Approximate Turing Kernels

for Problems Parameterized by Treewidth

Astrid Pieterse

Based on joint work with
Eva-Maria C. Hols and Stefan Kratsch

https://arxiv.org/abs/2004.12683

https://arxiv.org/abs/2004.12683

Kernelization

Polynomial time preprocessing

A
v

n
Goal: obtain kernels that are small
* Every problem that is FPT has a kernel

* But only some problems have kernels
* Under some complexity-theoretic assumptions

Beyond kernelization

Turing kernelization

* Allow creation of multiple instances

kernelization

* Relax the equivalence constraint

This talk: Turing Kernelization

Turing Kernelization

A Turing Kernel of size f for a problem @ is an algorithm that solves a given
instance (x,) in time polynomial in |x| + €, when given access to an oracle that
decides membership of Q for any instance with size at most f(£) in a single step.

A

Poly time

X) a |) Yes/No

O

Instances of
size < f(¥)

Oracle for Q

Turing Kernelization: Example

CLIQUE parameterized by vertex cover

Input Graph G, with vertex cover X of size £, integer k
Question Does G have a clique of size k?

Parameter ¢

No polynomial kernel [Bodlaender, Jansen, Kratsch 2012]

e Simple Turing kernel with £ + 1 vertices

Turing Kernelization: Example

CLIQUE parameterized by vertex cover

Input Graph G, with vertex cover X of size £, integer k
Question Does G have a clique of size k?

Parameter ¢

No polynomial kernel [Bodlaender, Jansen, Kratsch 2012]

e Simple Turing kernel with £ + 1 vertices

Turing Kernelization: Example

CLIQUE parameterized by vertex cover

Input Graph G, with vertex cover X of size £, integer k
Question Does G have a clique of size k?

Parameter ¢

No polynomial kernel [Bodlaender, Jansen, Kratsch 2012]

e Simple Turing kernel with £ + 1 vertices

Turing Kernelization: Example

CLIQUE parameterized by vertex cover

Input Graph G, with vertex cover X of size £, integer k
Question Does G have a clique of size k?

Parameter ¢

No polynomial kernel [Bodlaender, Jansen, Kratsch 2012]

e Simple Turing kernel with £ + 1 vertices

Towards approximate kernelization

Move from decision problems to optimization problems

n
> Kernel) < f(®) ,

{f x }:.Qa e w

Towards approximate kernelization

Move from decision problems to optimization problems

n
> Kernel) < f(®) ,

{f x]:.Qa e x

!

Solution a y | Solution

S for x a S’ for x’

Solution
lifting

Towards approximate kernelization

Move from decision problems to optimization problems

n
> Kernel) < f(®) ,

¢ X :>¢¢ >[£’ x’}

!

c-Approximate a c-Approximate
Solution S (e < Solution S’ for
for x o x'

Solution
lifting

Towards approximate kernelization

Move from decision problems to optimization problems

n ‘ a-approximate < f(9)

|
= — =

Solution
lifting

Approximate kernelization

Parameterized optimization problem Q

* Instances are pairs (x,), solutions are strings. A problem is a function Q, where
Q(x,¥,s) is the value of solution s

* Goal find OPT, (x,¢) = min{Q(x, £, s)} for minimization problems

Subtlety
* If the parameter is also the optimized value,so ¥ = k
o _ o if s is not a vertex cover
Vertex Cover by solution size: Q(x, k,s) = {min(lsl, k+ 1) otherwise }

a-approximate kernel

I pl I
Q(x,2,s) < g Q(x'¢',s")

for minimization problem
OPTq(x,£) — = OPTo(x' ") 0 ation proble

Solution lifting algorithm satisfies

Approximate kernelization

Parameterized optimization problem Q

* Instances are pairs (x,), solutions are strings. A problem is a function Q, where
Q(x,¥,s) is the value of solution s

