 
𝑆 = 𝑆 ∩ 𝐴 + 𝑆 ∩ 𝐵 + 𝑆 ∩ X ≤ 𝑜𝑝𝑡 𝐺 𝐴 + 𝑜𝑝𝑡(𝐺[𝐵]) + |𝑋|

≤ 𝑐 𝑆𝐴 + 𝑐 1 + 𝜀 𝑆𝐵 + 𝜀 𝑆𝐴

≤ 𝑐 1 + 𝜀 𝑆𝐴 + 𝑆𝐵

Crucial point: Lower bound for IS on graphs of low treewidth

By the 
oracle Induction



Approximate Turing kernel for 

Vertex Cover
Parameterized by treewidth



Vertex Cover

Overview

1. Find a good separator 𝑋, separate the graph into A and B
• Such that 𝑉𝐶(𝐺 𝐴 ) small

2. Apply the kernel for vertex cover to 𝐺[𝐴]

3. Ask the oracle for a solution 𝑆𝐴′ of 𝐴′

4. Use this to obtain a solution 𝑆𝐴 of 𝐺[𝐴]

5. Recurse to find an approximate solution 𝑆𝐵 for part B

6. Show 𝑆𝐴 ∪ 𝑆𝐵 ∪ 𝑋 is a (1 + 𝜀)-approximate solution

Theorem

Vertex Cover has a (1 + 𝜀)-approximate Turing Kernel with 𝑂
ℓ

𝜀
vertices.

𝐺

𝐵

𝐴

X

𝑉𝐶(𝐴)



Finding a separator

Find a node 𝑡 such that
ℓ + 1

𝜀
≤ 𝑉𝐶 𝐺𝑡 − X𝑡 ≤

10(ℓ + 1)

𝜀
Start from the root 𝑟

𝐺

𝐵

𝐴

X

𝑉𝐶(𝐴)

𝑡 = 𝑟



Finding a separator

Find a node 𝑡 such that
ℓ + 1

𝜀
≤ 𝑉𝐶 𝐺𝑡 − X𝑡 ≤

10(ℓ + 1)

𝜀
Start from the root 𝑟

𝐺

𝐵

𝐴

X

𝑉𝐶(𝐴)

𝑡 = 𝑟

𝑡 join node



Finding a separator

Find a node 𝑡 such that
ℓ + 1

𝜀
≤ 𝑉𝐶 𝐺𝑡 − X𝑡 ≤

10(ℓ + 1)

𝜀
Start from the root 𝑟

𝐺

𝐵

𝐴

X

𝑉𝐶(𝐴)

𝑡 = 𝑟

𝑡 join node

𝑡 introduce



Finding a separator

Find a node 𝑡 such that
ℓ + 1

𝜀
≤ 𝑉𝐶 𝐺𝑡 − X𝑡 ≤

10(ℓ + 1)

𝜀
Start from the root 𝑟

𝐺

𝐵

𝐴

X

𝑉𝐶(𝐴)

𝑡 = 𝑟

𝑡 join node

𝑡 introduce

𝑡 forget



Finding a separator

Find a node 𝑡 such that
ℓ + 1

𝜀
≤ 𝑉𝐶 𝐺𝑡 − X𝑡 ≤

10(ℓ + 1)

𝜀
Start from the root 𝑟

𝐺

𝐵

𝐴

X

𝑉𝐶(𝐴)

𝑡 = 𝑟

𝑡 join node

𝑡 introduce

𝑡 forget

𝑡 leaf



Finding a separator

Find a node 𝑡 such that
ℓ + 1

𝜀
≤ 𝑉𝐶 𝐺𝑡 − X𝑡 ≤

10(ℓ + 1)

𝜀
Start from the root 𝑟

𝐺

𝐵

𝐴

X

𝑉𝐶(𝐴)

𝑡 = 𝑟

𝑡 join node

𝑡 introduce

𝑡 forget

𝑡 leaf

One issue:
Computing Vertex Cover 
is NP-hard, so how to 
find 𝑡?

Solution
Approximate! 



NO Turing kernel for 

Vertex Cover
Parameterized by treewidth



Turing kernel lower bound

If 𝑄 is MK[2]-hard, then a poly Turing kernel for 𝑄 implies a poly Turing kernel for 
CNF-SAT(𝑛)

