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Chapter 1
Introduction

In this thesis, we will study the effectiveness of preprocessing. To see what
kind of preprocessing we will consider, let us start by looking at a puzzle. In
Figure 1.1 you see a set of points. The challenge is to cover all these points, by
drawing at most eight lines. The lines can be arbitrarily long, but they must be
straight. A point is only covered if you draw a line right through its center. Let
us attempt to solve the puzzle!

The puzzle in Figure 1.1 has 48 points. With this many points to cover,
how do you start solving the puzzle? Observe that if there is a line L you can
draw that has at least nine points on it, you must use that line. Otherwise, you
would have to draw separate lines through each of the nine points. After all,
any line containing at least two out of these nine points, corresponds to line L
itself. Given that you cannot afford nine lines, you must indeed choose to draw
the line L in order to be able to solve the puzzle. In Figure 1.2, such a line is
indicated. Now, you can continue from there, with only 7 lines remaining, and
many fewer points. Since we have only seven lines left, if we can find a line
with at least eight points on it we must choose that line. The puzzle depicted
here is such that, by simply continuing this reasoning, you can in fact solve the
entire puzzle. Refer to Figure 1.3, for the solution. This of course need not
always be true, the above method is no more than a preprocessing rule: there is
no reason to believe that it should always apply, and also no reason to believe
that the solution is trivial in puzzles where it does not apply.

Yet we can observe something else. When the above rule no longer applies,
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Figure 1.1 Can you cover all points by drawing at most 8 straight lines?

we still have k lines left that we can use, for some k ≤ 8, and no line exists
that covers at least k + 1 points. Stated differently, every line you can draw will
cover at most k of the remaining points, and you can only use k lines in total.
But then, for the puzzle to be solvable, we cannot actually have many points. If
the puzzle has more than k · k = k2 points remaining, it cannot be solved at all.
So even if our preprocessing step does not solve the puzzle, it does guarantee
that after preprocessing, the remaining puzzle is “small”!

While the above example is somewhat artificial, it does demonstrate a
general solving strategy: before trying to solve a problem, first try to preprocess
it by applying (simple) rules that reduce its size or its complexity. This strategy
can be applied in a wide range of different scenarios, and preprocessing is
indeed widely used in practical applications. For example, many real-world
scheduling problems can be modeled as mixed-integer programs, and then
solved by a solver such as the CPLEX optimizer. These solvers often start by
using a number of rules to reduce the solution space as well as to identify
redundant constraints, before solving the problem [2,5]. This preprocessing has
for example been shown to greatly add to CPLEX’s ability to solve optimization
instances [3, 12]. Disabling CPLEX’s presolving step was shown to increase
average solving time on the more challenging problems by a factor 11 [3].

Preprocessing techniques were also shown to be useful in the PACE competi-
tion in recent years [30,31]. This is a competition in which teams design and
implement (parameterized) algorithms that solve a given problem as quickly
as possible on a variety of input instances. Here preprocessing is often applied.
For example, the winner of one of the challenges of the 2016 edition [30] used
an efficient preprocessing algorithm for the FEEDBACK VERTEX SET problem as a
subroutine [54].

As seen from the examples above, a good preprocessing algorithm must
be efficient, as we want to speed up the overall computation. Furthermore, a
preprocessing algorithm should be guaranteed to be correct, meaning that the
answer or solution to a preprocessed input instance can quickly be turned into a
solution for the original instance. Finally, we would like to be able to give some
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guarantee that the preprocessed instance is always “small”, or in some sense
easier than the original instance.

In this thesis, we will study the power of such preprocessing algorithms.
In particular, we will study preprocessing algorithms that are required to run
in polynomial time, such that the preprocessing step can be done efficiently.
The problems we will consider in this thesis are NP-hard. As such, we cannot
expect to find polynomial-time preprocessing algorithms that always manage to
reduce the size of the given instance. After all, such a preprocessing step could
then be used repeatedly, until the instance is so small that it is trivial to solve.
This would yield a polynomial-time algorithm for an NP-hard problem, which
is unlikely to exist. For this reason, we will measure the effectiveness of our
preprocessing algorithm by some additional parameter, other than the input
size, that (hopefully) measures the complexity of the given input instance.

To study the effectiveness of preprocessing, we therefore consider parame-
terized problems, whose inputs consist of the “regular” input, together with an
additional parameter (an integer) that is a measure of the complexity of the
given input. A preprocessing algorithm must now guarantee that the size of a
preprocessed instance is bounded by some (hopefully small) function of this
additional parameter.

1.1 Kernelization

To formally study this type of preprocessing, we will use the notion of kerneliza-
tion. A kernelization algorithm (or kernel) is a polynomial-time preprocessing
algorithm that takes an instance of a parameterized problem, and outputs an
equivalent instance to the same problem whose size is bounded by some func-
tion of the considered parameter. This bound on the instance size in terms of
the initial parameter value is known as the size of the kernel, and can only
depend on the value of the initial parameter. In this thesis, we will only consider
decision problems, which are problems that only have a yes/no-answer. As such,
a kernel is only required to preserve this yes/no-answer for the preprocessed
instance to be considered equivalent to the original one.

The example of a preprocessing algorithm above where we wanted to cover
points with lines, contains all observations needed to provide a kernelization
algorithm for the problem. Suppose we have an arbitrary instance asking if it is
possible to cover n points with k lines, and let k be the considered parameter. The
kernel repeatedly finds a line through at least k + 1 points, removes all relevant
points, and decreases k by one. When this rule is no longer applicable, it checks
if there are at most k2 remaining points. If yes, then this is the preprocessed
instance. If not, then the puzzle has no solution, and a trivial no-instance can
be returned. As such, POINT-LINE COVER (the problem of covering points with
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L

Figure 1.2 Can you cover all points not already covered by L by drawing at most 7
additional straight lines?

lines) has a kernelization algorithm that always outputs an instance with at
most O(k2) points4.

One would like to distinguish parameterized problems that have “good”
kernels, such as the one for POINT-LINE COVER given above, from those that
do not. In this direction, one may ask which parameterized problems allow for
so-called polynomial kernels, which are kernels whose size bound is polynomial
in the parameter value. Such kernels are generally considered good to have,
as their size grows not-too-fast when the parameter increases. Many (general)
tools have been developed to find (polynomial) kernels for a wide variety of
problems [15, 39, 67], and there are several books about the area [29, 40].
Furthermore, methods have been developed to be able to rule out the existence
of polynomial kernels5.

The easiest method to rule out polynomial kernels is perhaps to provide a
certain type of reduction [18] starting from a parameterized problem that is
already known not to have a polynomial kernel, to the problem under considera-
tion. Note that, while NP-hardness reductions may indeed transfer kernelization
lower bounds, this is not always the case, as more care needs to be taken to
ensure that not only the size of the new instance is polynomial in the original
size, but that also the new parameter is appropriately bounded. As usual, such
a reduction requires a suitable starting problem.

Another lower bound technique is that of cross-compositions, which was

4The size of this kernel is not necessarily bounded by O(k2), as the size of a kernel is measured
by the number of bits needed to represent the resulting instance. This depends on the representation
of the input points, which we will not discuss for this example.