* Goal find OPT, (x,#) = min{Q(x, £, s)} for minimization problems

max{..} Always minimum,
also for maximization
Subtlety ximizatl
problems

* If the parameter is also the optimized valu. o€ =k
o —oo ifsisnota vertex cover }

v Cover by solution size: Q(x, k,s) = {min(ISI k+1) otherwise

Independent set

a-approximate kernel

I oor 1
Q(x,{’,s){) < Q(x ad ',502\ far minimizatinn nrohlem
OPTp(x, e

Q() Urs Q(X,B,S) >1 Q(x”f’,sl)

OPT,y(x,€) ~ @ OPT,(x', %)

Solution lifting algorithm satisfies

Approximate Turing Kernelization

a-approximate Turing Kernel

e Turing kernel, but
* The oracle is c-approximate for some (unknown) ¢
* The output must be guaranteed to be « - c-approximate

n

A

Poly time

a - c-approximate

X :>¢| D

Q g solution
Instances of
size < f(¥)
C-approx.
oracle

Approximate Turing Kernels, when?

When is it possible to aim for a a-approximate Turing kernel
* The problem is a-FPT-approximable

. -approximable in polynomial time

It is only useful, when

* The best-known Turing kernel is too large
* |deally, evidence that no polynomial Turing kernel exists

* The best-known a-approximate kernel is also large
* Ideally, proof of nonexistence, but this seems much harder to come by

Approximate Turing Kernels, when?

When is it possible to aim for a a-approximate Turing kernel
* The problem is a-FPT-approximable
. -approximable in polynomial time
Theorem

If a decidable problem has an a-approximate Turing kernel, it has an a-
approximation algorithm that runs in FPT time.

Proof

Simply run the a-approximate Turing kernel, replacing oracle calls by calls to any
algorithm solving the problem. Running time is bounded by

f (size of TK)-running time of approxTK = f(£) -poly(n)

Approximate Turing Kernels, when?

When is it possible to aim for a a-approximate Turing kernel
* The problem is a-FPT-approximable

* But not a-approximable in polynomial time

It is only useful, when

* The best-known Turing kernel is too large
* |deally, evidence that no polynomial Turing kernel exists

* The best-known a-approximate kernel is also large
* Ideally, proof of nonexistence, but this seems much harder to come by

Our results

Problem #Vertices in kernel These problems parameterized by treewidth £
INDEPENDENT SET 0 (%) have (1 + ¢)-approximate Turing Kernels
VERTEX COVER 0 (i) * Assuming tree decomposition on input

&
CONNECTED VERTEX COVER NEE e Forall0 < e <1

' €
o\(7)

EpGe CLIQUE COVER 0 (?)
EDGE-DISIOINT TRIANGLE PACKING 0 (ﬁ) .

: Plus a general statement concerning
VERTEX-DISIOINT H-PACKING VD11 “sufficiently friendly” problems
FOR CONNECTED H 0 (E)
CLIQUE COVER o (L

(&)
FEEDBACK VERTEX SET 0 (i’z)
(&)

EDGE DOMINATING SET 0

Our results

Problem #Vertices in kernel These problems parameterized by treewidth £
INDEPENDENT SET 0 (?) have (1 + ¢)-approximate Turing Kernels
VERTEX COVER 0 (ﬁ) * Assuming tree decomposition on input

&
CONNECTED VERTEX COVER NEE e Forall0 < e <1

£ £
o\(7)

EpGe CLIQUE COVER 0 (?)
EDGE-DISIOINT TRIANGLE PACKING 0 (ﬁ) .

: Plus a general statement concerning
VERTEX-DISIOINT H-PACKING VD11 “sufficiently friendly” problems
FOR CONNECTED H 0 (2)
CLIQUE COVER o (L

(&)
FEEDBACK VERTEX SET 0 (i’z)
(&)

EDGE DOMINATING SET 0

Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth
* VERTEX COVER and INDEPENDENT SET are MK |[2] hard

* No good approximate kernels known
* Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth
* VERTEX COVER and INDEPENDENT SET are MK |[2] hard

* No good approximate kernels known
* Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth
* VERTEX COVER and INDEPENDENT SET are MK |[2] hard

* No good approximate kernels known
* Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Approximate Turing kernel checklist

Considered problems are FPT (and hence, FPT-approximable)