• Believed to not exist

Lower bound proof

Reduction from CNF-SAT
𝐹 = 𝑥1 ∨ 𝑥2 ∨ ⋯∨ 𝑥𝑚 ∧ ¬𝑥3 ∨ 𝑥5 ∧ 𝑥1 ∨ ¬𝑥2 ∨ 𝑥4 ∨ 𝑥8 ∧ ⋯

Theorem
Vertex Cover parameterized by treewidth is MK[2]-hard

Unbounded 
clause length



Turing kernel lower bound

𝐹 = 𝑥1 ∨ 𝑥2 ∧ ¬𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ ⋯
𝐶1 𝐶2



Turing kernel lower bound

𝐹 = 𝑥1 ∨ 𝑥2 ∧ ¬𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ ⋯

𝑣1

𝑣1

𝑣2

𝑣2

𝑣3

𝑣3

𝑣4

𝑣4

𝐶1 𝐶2



Turing kernel lower bound

𝐹 = 𝑥1 ∨ 𝑥2 ∧ ¬𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ ⋯

𝑣1

𝑣1

𝑣2

𝑣2

𝑣3

𝑣3

𝑣4

𝑣4

𝐶1 𝐶2



Turing kernel lower bound

𝐹 = 𝑥1 ∨ 𝑥2 ∧ ¬𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ ⋯

𝑣1

𝑣1

𝑣2

𝑣2

𝑣3

𝑣3

𝑣4

𝑣4

𝐺

𝐶1 𝐶2



Turing kernel lower bound

𝐹 = 𝑥1 ∨ 𝑥2 ∧ ¬𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ ⋯

𝑣1

𝑣1

𝑣2

𝑣2

𝑣3

𝑣3

𝑣4

𝑣4

𝐺 𝐺 has a vertex cover of 
size 𝑛 + ∑( 𝐶𝑖 − 1) if 
and only if 𝐹 is 
satisfiable

𝐶1 𝐶2



Turing kernel lower bound

𝐹 = 𝑥1 ∨ 𝑥2 ∧ ¬𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ ⋯

𝑣1

𝑣1

𝑣2

𝑣2

𝑣3

𝑣3

𝑣4

𝑣4

𝐺 𝐺 has a vertex cover of 
size 𝑛 + ∑( 𝐶𝑖 − 1) if 
and only if 𝐹 is 
satisfiable

𝐺 has treewidth 𝑂(𝑛)

𝐶1 𝐶2



Turing kernel lower bound

𝐹 = 𝑥1 ∨ 𝑥2 ∧ ¬𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ ⋯

𝑣1

𝑣1

𝑣2

𝑣2

𝑣3

𝑣3

𝑣4

𝑣4

𝐺 𝐺 has a vertex cover of 
size 𝑛 + ∑( 𝐶𝑖 − 1) if 
and only if 𝐹 is 
satisfiable

𝐺 has treewidth 𝑂(𝑛)

⇒ If VC(𝑡𝑤) has a polynomial (Turing) kernel, then so does CNF-SAT(𝑛)

𝐶1 𝐶2



Approximate Turing kernel for 

Connected Vertex Cover
Parameterized by treewidth



Connected Vertex Cover

Given a graph 𝐺 (and tree decomposition 𝑇) find minimum vertex cover 𝑆 such that 
𝐺[𝑆] is connected

Cannot apply earlier idea immediately

• No lower bound based on treewidth

• No polynomial kernel with parameter 𝑘

• Combining solutions is complex
• Need to ensure connectivity



Connected Vertex Cover

No polynomial kernel parameterized by solution size, but

• A (1 + 𝛿)-approximate kernel for all 𝛿 > 0
[Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

No good bounds on optimal solution depending on 
𝐶𝑉𝐶(𝐺 𝐴 ), 𝐶𝑉𝐶(𝐺[𝐵]), and 𝑋

• Recall for vertex cover we implicitly used

VC G A + 𝑉𝐶 𝐺 𝐵 ≤ 𝑉𝐶 𝐺 ≤ 𝑉𝐶 𝐺 𝐴 + 𝑉𝐶 𝐺 𝐵 + |𝑋|



Connected Vertex Cover

No polynomial kernel parameterized by solution size, but

• A (1 + 𝛿)-approximate kernel for all 𝛿 > 0
[Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

No good bounds on optimal solution depending on 
𝐶𝑉𝐶(𝐺 𝐴 ), 𝐶𝑉𝐶(𝐺[𝐵]), and 𝑋

• Recall for vertex cover we implicitly used

VC G A + 𝑉𝐶 𝐺 𝐵 ≤ 𝑉𝐶 𝐺 ≤ 𝑉𝐶 𝐺 𝐴 + 𝑉𝐶 𝐺 𝐵 + |𝑋|

𝐴

𝐺

𝐵

False for CVC, 
even when 𝐺[𝐴]

connected

Also 
problematic



Subconnected tree decompositions

Tree decomposition such that 𝐺𝑡 is connected for all 𝑡

• A given tree decomposition can be made subconnected in polynomial time
• Without increasing its width

[Fraigniaud, Nisse, LATIN 2006]

𝐺

𝐺𝑡 − 𝑋𝑡

𝑋𝑡

Connected



Connected Vertex Cover

1. If our graph has a small CVC
• Apply (1 + 𝜀)-approximate kernel, obtain (𝐺′, 𝑘′)

• Feed (𝐺′, 𝑘′) to oracle, obtain solution 𝑆′

• Lift 𝑆′ to a solution 𝑆 of (𝐺, 𝑘)

2. Else, obtain tree decomposition such that 𝐺𝑡 connected for all 𝑡
• For all 𝑡, define the following graphs 

𝐺

𝐺 − 𝐺𝑡

𝐺𝑡 − 𝑋𝑡

𝑋𝑡
෢𝐺𝑡

z Contract 𝑋

𝐺𝑡′

𝐺 − 𝐺𝑡

𝐺𝑡 − 𝑋𝑡

z
Contract 𝑋



Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in ෢𝐺𝑡, we can in polynomial time find a connected 
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