5All “non-existence” or lower bound results mentioned in this introduction are based on com-
plexity theoretic assumptions, since for example P = NP would imply constant-size kernels for all
problems considered in this thesis. Refer to Chapter 2, in particular §2.4.1, for further details.
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Figure 1.3 One possible way to cover all points given in Figure 1.1 with 8 straight lines.
An order in which one could find these lines by repeatedly applying the preprocessing
rule is indicated.

introduced by Bodlaender et al. [16] and relies on the non-existence of so-called
distillation algorithms for problems that are NP-hard, which was proven by
Fortnow and Santhanam [41]. Using these methods, it has been shown that a
number of problems do not have polynomial kernels [14,18,68].

For those parameterized problems that do have a polynomial kernel, we can
still ask what the best bound is that can be achieved. For example, we have
seen that the POINT-LINE COVER problem has a kernel with O(k2) points, and
one may ask whether this can be improved to O(k1.5), or even better. Such
questions can sometimes be answered, at least in the negative direction, by
using a more refined definition of cross-compositions [16]. This allows us to
give very precise bounds on the worst-case size of a best-possible kernel. One of
the first results in this direction was obtained by Dell and Van Melkebeek [33].

In this thesis, we will be interested in answering the question: Given a
parameterized problem, what is the smallest possible kernel? In particular, we
will consider a number of classic graph and logic problems.

1.2 Polynomial-time sparsification

Observe that a graph with n vertices can have (n
2) = Θ(n2) edges, which is

quadratic in the number of vertices. One specific method of preprocessing
for a graph problem, would be trying to make the input graph less dense, by
reducing the number of edges. Of course, this removal of edges should not
change the answer to the problem at hand. We will refer to such a procedure as
a sparsification.

As an example, consider the graph depicted in Figure 1.4. We can ask
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u
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Figure 1.4 Depicted is an instance for 3-COLORING (left). On the right is an equivalent
instance, obtained by removing a number of edges that (provably) do not change the
colorability of the graph. In fact, one may verify that both instances have the exact same
3-colorings.

ourselves whether this graph can be colored with at most three colors, say red,
green, and blue, such that the endpoints of every edge get distinct colors. This
problem is also known as the 3-COLORING problem. Since it is NP-hard [46], we
do not expect to find a polynomial-time algorithm to solve the problem. We can
however try to eliminate certain edges in polynomial time. For example, since
vertices a and b are connected by an edge, a proper 3-coloring will assign them
different colors. Since vertex u connects to both a and b, it will be colored by
the only remaining color. Similarly, vertex v should get a color different from a
and b and will thus receive the same color as vertex u.

Now, we can use the knowledge that u and v always receive the same color,
to remove a number of edges from the depicted instance: vertex e is connected
to both u and v, but we can actually forget about its connection to v, as the
remaining connection to u is enough to ensure that e and v receive distinct
colors. Similarly, we can eliminate the connection between d and u. We can
furthermore observe that vertices a and d always receive the same color, and
remove the connection between e and a. This results in the sparsified instance
depicted in Figure 1.4 on the right.

The argumentation we used above to sparsify the instance ensures that the
solution does not change. In this thesis we will study whether or not we can
find such rules that are not only correct in this way, but also powerful enough
to give some non-trivial upper bound on the number of edges of the reduced
instance.

Sparsification can also be applied to logic problems. Consider as an example
the d-CNF-SAT problem, which is one of the most well-known logic problems. The
input to d-CNF-SAT is a formula in d-CNF form, thus a formula over n variables
consisting of a conjunction of clauses, where each clause is a disjunction of d
literals. A literal is simply a variable or its negation. Consider for example the
following 3-CNF-SAT instance.

F = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4).

The problem now asks whether there is a Boolean assignment to the variables
that satisfies the formula. In the example above, letting x1 := x2 := true and



1

1.2 Polynomial-time sparsification 7

x3 := x4 := false would satisfy F .
The goal of sparsification for logic problems is to efficiently reduce the

number of clauses (or constraints) in terms of the number of variables. If we
look at the formula F given above, we may observe that removing the last
clause does not influence the set of satisfying assignments to F : any assignment
satisfying the first two clauses, also satisfies the third. We will therefore say that
this last clause is redundant. Define F ′ to be the formula consisting of only the
first two clauses of F . We can see that F ′ and F are equivalent, as follows.
Consider any satisfying assignment for F ′. Clearly, this assignment satisfies the
first clause (x1 ∨ x2 ∨ ¬x3). Thus, the assignment will set either x1, x2 or ¬x3
to true. If x2 is assigned true, this assignment also satisfies the last clause of F .
Similarly, if ¬x3 is true, and thus if x3 is false, the assignment satisfies the last
clause. It remains to consider the case where only x1 is set to true. But then, to
satisfy the second clause, at least one of x2 and x4 is set to true (as ¬x1 is false)
and again the last clause is satisfied. As such, we see that F ′ has exactly the
same satisfying assignments as the original formula!

An interesting challenge is to give general methods that efficiently find such
redundant clauses, and significantly reduce the number of clauses.

For both graph and logic problems, we can observe that we can easily obtain
a sparsification that gives some upper bound on the number of edges or clauses,
respectively. A simple graph on n vertices can have only (n

2) = O(n2) edges. A
d-CNF formula on n variables can have at most (2n)d = O(nd) distinct clauses.
The simplest sparsification for d-CNF-SAT would therefore be to simply remove
duplicate clauses. We will therefore say that graph problems for which the
input is a simple graph have a trivial sparsification of size O(n2) (do nothing),
and a problem like d-CNF-SAT has a trivial sparsification of size O(nd) (remove
duplicate clauses).

The question that is studied in this thesis is whether a non-trivial sparsifi-
cation exists: a sparsification that achieves better bounds than the ones given
above. For example, can we efficiently reduce the number of edges to O(n) for
a given problem defined on general graphs? And can we reduce the number
of clauses in a logic problem with clauses of size d to O(nc) for some c < d in
polynomial time?

Many of the earlier results in this direction were negative [33,56,59], and in
this thesis we will add several (graph) problems to the list of problems that do
not have a non-trivial sparsification. On the other hand, we will show a number
of surprising non-trivial sparsifications for logic problems, demonstrating that
non-trivial sparsifications are possible for a remarkable number of such problems.
Let us continue by looking at the problems that will be studied in this thesis in
more detail.
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1.3 Graph coloring
In this thesis, we will study a very general graph problem, for which it was
previously not known whether a non-trivial sparsification was possible. A special
case of the problem that we will study is the q-COLORING problem. It generalizes
the 3-COLORING problem discussed earlier. Given a graph G, it asks whether
we can assign every vertex one of q colors, such that each edge has differently
colored endpoints.

This is a very well-studied problem [63,73], with many applications [6,45,
77]. For example, graph coloring can be used to solve scheduling problems,
where jobs need to be assigned to machines. If we assume for simplicity that
all machines are identical and one machine cannot handle multiple jobs at the
same time, this can be seen as a coloring problem. We can model each job as
a vertex, and each machine as one of the colors. We connect two jobs with an
edge if they overlap in time. Coloring the resulting graph gives a solution to the
original scheduling problem, as it is ensured that each job is assigned a machine
(color), and no machine does two tasks at the same time.