Polynomial kernels rare, parameterized by treewidth
* VERTEX COVER and INDEPENDENT SET are MK |[2] hard

* No good approximate kernels known
* Explicitly asked open question [Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

Treewidth

Tree decomposition of G

* Tree T with nodes each node t has
bag X; C V(G)
* For each edge uv in G, exists bag
suchthatu € X;,v € X;

* Foreachu € V(G), bags in which
u occurs form connected subgraph

of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag — 1

Treewidth

Tree decomposition of G

* Tree T with nodes each node t has
bag X; C V(G)
* For each edge uv in G, exists bag
suchthatu € X;,v € X;

* Foreachu € V(G), bags in which
u occurs form connected subgraph

of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag — 1

Treewidth

Tree decomposition of G

* Tree T with nodes each node t has
bag X; C V(G)
* For each edge uv in G, exists bag
suchthatu € X;,v € X;

* Foreachu € V(G), bags in which
u occurs form connected subgraph

of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag — 1

Treewidth

Tree decomposition of G

* Tree T with nodes each node t has
bag X; C V(G)
* For each edge uv in G, exists bag
suchthatu € X;,v € X;

* Foreachu € V(G), bags in which
u occurs form connected subgraph

of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag — 1

Treewidth

Tree decomposition of G

* Tree T with nodes each node t has
bag X; C V(G)
* For each edge uv in G, exists bag
suchthatu € X;,v € X;

* Foreachu € V(G), bags in which
u occurs form connected subgraph

of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag — 1

Treewidth

Tree decomposition of G

* Tree T with nodes each node t has
bag X; C V(G)
* For each edge uv in G, exists bag
suchthatu € X;,v € X;

* Foreachu € V(G), bags in which
u occurs form connected subgraph

of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag — 1

Treewidth

Tree decomposition of G Aiﬂ

* Tree T with nodes each node t has
bag X; € V(G)

* For each edge uv in G, exists bag
such thatu € X;,v € X; @
* Foreachu € V(G), bags in which

u occurs form connected subgraph @

of T

* Eachu € V(G) occurs in at least
one bag

* Width: size largest bag — 1

Treewidth

Tree decomposition of G

* Tree T with nodes each node t has

bag X, S V(G) (abe)
* For each edge uv in G, exists bag
such thatu € X;,v € X; @ Q\@ y
* Foreachu € V(G), bags in which o

u occurs form connected subgraph
of T

* Eachu € V(G) occurs in at least

one bag 0
* Width: size largest bag—1 Q
<D Cor

Nice tree decompositions

A rooted tree decomposition is nice if each node t is one of the following types
Leaf — The node has no children, and X; = @

* V(G) =V(G—X) =0
Join — The node has children t; and ¢, and X; = X;, = X;

* V(G:) =V (G:,) UV (Ge,) and V(Ge,) \ Xi, V(G,) \ X, disjoint
Introduce — The node has one child t; and X; = X; U {v}

* V(G = V(th) U {v}, but V(G) \ Xe = V(Ge,) \ X;
Forget — The node has one child t; and X; = X; \ {v}

* V(Gy) = V(th), but V(G) \ X; = {v} UV (G,,) \ X;

Every tree decomposition can efficiently be made nice,
without increasing its width
* We will assume X, = @

Approximate Turing kernel for

Independent Set

Independent Set

Theorem

{2

Independent Set has a (1 + ¢€)-approximate Turing Kernel with O (—) vertices.

E

Overview

1.

2.
3.
4

Find a good separator X, separate the graph into (small) Aand B

Ask the oracle for a solution 54 of part A

B
Recurse to find an approximate solution Sp for part B \X ///
G X

Show S, U Spis a c(1 + €)-approximate solution
[1)

A

Independent Set

Theorem

{2

Independent Set has a (1 + ¢€)-approximate Turing Kernel with O (—) vertices.

E

Overview

1.

2.
3.
4

Find a good separator X, separate the graph into (small) A and B

Ask the oracle for a solution 54 of part A

B
Recurse to find an approximate solution Sp for part B \X ///
G X

Show S, U Spis a c(1 + €)-approximate solution
[1)

A

Finding a separator

What is a good separator? Separate the graph into X, A and B, such that

c |X|<f+1
* Use a bagin the tree decomposition!