෢𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡 𝐺𝑡 − 𝑋𝑡

𝑋𝑡𝐺𝑡



𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in ෢𝐺𝑡, we can in polynomial time find a connected 
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

෢𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡



𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in ෢𝐺𝑡, we can in polynomial time find a connected 
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

෢𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

𝑎
𝑑



𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in ෢𝐺𝑡, we can in polynomial time find a connected 
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

෢𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

𝑎
𝑑



𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in ෢𝐺𝑡, we can in polynomial time find a connected 
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

෢𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

𝑎
𝑑

𝑎′



𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in ෢𝐺𝑡, we can in polynomial time find a connected 
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

෢𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

𝑎
𝑑

𝑏

𝑎′



𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in ෢𝐺𝑡, we can in polynomial time find a connected 
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

෢𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

𝑎
𝑑

𝑏 𝑐

𝑎′



𝐺𝑡 − 𝑋𝑡

Connected Vertex Cover

Lemma
Given a connected vertex cover 𝑆 in ෢𝐺𝑡, we can in polynomial time find a connected 
vertex cover 𝑆′ in 𝐺𝑡 such that 𝑆′ ≤ 𝑆 + 2|𝑋|. Furthermore, 𝑋 ⊆ 𝑆′.

(recall 𝐺𝑡 is connected)

෢𝐺𝑡
z

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

Add 𝑋𝑡

𝐺[𝑆] has ≤ |𝑋𝑡|
components

Connect

𝐺𝑡 − 𝑋𝑡

𝐺𝑡
𝑋𝑡

𝑎
𝑑

𝑏 𝑐

𝑎′

𝑏



Connected Vertex Cover

1. If 𝐺 has small CVC
• Use the (1 + 𝜀)-approximate kernel & oracle to obtain 𝑐 1 + 𝜀 -approx. solution

2. Otherwise, find 𝑡 such that ෢𝐺𝑡 has CVC of size between 
ℓ

𝛿
and 

100ℓ2

𝛿
for 𝛿 =

𝜀

3

3. Obtain 𝑐(1 + 𝛿)-approximate CVC መ𝑆 in ෢𝐺𝑡
• Use the (1 + 𝛿)-approximate kernel & oracle

4. By lemma, obtain CVC ሚ𝑆 in 𝐺𝑡, with 𝑋 ⊆ ሚ𝑆 and ሚ𝑆 ≤ መ𝑆 + 2|𝑋|

5. Obtain 𝑐(1 + 𝜀)-approximate CVC 𝑆′ in 𝐺𝑡
′

6. Output 𝑆′ ∪ ሚ𝑆 ∖ {𝑧}



Approximate Turing kernel for 

Friendly Problems
Parameterized by treewidth



Ingredients for our ATK

A friendly problem

1. Has poly-size (1 + 𝜀)-Approximate kernel when parameterized by solution size

2. Has constant-factor approximation algorithm

3. Has very good behavior with respect to separators
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Example: Feedback vertex set

#Vertices we need to remove to make a graph acyclic

• Has kernel parameterized by 𝑘
• Verify: 1-approximate

• Has 2-approximation

• Is otherwise well-behaved
• If 𝑆 is a FVS in 𝐺 − 𝑋, then 𝑆 ∪ 𝑋 is a FVS in 𝐺



A general strategy (minimization)

1. If our graph has a small optimal solution
• Apply (1 + 𝜀)-approximate kernel, obtain (𝐺′, 𝑘′)

• Feed (𝐺′, 𝑘′) to oracle, obtain solution 𝑆′

• Lift 𝑆′ to a solution 𝑆 of (𝐺, 𝑘)

2. Else, find 𝑡 such that 𝐺𝑡 − Xt has solution size ≥
𝑔 ℓ+1

𝛿

• Use approximation algorithm

3. Obtain a 𝑐(1 + 𝛿)-approximate solution 𝑆𝑡 for 𝐺𝑡 − 𝑋𝑡
• See point 1, use 𝛿 < 𝜀

4. Recurse to obtain 𝑐(1 + 𝜀)-approximate solution 𝑆′ of 𝐺 − 𝐺𝑡

5. Combine 𝑆𝑡, 𝑆′, and info about 𝑋𝑡 to a solution in 𝐺

𝐺
𝐺 − 𝐺𝑡

𝐺𝑡 − 𝑋𝑡

𝑋𝑡

𝑆𝑡

𝑆′

𝑐 ⋅ 1 + 𝜀 approx

𝑐 ⋅ 1 + 𝛿 approx



Approximate Turing kernels

Conclusions and future work
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Open questions

Approximate Turing kernels for other problems

• Many graph problems are not “friendly”
• Constant-factor approximate Turing kernel for DOMINATING SET parameterized by 

treewidth ?

• Extend to other parameters
• Other width parameters

More lower bounds

• Problems without (1 + 𝜀)-approximate (Turing) kernels
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