In the classic q-COLORING problem, vertices of the same color cannot be
connected by an edge, but there are no further restrictions on the coloring.
In some cases, you may want to forbid other color combinations as well. For
example, one could want to color the graph with five colors, such that every
edge has differently colored endpoints and furthermore, a pink vertex can never
be connected to an orange one. To capture these kind of constraints, we will
look at the H-COLORING problem, which is defined for every fixed graph H.
The colorset we now use is given by the vertex set of H, meaning every vertex
of H corresponds to a color we may use. An input to the problem consists of an
undirected graph G, and the question is to color each vertex of G with one of
these colors. If we now look at any edge in G, we require that the coloring of
its endpoints is allowed by H, meaning that the corresponding vertices in H are
connected by an edge. To see that this is a generalization of the q-COLORING

problem, observe that H-COLORING corresponds to q-COLORING when we let H
be a clique on q vertices.

In this thesis, we will show a sparsification lower bound for H-COLORING

under certain conditions on H. Furthermore, we will obtain a tight kernelization
bound for the problem when parameterized by the size of a vertex cover in the
input graph. We then extend this result to obtain the same kernel bound for a
smaller parameter.

1.4 Constraint satisfaction problems
When introducing sparsification, we used the logic problem d-CNF-SAT as an
example. In the d-CNF-SAT problem, we are given a formula that consists of a
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number of clauses and the formula is satisfied if at least one literal evaluates
to true in each clause. It is easy to think of many variations to this problem, by
changing the type of clauses we use. For example, the case where the formula
is satisfied when each clause contains exactly one literal that is set to true
corresponds to the problem that is known as EXACT SAT.

We can put these problems in a common framework by studying the CON-
STRAINT SATISFACTION PROBLEM (CSP) over a certain domain D. Broadly
speaking, the input for this problem consists of a set of variables and a number
of constraints over these variables. The question is whether it is possible to
assign each variable a value from D, such that all constraints are satisfied. In
this thesis we will mostly study the case where D = {0, 1} (or equivalently,
D = {false, true}), known as so-called BOOLEAN CSPS.

In principle, a constraint could be almost anything: it could capture that
“exactly one of the variables x,y,z is true”, or that “x = ¬y”, or perhaps that
“x = true or y = z”. Clearly, the expressiveness of a CSP depends on the
type of constraints one allows. The type of allowed constraints is given by
a so-called constraint language, often denoted by Γ. We can thus study the
problem CSP(Γ), which deals with input instances that only use constraints
allowed by Γ. This study of CSPs led to a complete dichotomy for Boolean
CSPs: if Γ satisfies certain (verifiable) conditions, CSP(Γ) is polynomial-time
solvable, otherwise CSP(Γ) is NP-complete [83]. The hardness of CSP(Γ) over
non-Boolean domains remained open for many decades, until recently also in
this situation a complete dichotomy was obtained. The dichotomy was proven
independently by Bulatov and Zhuk [22,92].

We can obtain a more fine-grained view of the complexity of constraint
satisfaction problems, by studying how the sparsifiability of the problem depends
on properties of Γ. The goal is then to identify relevant properties of Γ that
determine the best-possible size of a sparsification for CSP(Γ). While we are
far from a complete classification, we put a number of existing sparsification
results into a common framework in this thesis. Furthermore, we give a widely
applicable technique to sparsify CSPs and show that the obtained results are
tight in several cases.

1.5 Thesis overview
We will start by giving the necessary preliminaries (including the formal defini-
tions of all concepts mentioned in this introduction) in Chapter 2.

In Chapter 3, we study the sparsifiability of a specific type of constraint
satisfaction problem. In particular, we consider CSPs that are given as equations
of polynomials over multiple variables over various rings and fields. In this case,
we obtain sparsification results where the size of the sparsification depends on
the degree of the given polynomial equalities and the properties of the ring
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or field over which these polynomials are given. This method of sparsification
turns out to generalize a number of existing sparsification results for well-known
logic problems.

We furthermore give lower bounds to show that the results obtained by this
sparsification technique are best-possible, by providing constraint languages for
which we obtain an optimal sparsification.

In Chapter 4 we continue our study of CSPs, by applying the methodology
introduced in Chapter 3 to a number of constraint satisfaction problems. We
start by showing how to apply the sparsification method from Chapter 3 to a
wider range of CSPs. We continue by giving a general property for constraint
languages that can be used to obtain sparsification lower bounds.

Using these results, we show that we can fully distinguish between Boolean
CSPs that have a non-trivial sparsification and those that do not. We then give a
sufficient condition of a constraint language that ensures that the corresponding
CSP has a linear sparsification. We use this result to fully classify all symmetric
Boolean CSPs that have a linear sparsification. We conclude the chapter by
fully classifying the sparsifiability of CSPs over constraint languages where each
constraint concerns at most 3 variables.

After studying CSPs, we change our focus to a graph problem, namely
the H-COLORING problem, which is a generalization of the well-known q-
COLORING problem. In Chapter 5, we show a sparsification lower bound for
this problem. Under complexity-theoretic assumptions, we show that for all
graphs H satisfying certain conditions, the H-COLORING problems does not
have a sparsification with O(n2−ε) bits, for any ε > 0. Among other things, this
implies a sparsification lower bound for the well-known 3-COLORING problem.
This chapter combines kernelization lower bound techniques, with techniques
from the algebraic analysis of constraint satisfaction problems.

In Chapter 6, we will study the kernelization of the H-COLORING problem,
when parameterized by the size of a vertex cover in the input graph. A kernel for
q-COLORING parameterized by the size of a vertex cover was previously known,
but while this kernel had size O(kq), the best lower bound was a factor k smaller.
We show how to improve the kernel to have O(kq−1) vertices and edges by
cleverly using the sparsification for CSPs introduced in Chapter 3. We further
generalize this result to obtain a kernel for H-COLORING parameterized by the
size of a twin-cover.

1.6 List of publications
This thesis is based on the following publications. Chapter 3 is based on the
following publication.
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Chapter 2

Preliminaries

In this section we introduce the background material that will be used through-
out this thesis. We start in Section 2.1 by introducing some basic notation.
In Section 2.2, we give notation and definitions relating to graphs and graph
problems. We continue in Section 2.3 by introducing parameterized complexity,
and giving the formal definition of kernelization. In Section 2.4, we describe
the methods that will be used to obtain kernelization lower bounds, and the
complexity-theoretic assumption under which we are able to obtain these lower
bounds. In Sections 2.5 and 2.6, we describe notation and definitions relating to
linear algebra, matrices, and polynomials. In Section 2.7, we formally introduce
Constraint Satisfaction Problems, and provide some known results. Finally,
in Section 2.8 we introduce graph coloring, graph homomorphism, and the
relation between graph homomorphism and Constraint Satisfaction Problems.

2.1 General notation
For a positive integer n, we define [n] := {1, 2, . . . , n}. Let Z := {. . . ,−3,−2,
−1, 0, 1, 2, 3, . . .} be the set of all integers. We use N := {0, 1, 2, 3, . . .} to
indicate the non-negative integers. We use N+ := {1, 2, 3, . . .} to denote the set
of all positive integers.