B
* |A| is small
* |A| will determine the size of the kernel G \X ///
32
141=0(3) n
* The part of an optimal solution in G [A] is sufficiently large
* By discarding X, we loose out on value at most | X| 4

* |X| should be small, compared to IS(G[A])

Size of A

Theorem
A graph with n vertices and treewidth £, has an

independent set of size at least ﬁ

Proof \\\X ///

Various options, immediate from alternative definition of TW G
[

Conclusion A

2
E+1) then IS(4) > “Tl > 11

If |A|l =

E

Finding a separator

10(£+1)?

2
Find a node t in T such that ({):1) < |Gy — X{| < .

¢ LetA = Gt_thX = Xt

* Recurse as long as G; — X; too large ’

* Join node — Recurse on subtree with at least half the vertices \\ ///
* Introduce/forget node — Recurse on subtree G 3
* Leaf node — Contradicts G; — X; large M\

A

Independent Set

Theorem

{2

Independent Set has a (1 + ¢€)-approximate Turing Kernel with O (—) vertices.

E

Overview

1.

Find a good separator X, separate the graph into (small) Aand B

2. Ask the oracle for a solution S 4 of part A
3.
4

B
Recurse to find an approximate solution S for part B \X ///
G X

Show S, U Spis a c(1 + €)-approximate solution
[1)

A

Independent Set

Theorem

{2

Independent Set has a (1 + ¢€)-approximate Turing Kernel with O (—) vertices.

E

Overview

1.
2.
3.
4. Show S, U Spisac(1+ g)-approximate solution

Find a good separator X, separate the graph into (small) Aand B

Ask the oracle for a solution 54 of part A

B
Recurse to find an approximate solution Sp for part B \X ///
G X

[1)

A

Independent Set: Correctness

Consider an optimal solution S, then
S| =|SNA|l+|SNB|+|[SnX| <opt(G|A]) + opt(G[B]) + |X]

< c|Sul+c(1+ €)|Sg| + €|S,]

<c(1+¢€)(S4+Sp)

Crucial point: Lower bound for IS on graphs of low treewidth

Independent Set: Correctness

Consider an optimal solution S, then
S| =|SNA|+|Sn Bythe X| < opnt(G|A]) + opt(G[B]) + |X]

oracle Induction

< c|Syl+c(1+ €)|Sg| + €|S,]

<c(1+¢)(S,+Sg)

Crucial point: Lower bound for IS on graphs of low treewidth

Approximate Turing kernel for
Vertex Cover

Parameterized by treewidth

Vertex Cover

Theorem
¢

8) vertices.

Vertex Cover has a (1 + €)-approximate Turing Kernel with O (

Overview

1. Find a good separator X, separate the graph into A and B
 Such that VC(G[A]) small

B
Apply the kernel for vertex cover to G[A] \\\ ///
G X

Ask the oracle for a solution S, of A’
Use this to obtain a solution S, of G[A] / \ \
Recurse to find an approximate solution S for part B

o Uk wnN

Show S, U Sg U X isa (1 + €)-approximate solution VC(A) A

Finding a separator

Find a node t such that
£+1 10(£+ 1)
. <VC(G; — X;) < .

Start from the root r

t=r

i \W
® /|

d) VC(A) A

Finding a separator

Find a node t such that
£+1 10(£+ 1)
. <VC(G; — X;) < .

Start from the root r

t=r

t join node) \\///

d) Ve (4) A

Finding a separator

Find a node t such that

£+1 10+ 1
<VC(G, —X,) < (e+1)
&E &E
Start from the root r
t=r B
t join node \ /
t introduce G \/

d) Ve (4) A

Finding a separator

Find a node t such that

£+1 10+ 1
<VC(G, —X,) < (e+1)
&E &E
Start from the root r
t=r B
t join node \ /
t introduce G \/

Lo al

d) Ve (4) A

Finding a separator

Find a node t such that

£+1 10+ 1
<VC(G, —X,) < (e+1)
&E &E
Start from the root r
t=r B
t join node \ /
t introduce G \/

Lo al

Ve(A4) A
d) t leaf

Finding a separator

Find a node t such that

£+ 1 <VC(G, —X,) < 10(£+ 1)
5 5
Start from the root r
t=r
. One issue:
tloin node Computing Vertex Cover
t introduce is NP-hard, so how to
find t?

<> t forget
Solution

d) t leaf Approximate!

i \W
/|

VC(A) A

NO Turing kernel for
Vertex Cover

Parameterized by treewidth

Turing kernel lower bound

Theorem
Vertex Cover parameterized by treewidth is MK[2]-hard

If Q is MK[2]-hard, then a poly Turing kernel for Q implies a poly Turing kernel for
CNF-SAT(n)

* Believed to not exist
Lower bound proof

Reduction from CNF-SAT
F=((x;Vx, V-V X)) AN(mx3Vaxs) A(xg Vax, VX, Vxg) A
Unbounded
clause length

Turing kernel lower bound

Cy C,
F=((x;Vx)AN(x; VX3V X4)A-e

Turing kernel lower bound
C, C,

F=((x;Vx)AN(x; VX3V X4)A-e

U1 U_ZI v_gl T2

Turing kernel lower bound
C, C,

F=((x;Vx)AN(x; VX3V X4)A-e

SN
0 S e

Turing kernel lower bound
C, C,

F=((x;Vx)AN(x; VX3V X4)A-e

Turing kernel lower bound

» c,
F=0{Vx;)) AN(ax; VX3 V) A

(has a vertex cover of
sizen+ Y.(|C;| = 1) if
and only if F is
satisfiable

Turing kernel lower bound

» c,
F=0{Vx;)) AN(ax; VX3 V) A

(has a vertex cover of
sizen+ Y.(|C;| = 1) if
and only if F is
satisfiable

G has treewidth O(n) G

Turing kernel lower bound

c, C,
F = (x1 VXZ) N (_le VX3 VX4_) JARER

G has a vertex cover of
sizen+ Y.(|C;| = 1) if
and only if F is
satisfiable

G has treewidth O (n) G

= If VC(tw) has a polynomial (Turing) kernel, then so does CNF-SAT(n)

Approximate Turing kernel for
Connected Vertex Cover

Parameterized by treewidth

Connected Vertex Cover

Given a graph G (and tree decomposition T') find minimum vertex cover S such that
G[S] is connected

Cannot apply earlier idea immediately
* No lower bound based on treewidth
* No polynomial kernel with parameter k

* Combining solutions is complex
* Need to ensure connectivity

Connected Vertex Cover

No polynomial kernel parameterized by solution size, but

* A(1 + 6)-approximate kernel forall 6 > 0
[Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

No good bounds on optimal solution depending on
CVC(G[A]), CVC(G[B]), and X

* Recall for vertex cover we implicitly used
VC(G[A]) +VC(G[B]) <VC(G) <VC(G[A]) + VC(G[B]) + |X|

Connected Vertex Cover

No polynomial kernel parameterized by solution size, but

* A(1 + 6)-approximate kernel forall 6 > 0
[Lokshtanov, Panolan, Ramanujan, Saurabh STOC 2017]

No good bounds on optimal solution depending on
CVC(G[A]), CVC(G[B]), and X

* Recall for vertex cover we implicitly used
VC(G[A]) +VC(G[B]) <VC(G) <VC(G[A]) + VC(G[B]) + |X|

False for CVC, Also
even when G[A] problematic
connected

B

N/4
//\

A

Subconnected tree decompositions

Tree decomposition such that G; is connected for all t

* A given tree decomposition can be made subconnected in polynomial time

* Without increasing its width
[Fraigniaud, Nisse, LATIN 2006]

Connected

Connected Vertex Cover

1. If our graph has a small CVC
* Apply (1 + €)-approximate kernel, obtain (G', k')
* Feed (G', k") to oracle, obtain solution S’
e Lift S’ to a solution S of (G, k)

2. Else, obtain tree decomposition such that G; connected for all t
* For all t, define the following graphs

G — G G — Gt
E\ Contract X \\\ /// Contract X \W
t < | G /Xti \ ' > Gt’

Gy — Xi Gy — X

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X|. Furthermore, X € S'.