For a set S we use the notation (S
k) := {S′ ⊆ S | |S′| = k} to denote the set of

all size-k subsets of S. We use the notation Sk := {(s1, . . . , sk) | s1, . . . , sk ∈ S}
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to denote the set of all k-tuples with elements from S. In particular, [n]2 denotes
all 2-tuples of elements from [n].

We use the notation Õ to suppress polylogarithmic factors, thus Õ( f (n)) =
O( f (n) · logc n) for some constant c.

2.2 Graphs

All graphs considered in this thesis are finite, simple, and undirected, unless
explicitly mentioned otherwise. A graph G has vertex set V(G) and edge
set E(G). An edge is a nonempty subset of V(G) of size at most two; for
non-simple graphs the singleton sets correspond to self-loops (although we may
sometimes denote a self-loop on vertex v by edge {v, v} for convenience). In
a simple graph, all edges have size two. For a simple graph G, let Ḡ denote
the complement of G, such that V(Ḡ) := V(G) and E(Ḡ) := {{u, v} | u, v ∈
V(G), {u, v} /∈ E(G)}.
Definition 2.1 (Neighborhood) Let G be a (not necessarily simple) undirected
graph. For a vertex v ∈ V(G), let NG(v) := {u | {u, v} ∈ E(G)} denote its
open neighborhood. These are simply all vertices that are connected to v by an
edge. A vertex v is contained in its own open neighborhood, if and only if there
is a self-loop at v. We let NG[v] := NG(v) ∪ {v} be its closed neighborhood.

Similarly, for a set of vertices S ⊆ V(G), we denote its closed neighborhood
by NG[S] :=

⋃
v∈S NG[v]. In a simple graph G, its open neighborhood is given

by NG(S) := NG[S] \ S. In general, the open neighborhood of S is given by
NG(S) := (NG[S] \ S) ∪ {s | s ∈ S, {s} ∈ E(G)}. We may omit the subscript G
when it is clear from context.

For a vertex v ∈ V(G) in a graph G, we use the notation dG(v) to denote its
degree in G. If G is a simple graph, then dG(v) := |NG(v)|. If G has self-loops,
dG(v) := |NG(v)|+ 1 if {v} ∈ E(G) and dG(v) := |NG(v)| otherwise (such that
a vertex with only a self-loop has degree 2). We use ∆(G) := maxv∈V(G) dG(v)
to denote the maximum degree of any vertex in G.

For a graph G and a set S ⊆ V(G), we say S is a clique in G if {u, v} ∈ E(G)
for all u, v ∈ S with u 6= v. We use ω(G) to denote the size of the largest clique
in G, known as the clique number of G. We say a set S ⊆ V(G) is an independent
set if for all s, s′ ∈ S, it holds that {s, s′} /∈ E(G). Observe that for a simple
graph G, the set S is an independent set in G if and only if S is a clique in Ḡ.

Let G be a graph and let S ⊆ V(G). We say S is a vertex cover of G if for
every edge e ∈ E(G) at least one of its endpoints is in S, thus e ∩ S 6= ∅. From
this definition it is easy to see that S is a vertex cover in a graph G, if and only
if V(G) \ S is an independent set.

A set S ⊆ V(G) is a dominating set in G if for every vertex v /∈ S, at least
one of its neighbors is in S, meaning NG[v] ∩ S 6= ∅.
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A graph H is a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G). We say
H is a spanning subgraph of G if H is a subgraph of G such that V(H) = V(G).
We sometimes also say that a graph H is a (spanning) subgraph of G if H is
isomorphic to a subgraph G′ of G.

Let S be a subset of the vertices of G. We use G[S] to denote the subgraph
of G induced by S, thus G[S] is the graph with vertex set S and edge set
{{s, s′} | {s, s′} ∈ E(G) ∧ s, s′ ∈ S}. For a subset of the vertices S we use the
notation G− S do denote the graph G[V(G) \ S], which is the graph G after
removing all vertices in S and their incident edges.

Definition 2.2 (Paths, walks, cycles) For a (not necessarily simple) graph G,
a walk of length k in G is a sequence of vertices (x0, x1, . . . , xk) such that
{xi−1, xi} ∈ E(G) for all i ∈ [k]. A walk is closed if x0 = xk. A path is a walk on
which all vertices are distinct. A cycle is a closed walk (x0, x1, . . . , xk) where all
vertices are distinct except that x0 = xk

6. For vertices u, v ∈ V(G), a path or
walk of length k from u to v is a path or walk for which x0 = u and xk = v.

A path or cycle is odd if its length is odd. Note that a self-loop is an odd cycle
(of length 1).

Definition 2.3 (Girth) The (odd) girth of a (not necessarily simple) graph G is
the length of its shortest (odd) cycle, or +∞ if no such cycle exists.

For an integer α ≥ 1, we use the notation Cα for the cycle on α vertices,
such that V(Cα) := [α], and E(Cα) := {{x, x + 1} | x ∈ [α− 1]} ∪ {α, 1}. We
let Kα be the complete graph (clique) on α vertices, such that V(Kα) := [α] and
E(Kα) := {{x, y} | x, y ∈ [α], x 6= y}.

We say a graph G is bipartite if its vertex set can be partitioned into sets S
and T, such that S and T are independent sets in G, meaning the only edges
in G connect a vertex in S to a vertex in T. Observe that a graph is bipartite,
if and only if it is 2-colorable. We use Kα,β to denote the complete bipartite
graph whose partite sets have size α and β, such that V(Kα,β) := S ∪ T with
S := {s1, . . . , sα} and T := {t1, . . . , tβ}. Furthermore, E(Kα,β) := {{s, t} | s ∈
S, t ∈ T}.

2.3 Parameterized complexity and kernelization

Let Σ be a fixed finite alphabet. Define Σ∗ as the set of all finite strings with
elements from Σ (including the empty string). A parameterized problem is a
language Q ⊆ Σ∗ ×N. This means that such a problem has input instances
(x, k), where the second component is called the parameter. The parameter is
commonly referred to by the letter k. In this thesis, we will sometimes deviate
from this convention. When the chosen parameter corresponds to the number

6By this definition, paths and cycles are necessarily simple paths and cycles.
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of variables in a logic problem, or the number of vertices in a graph problem,
we will regularly denote it by n.

Now that we have defined parameterized problems, we can formalize the
definition of kernelization that was presented in the introduction of this thesis.

Definition 2.4 ((Generalized) kernel) Let Q,Q′ ⊆ Σ∗ ×N be parameterized
problems and let h : N → N be a computable function. A generalized kernel
for Q into Q′ of size h(k) is an algorithm that, on input (x, k) ∈ Σ∗ ×N, takes
time polynomial in |x|+ k and outputs an instance (x′, k′) such that:

1. |x′| and k′ are bounded by h(k), and

2. (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.

The algorithm is a kernel for Q if Q′ = Q. It is a polynomial (generalized) kernel
if h(k) is a polynomial. We use the words kernel and kernelization (algorithm)
interchangeably.

Observe that, for a given parameterized problem, it is entirely possible
that no kernelization exists. Intuitively, this happens when the parameter
does not capture the complexity of the problem very well. As an extreme
example, choosing a parameter that is constant means that a kernel only exists
if the problem is solvable in polynomial time. In this thesis we will study
parameterized problems that do have kernelization algorithms, and investigate
what the smallest kernel is for these problems.

One of the other questions that parameterized complexity deals with is
whether a parameterized problem can be solved in time polynomial in |x| (but
possibly exponential in the parameter). More formally:

Definition 2.5 (FPT) We say that a parameterized problemQ is Fixed-Parameter
Tractable (FPT) if there is a computable function f and an algorithm to determine
for any (x, k) ∈ Σ∗ ×N if (x, k) ∈ Q in time f (k) · |x|c for a constant c.

It turns out that the problems that admit FPT algorithms, and those that
have kernels, coincide.

I Theorem 2.6 ([13, Theorem 1]) Let Q be a parameterized problem. Then Q is
FPT if and only if Q is decidable and has a kernel. J

By this result, showing that a problem is (not) FPT can be used to show that
it does (not) have a kernel.

2.4 Kernelization lower bound framework

Now that we have seen the definition of a kernel, we will look at the methods
to prove kernelization lower bounds. We start by describing the necessary
complexity-theoretic assumptions.
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2.4.1 Complexity-theoretic assumptions
The kernelization lower bounds obtained in this thesis, are proven under
complexity-theoretic assumptions. This is necessary, since the problems we
consider are all contained in NP. As such, P = NP would imply that all con-
sidered problems have a kernel of size O(1), obtained by solving the problem
in polynomial time, and then outputting a constant-size yes- or no-instance,
depending on the answer.

Thereby, we will have to assume P 6= NP to prove meaningful lower bounds.
However, kernelization lower bounds are generally only obtained under an
even stronger assumption, namely NP * coNP/poly. We assume the reader is
familiar with the complexity theory relating to the classes P, NP, and coNP.
In the remainder of this section we will give an informal description of the
meaning of the assumption that NP is not contained in coNP/poly.

The class coNP/poly is the class of problems that can be co-nondeterministic-
ally decided by a Turing machine M, in polynomial time, when given polynomial
advice. Machine M co-nondeterministically decides a problem, if for a yes-
instance, all computation paths lead to an accept. When given a no-instance,
there must be at least one computation path leading to a reject.

This polynomial advice means that M may have an additional, read-only,
input tape. An input to this machine is now a “normal” input x, together with an
input f (|x|) on the advice tape of length polynomial in the length of the input.
Observe that this advice may only depend on the length of the given input x.

Alternatively, the class coNP/poly can be seen as those problems for which
there is an infinite sequence of algorithms A1, A2, . . ., one for every input
length n, such that An co-nondeterministically decides the inputs of size ex-
actly n in time O(nc) for some constant c independent of n, and additionally
the description size of each algorithm An is bounded by O(nc).

Clearly, coNP ⊆ coNP/poly, but it is known that coNP is in fact a strict
subset of coNP/poly. The argument for this is not very complicated: We can
show that coNP/poly contains undecidable problems, while it is obvious that
coNP does not. In fact, even P/poly contains problems that are not decidable.
Consider for example the undecidable HALTING PROBLEM. The problem is, given
a Turing machine, to decide whether the given Turing machine will halt (within
a finite number of steps) when given an empty input string. Suppose we encode
the inputs to the halting problem in unary (thus, by only 1’s), thereby giving
each possible input instance a unique length. This can be done, by fixing an
enumeration of all possible Turing machines. Then if an input for the HALTING

PROBLEM corresponds to the i’th Turing machine, we can encode i in unary.
Even though the problem is now encoded in unary, the HALTING PROBLEM

remains undecidable, but a Turing machine with polynomial advice can now
trivially solve this version of the HALTING PROBLEM in constant time. The advice
string can simply consist of a single bit, that indicates whether the unique
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instance of length n is a yes-instance.

Note however, that the above should not be taken as evidence that perhaps
NP ⊆ coNP/poly holds. While it indeed shows that coNP/poly is in some sense
significantly larger than coNP, this is mostly the case due to a very specific
input encoding. In fact, there are at least two different reasons to believe
NP * coNP/poly.

First (and perhaps foremost), if NP ⊆ coNP/poly would hold, this has impli-
cations for the polynomial hierarchy. The polynomial hierarchy is a hierarchy
of complexity classes, all contained in PSPACE that starts with P at the lowest
level. The level above contains NP (and also coNP). The hierarchy continues
with infinitely more levels. It is not only believed that P ( NP, but also that
every other level is a strict subset of the levels above it. Just like proving P 6= NP,
proving this remains an open question. However, if NP ⊆ coNP/poly holds, the
entire hierarchy would collapse to the third level [91, Theorem 2], or in other
words, NP ⊆ coNP/poly implies PH = Σp

3 .
Secondly, the complexity classes NP and coNP are believed to be incompara-

ble due to the way they are defined. For problems in NP it is easy to verify a
yes-instance, when given a (small) certificate, but potentially difficult to verify a
no-instance. For problems in coNP however the opposite is true; for problems
in coNP verifying no-instances is easy. This is one of the reasons that NP and
coNP are believed to be distinct. A polynomial amount of advice that is only
allowed to depend on the length of the given input, is not expected to change
this situation, because over a binary alphabet there are exponentially many
inputs of the same size.

2.4.2 Linear-parameter transformations
The most straightforward way to obtain kernelization lower bounds, is by
giving an appropriately bounded transformation that starts from a problem for
which a kernelization lower bound is known. We start by defining this type of
transformation.

Definition 2.7 (Linear-parameter transformation) Let Q,Q′ ⊆ Σ∗ ×N be two
parameterized problems. A linear-parameter transformation from Q to Q′ is
a polynomial-time algorithm that, given an instance (x, k) ∈ Σ∗ ×N of Q,
outputs an instance (x′, k′) ∈ Σ∗ ×N of Q′ such that the following holds:

1. (x, k) ∈ Q if and only if (x′, k′) ∈ Q′, and

2. k′ = O(k).

We denote the existence of such a transformation by Q ≤lpt Q′.
The next theorem shows how linear-parameter transformations give kernel-

ization lower bounds. In particular, the contraposition of the theorem states
that if it is known that Q′ does not admit a generalized kernel of size O(kd) for
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some d (possibly under additional assumptions), then Q does not admit such a
kernel either (under the same assumptions).

I Theorem 2.8 Let Q and Q′ be parameterized problems with Q ≤lpt Q′. If Q′
admits a generalized kernel of size O(kd), then Q admits a generalized kernel of
size O(kd).

Proof. This result has been used several times [16,18], we give a short proof
here for completeness. Suppose Q′ admits a generalized kernel of size O(kd),
we show how to obtain a generalized kernel of the same size for Q. Let (x, k)
be an instance for Q. Use the linear-parameter transformation from Q to Q′
to obtain an instance (x′, k′) for Q′ such that k′ = O(k) and (x, k) ∈ Q if and
only if (x′, k′) ∈ Q′. Apply the assumed generalized kernel for Q′ to obtain
an instance (x′′, k′′) for some problem Q′′ such that (x′, k′) ∈ Q′ if and only if
(x′′, k′′) ∈ Q′′, |x′′| = O((k′)d) and k′′ = O((k′)d).