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X|. Furthermore, X € S'.
(recall G¢ is connected)

— G[S] has < |Xt|
X X
Gt components Gt /t \ Gt /t l \
Add X I Connect
[> | >

Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X|. Furthermore, X € S'.
(recall G¢ is connected)

G[S] has < |X¢]|
Gt components Gt X

YA A &N

[> @

Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X|. Furthermore, X € S'.
(recall G¢ is connected)

G[S] has < |X;|
Xt

Gt components Gt X Gt/ l \
Add X; / Connect

| g (@ I | 4

Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X|. Furthermore, X € S'.
(recall G¢ is connected)

A G[S] has < | X¢]
X X
Gt components Gt ¢ I Gt /t l \
Add X, Connect
[> @ @ @ | >

Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X|. Furthermore, X € S'.
(recall G¢ is connected)

A G[S] has < | X¢]
X X
Gt components Gt ¢ I Gt /t l \
Add X, Connect
[> @ @ @ | >

b
Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X|. Furthermore, X € S'.
(recall G¢ is connected)

A G[S] has < | X¢]
X X
Gt components Gt ¢ I Gt /t l \
Add X, Connect
[> @ @ @ | >

—(c)

Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

Lemma
Given a connected vertex cover S in G¢, we can in polynomial time find a connected

vertex cover S’ in G; such that |S'| < |S| + 2|X|. Furthermore, X € S'.
(recall G¢ is connected)

A G[S] has < | X¢]
X X
Gt components Gt ¢ I Gt /t l \
Add X, Connect
[> @ @ @ | >

Gt_Xt Gt_Xt Gt_Xt

Connected Vertex Cover

1. If G has small CVC
* Use the (1 + &)-approximate kernel & oracle to obtain c(1 + &)-approx. solution

—_— 2
2. Otherwise, find t such that (;; has CVC of size between g and 102{) ford = §

3. Obtain c(1 + §)-approximate CVC S in G,
* Use the (1 + §)-approximate kernel & oracle

4. Bylemma, obtain CVC Sin G, with X € S and [S| < [S] + 2|X]
Obtain c(1 + €)-approximate CVC S’ in G,
6. OutputS' U S\ {z}

Approximate Turing kernel for
Friendly Problems

Parameterized by treewidth

Ingredients for our ATK

A friendly problem

1. Has poly-size (1 + £)-Approximate kernel when parameterized by solution size
2. Has constant-factor approximation algorithm

3. Has very good behavior with respect to separators

B
* Construct “good” solution for G based on solutions for 4, B \\ ///
G X
/|

OPT(A)
A

Ingredients for our ATK

A friendly problem
1. Has poly-size (1 + £)-Approximate kernel when parameterized by solution size

Can be relaxed

L : tok + ¢
2. Has constant-factor approximation algorithm ?

Can be relaxed to
function of k + £

3. Has very good behavior with respect to separators

B
* Construct “good” solution for G based on solutions for 4, B \\ ///
G X
/|

OPT(A)
A

Example: Feedback vertex set

#Vertices we need to remove to make a graph acyclic

e Has kernel parameterized by k
* Verify: 1-approximate
* Has 2-approximation

e |s otherwise well-behaved
e IfSisaFVSinG —X,thenSUXisaFVSinG

A general strategy (minimization)

1. If our graph has a small optimal solution
* Apply (1 + €)-approximate kernel, obtain (G', k')
* Feed (G', k") to oracle, obtain solution S’
e Lift S’ to a solution S of (G, k)

g(f+1)
)