Clearly hereby (x′′, k′′) ∈ Q′′ if and only if (x, k) ∈ Q and |x′′| = O((k′)d) =
O(kd) and k′′ = O(kd). As such, this gives a generalized kernel for Q of
size O(kd). J

As a starting point for linear-parameter transformations, we will regularly
use the following kernelization lower bound for d-CNF-SAT, that was proven by
Dell and Van Melkebeek [33]. Let us start by formally defining d-CNF-SAT. We
say a formula F is in d-CNF if it is a conjunction of clauses, where every clause
is a disjunction of d literals. A literal is simply a variable or its negation.

d-CNF-SAT

Input: A d-CNF formula F on variables x1, . . . , xn.
Parameter: The number of variables n.
Question: Does there exist an assignment τ : {x1, . . . , xn} → {0, 1} satisfy-
ing F? Here F is satisfied if every clause contains at least one literal that
evaluates to 1.

I Theorem 2.9 ([33, Theorem 1]) Let d ≥ 3 be an integer. Then d-CNF-SAT

parameterized by the number of variables n does not have a generalized kernel of
size O(nd−ε) for any ε > 0, unless NP ⊆ coNP/poly. J

Another problem we will use as the starting problem for linear-parameter
transformations is the VERTEX COVER problem defined below.

VERTEX COVER

Input: An undirected graph G and an integer k.
Parameter: The number of vertices n.
Question: Does G have a vertex cover of size at most k?
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Figure 2.1 Linear-parameter transformation from a VERTEX COVER instance (left) to a
FEEDBACK ARC SET instance (right). A minimum vertex cover (respectively, feedback arc
set) is indicated in blue.

I Theorem 2.10 ([33, Theorem 2]) VERTEX COVER parameterized by the number
of vertices n does not have a generalized kernel of size O(n2−ε) for any ε > 0,
unless NP ⊆ coNP/poly. J

From the definition of a linear-parameter transformation, it is clear that on
some occasions, kernelization lower bounds for a certain NP-hard problem Q
may follow directly from its NP-hardness proof. This is the case if an appropriate
lower bound is known for the starting problem for the reduction, and further-
more the parameter only increases linearly. Below, we describe an example
where this is indeed the case.

I Example 2.11 Consider the following graph problem.

FEEDBACK ARC SET

Input: A directed graph G on n vertices and an integer k.
Parameter: The number of vertices n.
Question: Is is possible to remove at most k arcs from G, such that the
resulting graph is acyclic?

We can show by a linear-parameter transformation from VERTEX COVER, that
FEEDBACK ARC SET parameterized by the number of vertices n does not have a
generalized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

The linear-parameter transformation will correspond to the many-one re-
duction given by Karp [65], that is used to prove the NP-hardness of FEEDBACK

ARC SET. Let us start by repeating the construction here for completeness.
Let an instance (G, k) for VERTEX COVER be given, we create an instance

(G′, k′) for FEEDBACK ARC SET as follows. Let k′ := k. Let V(G′) := {vin, vout |
v ∈ V(G)}. For every edge {u, v} ∈ E(G), add the arcs (uout, vin) and (vout, uin)
to G′. For every vertex v ∈ V(G), add the arc (vin, vout) to G′. An illustration
of this construction can be found in Figure 2.1.

It is straightforward to show that G′ has a feedback arc set of size k′, if and
only if G has a vertex cover of size k, we leave this as an exercise to the reader.
Furthermore, we can observe that |V(G′)| = 2|V(G)| = O(n), and thereby we
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have given a linear-parameter transformation from VERTEX COVER to FEEDBACK

ARC SET parameterized by the number of vertices n. The result follows from
Theorems 2.8 and 2.10. J

2.4.3 Cross-compositions
Another way to obtain a kernelization lower bound for a parameterized prob-
lem Q, is by giving a cross-composition from an NP-hard problem P to Q.
There are two types of cross-compositions, namely AND-cross-compositions and
OR-cross-compositions. All kernelization lower bounds in this thesis will be
obtained via OR-cross-compositions, and we will often omit the prefix “OR”. We
will introduce the notion of cross-compositions in this section.

Informally speaking, a cross-composition is a polynomial-time algorithm that
is given a t instances for P , for some large number t. It outputs a single instance
for Q such that this instance acts as the logical OR of the given input instances.
Furthermore, the parameter value of this instance should be appropriately
bounded.

To formally define cross-compositions, we first need some additional defini-
tions.

Definition 2.12 (Polynomial equivalence relation, [16, Def. 3.1]) An equivalence
relation R on Σ∗ is called a polynomial equivalence relation if the following
conditions hold.

• There is an algorithm that, given two strings x, y ∈ Σ∗, decides whether x
and y belong to the same equivalence class in time polynomial in |x|+ |y|.

• For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements
of S into a number of classes that is polynomially bounded in the size of the
largest element of S.

As mentioned, the input for a cross-composition consists of t instances of
a chosen starting problem. It is allowed to assume that these instances are
equivalent under a polynomial equivalence relation of our choice. We can use
this to ensure that the inputs given for a cross-composition are somewhat similar.
For example, for a graph problem, it can be used to ensure that all inputs have
the same number of vertices, by letting input instances with the same number
of vertices be equivalent. If the inputs have a vertex set that is partitioned
into for example red vertices and blue vertices, one can even use a polynomial
equivalence relation to ensure that inputs have the same number of red (and
blue) vertices. A polynomial equivalence relation can also in many cases be
used to ensure that the inputs all ask for a solution of the same size.

Definition 2.13 (or-cross-composition, [16, Def. 3.3]) Let L ⊆ Σ∗ be a language,
let R be a polynomial equivalence relation on Σ∗, let Q ⊆ Σ∗ ×N be a
parameterized problem, and let f : N → N be a function. An OR-cross-com-
position of L into Q (with respect to R) of cost f (t) is an algorithm that, given t
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instances x1, x2, . . . , xt ∈ Σ∗ of L belonging to the same equivalence class of R,
takes time polynomial in ∑t

i=1 |xi| and outputs an instance (y, k) ∈ Σ∗×N such
that:

• The parameter k is bounded by O( f (t) · (maxi |xi|)c), where c is some con-
stant independent of t, and

• instance (y, k) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L.

The lower bound result obtained by a cross-composition depends on the cost
of the given cross-composition. It is known that cross-compositions of cost to(1)

can be used to rule out the existence of polynomial kernels [16, Corollary 3.9].
In this thesis however we focus on giving tight kernelization lower bounds for
problems that do have a polynomial kernel. We will use the following result.

I Theorem 2.14 ([16, Theorem 3.8]) Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗×N

be a parameterized problem, and let d, ε be positive reals. If L is NP-hard under
Karp reductions, has an OR-cross-composition into Q with cost f (t) = t1/d+o(1),
where t denotes the number of instances, and Q has a polynomial (generalized)
kernelization with size bound O(kd−ε), then NP ⊆ coNP/poly. J

For d ∈N we will refer to an OR-cross-composition of cost f (t) = t1/d+o(1)

as a degree-d cross-composition. By Theorem 2.14, a degree-d cross-composition
can be used to rule out generalized kernels of size O(kd−ε). Note that when
studying sparsification, we use the number of vertices or variables in the instance
(which is usually denoted by n) as the parameter value.