2. Else, find t such that G; — X; has solution size >
e Use approximation algorithm

3. Obtaina c(1 + §)-approximate solution S; for G; — X;
e See point1,used < ¢

c- (1 + &) approx

c-(1+ 8) approx

4. Recurse to obtain c(1 + €)-approximate solution S’ of G — G;

5. Combine S, S’, and info about X, to a solution in G

Approximate Turing kernels
Conclusions and future work

summary

Problem

INDEPENDENT SET

VERTEX COVER

CONNECTED VERTEX COVER

EDGE CLiQUE COVER
EDGE-DISIOINT TRIANGLE PACKING

VERTEX-DISJOINT H-PACKING
FOR CONNECTED H

CuiQUE COVER
FEEDBACK VERTEX SET

EDGE DOMINATING SET

#Vertices in kernel

(%)

These problems parameterized by treewidth £

have (1 + €)-approximate Turing Kernels

* Assuming tree decomposition on input
*Forall0<e <1

Friendly problems have a (1 + &£)-approximate

Turing kernel with

h€
3)

vertices

o

6-g(£+1)

&

+ g(l),f) + 3)

summary

Problem

INDEPENDENT SET

VERTEX COVER

CONNECTED VERTEX COVER

EDGE CLiQUE COVER
EDGE-DISIOINT TRIANGLE PACKING

VERTEX-DISJOINT H-PACKING
FOR CONNECTED H

CuiQUE COVER
FEEDBACK VERTEX SET

EDGE DOMINATING SET

#Vertices in kernel

(%)

These problems parameterized by treewidth £
have (1 + €)-approximate Turing Kernels

* Assuming tree decomposition on input
*Forall0<e <1

2 Si f(1 - .
0 %) =0 (ketn?l PRreY Jdlems have a (1 + €)-approximate
o\ IVEDI-1 g kernel with
0<(e)) £ 6-g(£+1) Ny p
0 i—4 §; () < T g()) +
vertices

summary

Problem #Vertices in kernel These problems parameterized by treewidth £
INDEPENDENT SET 0 (ﬁ) have (1 + ¢)-approximate Turing Kernels
&
VERTEX COVER 0 (ﬁ) * Assuming tree decomposition on input
&
CONNECTED VERTEX COVER N e Forall0 < e <1
o\(%)
EDGE CLQUE COVER 0 (?)
EDGE-DISJOINT TRIANGLE PACKING &2 Size of (1 + &)-approx. _
0 (%) kernel Jdlems have a (1 + ¢)-approximate
VERTEX-DISJOINT H-PACKING ol V(H)|-1 ‘ g Kernel with
FOR CONNECTED H (E) € 6 - g(f + 1)
CLiQuE COVER 0 i h §, P g + g(l): t)+ 71
&

approximation

algorithm

FEEDBACK VERTEX SET 0 (t’z) Approximation factor of
EDGE DOMINATING SET 0 ()

summary

Problem

INDEPENDENT SET

VERTEX COVER

CONNECTED VERTEX COVER

EDGE CLiQUE COVER
EDGE-DISIOINT TRIANGLE PACKING

VERTEX-DISJOINT H-PACKING
FOR CONNECTED H

CLiQUE COVER
FEEDBACK VERTEX SET

EDGE DOMINATING SET

#Vertices in kernel

(%)

These problems parameterized by treewidth £
have (1 + €)-approximate Turing Kernels

* Assuming tree decomposition on input
*Forall0<e <1

“Friendlyness”

0(%) e of (tetna_approx' dlen. (sually £+1) — imate
o\ IVaDI-1 g kernel with

0<(e)) £ 6-g(£+1)

0£ §;(P < +g(1))'€ +€

Approximation factor of
approximation
algorithm

Open questions

Approximate Turing kernels for other problems

* Many graph problems are not “friendly”

* Constant-factor approximate Turing kernel for DOMINATING SET parameterized by
treewidth ?

e Extend to other parameters
e Other width parameters

More lower bounds
* Problems without (1 + ¢)-approximate (Turing) kernels

Open questions

Approximate Turing kernels for other problems

* Many graph problems are not “friendly”

* Constant-factor approximate Turing kernel for DOMINATING SET parameterized by
treewidth ?

e Extend to other parameters
e Other width parameters

More lower bounds
* Problems without (1 + ¢)-approximate (Turing) kernels