Let us describe the “standard” approach to giving a degree-2 OR-cross-
composition, when dealing with a graph problem Q parameterized by the
number of vertices n. This approach is based on the table-based approach
introduced by Dell and Marx [32].

As an input for the cross-composition, we are given t instances of a suitably
chosen input problem P . It will turn out that for the construction of a degree-2
cross-composition, it is often convenient to assume that

√
t is an integer, and

it is sometimes even desirable that log t and log
√

t are integers. We can easily
ensure this, by duplicating one of the input instances until we have t′ ≥ t input
instances of P , with t′ an integer such that log

√
t′ is integer. Observe that, in

particular, for any c ∈ N we have that 22c satisfies this condition, since
√

22c

= 2c and log
√

22c = c. As such, there exists an appropriate t′ with t′ ≤ 4t:
Let t′′ be the smallest power of two that is larger than t, such that t′′ = 2d.
Observe that t′′ ≤ 2t. If d is even, then t′ := t′′ satisfies our requirements. If
however d is odd, then t′ := 2t′′ = 2d+1 satisfies the requirements. In both
cases, t′ ≤ 2t′′ ≤ 4t.

To select a suitable NP-hard starting problem P , it can be helpful to consider
a restricted variant of the goal problem Q. Often, it is convenient to have a
starting problem that is defined on a restricted set of graphs, for which the
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L1 L2 L3

R1 R2 R3

G1,1 G1,2 G1,3

√
t

√
t

# Vertices in all inputs: 9 · 5 = 45 # Vertices in G′:
√

9 · 5 = 15

G2,1 G2,2 G2,3

G3,1 G3,2 G3,3

Figure 2.2 Basic structure of a degree-2 cross-composition. Inputs for a problem P
defined on bipartite graphs are depicted on the left. The result of applying the table-like
structure for cross-compositions is depicted on the right. The figure is adapted from an
earlier publication [81].

vertices can be partitioned into two sets, say L and R, such that G[L] and G[R]
always have a known structure. An example would be bipartite graphs, where
G[L] and G[R] are always independent sets, but one can also think of cases
where G[L] is for example a path, or a union of disjoint triangles, etcetera.

Next, one may define a polynomial equivalence relation that lets inputs
be equivalent if the sizes of L and R are the same. So, suppose we are given
t instances of P with |L| = m and |R| = n. We now need to encode these
instances into one single instance of Q, whose number of vertices can be
approximately O(

√
t · poly(n + m)). The challenge is now that we do not have

the budget to copy every vertex of every input instance. We show how to resolve
this, using a table-like structure.

As mentioned, we can assume that
√

t is integer. As such, we can label the t
input graphs as Gi,j for i, j ∈ [

√
t]. By the choice of our equivalence relation

and input problem, all Gi,j have partite sets Li,j and Ri,j and all Gi,j[Li,j] are
isomorphic. The same holds for Gi,j[Ri,j]. We now show how to create an
instance G′ for Q. Start by creating

√
t copies of G1,1[L1,1] and label them Li for

i ∈ [
√

t]. Similarly, create
√

t copies of G1,1[R1,1] labeled Rj for j ∈ [
√

t]. Now,
we can represent the edges of all input instances, by connecting vertices in Li
to Rj in such a way, that G′[Li ∪ Rj] is isomorphic to graph Gi,j. Observe that
G′ at this point has

√
t · (n + m) vertices, which is appropriately bounded for a

degree-2 cross-composition. Refer to Figure 2.2 for an example.
The created graph G′ now represents all input instances. It remains to

ensure that G′ is a yes-instance for Q if and only if there exist i and j such that
Gi,j is a yes-instance for P . This is generally done by adding additional gadgets,
that select one index i and one index j. For example, one could add gadgets
such that the solution in all-but-one Li is “for free”, and add similar gadgets for
Rj. Of course, the actual design of these gadgets and their precise working is
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highly problem-dependent.

As mentioned earlier, apart from OR-cross-compositions, there also exist
AND-cross-compositions. These are defined similarly except that the resulting
instance should be a logical AND of the given input instances. It follows from a
result by Drucker [35] that they result in the same kernelization lower bounds
as OR-cross-compositions.

2.5 (Linear) algebra

For an integer q, we let Z/qZ denote the integers modulo q. These form a field
if q is prime, and a ring otherwise. We will use x ≡q y to denote that x and y are
congruent modulo q, and x 6≡q y to denote that they are incongruent modulo q.

We denote the greatest common divisor of two integers x and y as gcd(x, y)
and their least common multiple as lcm(x, y). The two concepts are closely
related, since lcm(x, y) = |x · y|/ gcd(x, y) for x or y nonzero.

I Theorem 2.15 (Bézout’s identity) Let x, y, z ∈ Z with gcd(x, y) = z. There
exist integers a and b such that ax + by = z. J

We will use x | y to indicate that x divides y (over the integers) and x - y to
indicate that it does not.

For definitions and basic properties of rings, fields, vector spaces, and related
concepts, we refer the reader to [72]. We will recall the most relevant definitions
here, and introduce some notation.

Definition 2.16 (Span) Given a set S = {s1, . . . , sn} of k-ary vectors over a
ringR, we define spanR(S) as the set of all vectors y inRk for which there exist
α1, . . . , αn ∈ R such that y = ∑i∈[n] αisi. We may omit the subscript indicating
the relevant ring, if it is clear from the context.

For a positive integer q, we use spanq(S) as a shorthand for spanZ/qZ(S).

For an m× n matrix A, we commonly use ai for i ∈ [m] to denote the i’th
row of A and ai,j to denote the element in row i and column j.

Definition 2.17 (Row space) Let A be an m× n matrix over a ring R. Then the
row space of A is defined as the span of the set of rows of A, or equivalently, as
spanR({a1, . . . , am}).
Definition 2.18 (Basis) A basis of a vector space V is defined as a set B ⊆ V
such that span(B) = V and the vectors in B are linearly independent.

It is well-known that for a vector space, its dimension is defined as the size
of a basis of this vector space, which is well-defined since any basis of a vector
space has the same size. Furthermore, for a matrix over a field, it is known that
the dimension of its row space equals the dimension of its column space. Hereby,
the dimension of the row space of such a matrix, is bounded by its number
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of columns (and vice versa), which is useful information when considering
matrices with m� n.

Observe that when considering matrices over a ring, the situation is more
complex. Consider for example the 2× 1 matrix A over the integers modulo 6,
given by

A :=
(

2
3

)
.

Now, since A has only one column, you might hope to find a size-1 subset of
the rows that spans the entire row span of A. This is however not possible, the
vector (1) is in the row space of A, as it is the result of subtracting the first
row from the second. It is however not a multiple of either of the two rows.
Thus, there is no single row that spans the entire row space of A. This shows an
important difference between matrices with elements from a field, and matrices
with elements from a ring.

Definition 2.19 (Diagonal matrix) We say an m × n matrix A is a diagonal
matrix if all entries ai,j with i 6= j are zero. Thus, all non-zero elements occur
on the diagonal. Note that under this definition a matrix can be diagonal even
if m 6= n.

Definition 2.20 (Unimodular matrix [48, Definition 367]) An n× n matrix U over
Z is called unimodular if its determinant is 1 or −1.

The relevant property of unimodular matrices that we will use is that a
unimodular matrix over Z is invertible over Z. This means that if U is a
unimodular matrix over Z, then there exists a matrix U−1 over Z such that
U ·U−1 = U−1 ·U = I where I is the identity matrix (a diagonal matrix with
all-ones on the diagonal). In Chapters 3 and 4 we will use two normal forms of
certain types of matrices in our proofs, namely the Smith Normal Form and the
Howell Normal Form. We introduce them below.

Definition 2.21 (Smith normal form [48, Theorem 368]) Let A be an m× n matrix
over the integers. There exist unimodular matrices U and V over the integers,
such that U is an m×m matrix and V is an n× n matrix, and a diagonal m× n
matrix S over Z such that

A = USV,

the diagonal entries of S are d1, d2, . . . , dr, 0, . . . , 0, each di a positive integer,
and di|di+1 for i ∈ [r− 1]. We will call U, S, and V the Smith decomposition of
A. Finally, S is called the Smith Normal Form of A.

The Smith normal form can be useful when solving systems of linear equa-
tions over the integers. In particular, when one wants to solve Ax = b for x,
one can alternatively solve for Sx′ = U−1b. Observe that this system is easier
to solve since S is a diagonal matrix. If this gives a solution x′, then x := V−1x′

is a solution for Ax = b, as is easily verified:

Ax = AV−1x′ = USVV−1x′ = U(Sx′) = U(U−1b) = b.
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We will see this in more detail in some of the proofs in Chapter 4.

I Example 2.22 Consider the matrix

A =


1 2 3
1 2 1
4 0 1
2 4 4

 ,

then its Smith decomposition looks as follows:

U =


1 2 1 0
1 0 0 0
4 −3 −1 0
2 2 1 1

 , S =


1 0 0
0 1 0
0 0 16
0 0 0

 , V =

 1 2 1
0 8 1
0 −1 0

 .

One may verify that U and V are indeed invertible with

U−1 =


0 1 0 0
−1 5 −1 0
3 −11 2 0
−1 −1 0 1

 , and V−1 =

 1 −1 −6
0 0 −1
0 1 8

 .

J

I Theorem 2.23 ([64, Theorem 4]) The Smith decomposition of a matrix can be
computed in polynomial time. J

We will furthermore use the Howell form of a matrix, which was first
introduced by Howell [51]. The following definition is based on [87].

Definition 2.24 (Howell form) Let q ∈ N be an integer and let A be an m× n
matrix over Z/qZ. Then there exists an invertible n× n matrix U over Z/qZ,
and an m × n matrix H over Z/qZ, such that A = UH and the following
statements hold.

• Let r be the number of non-zero rows of H. Then the first r rows of H are
non-zero.

• For i ∈ [r], let hi,ji be the first nonzero entry in row i. Then j1 < j2 < . . . < jr.

• hi,ji |q for all i ∈ [r].

• For 1 ≤ k < i ≤ r, we have 0 ≤ hk,ji < hi,ji .

• When x ∈ spanq({h1, . . . , hm}) has zeros as its first ji − 1 components, then
x ∈ spanq({hi, . . . , hm}).

We say that H is in Howell form. Furthermore, we may call H the Howell form
of matrix A (which is known to be unique [51]).
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For a matrix to be in Howell form, the above five statements must all hold.
For our proofs however, we are mostly interested in the first two properties, the
remaining properties will not be used. The next theorem shows that the Howell
form can be efficiently computed.

I Theorem 2.25 ([87, §3]) Given a matrix A over Z/qZ, we can compute
matrices U and H in polynomial time, such that U is invertible over Z/qZ,
A = UH, and H is in Howell form. J

2.6 Polynomials
We continue by providing the definitions and results that we will use considering
polynomials and polynomial equalities.

A multivariate polynomial (over a ring R) is a function p : Rk → R of the
type

p(x1, . . . , xk) = ∑
(d1,...,dk)∈Nk

αd1,...,dk ∏
i∈[k]

(xi)
di

with coefficients αd1,...,dk
∈ R that are non-zero for a finite number of choices for

(d1, . . . , dk) ∈Nk. A term of the type ∏i∈[k](xi)
di is referred to as a monomial.

The degree of a monomial is simply ∑i∈[k] di. The degree of a polynomial is
the maximum of the degrees of all monomials in this polynomial that have a
non-zero coefficient.

We say that a monomial is multilinear if for all i ∈ [k], we have di ∈ {0, 1}.
In other words, a monomial is multilinear if it corresponds to a multiplication
of distinct variables. A polynomial is multilinear if all its monomials that have a
non-zero coefficient are multilinear.

I Example 2.26 Consider the following polynomial over Q:

p(x, y, z) := 5 · x2y +
1
2
· xyz3 − x + 3y.

This is a polynomial of degree 5 (achieved by the second monomial), that is not
multilinear, since its first two monomials are not multilinear. J

We will often need to bound the number of (multilinear) monomials of a
degree-d polynomial. We use the following lemma.

I Lemma 2.27 There are at most nd + 1 multilinear monomials of degree at
most d over a set of n variables.

Proof. The number of multilinear monomials over n variables of degree at
most d is equal to ∑d

i=0 (
n
i ). We will show that ∑d

i=1 (
n
i ) ≤ nd. The left side

counts all non-empty subsets of [n] of size at most d. Each of these can be
mapped to a distinct d-tuple containing numbers from [n], by repeating an
arbitrary element. Since there are nd possible d-tuples, the claim follows. J
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Observation 2.28 Let F be a field, and let S ⊆ F be a set of size k. Then there is
a degree-k polynomial p in one variable, such that p(x) = 0 if and only if x ∈ S;
and the polynomial defined by

p(x) := ∏
s∈S

(x− s)

satisfies these conditions.

2.7 Constraint satisfaction problems
We continue by formally introducing constraint satisfaction problems, as were
(informally) introduced in Chapter 1.

Definition 2.29 ((Boolean) relation) A relation over the set D is a subset of Dk;
here, k is a natural number called the arity of the relation. A relation of arity k
may be called a k-ary relation. A Boolean relation is a relation over {0, 1}. A
2-ary relation is sometimes referred to as a binary relation.

When considering the Boolean domain, we will regularly refer to the 0-
element with false, and to the 1-element with true.

Definition 2.30 (k-or) For each k ≥ 1, we use k-OR to denote the relation
{0, 1}k \ {(0, . . . , 0)}.
By the above definition, 2- OR = {(1, 1), (1, 0), (0, 1)}.
Definition 2.31 (R+) For a binary relation R, let R+ denote the transitive
closure of R. For n ∈N let Rn be defined as

{(u, v) | ∃x1, . . . , xn+1 : ∀i∈[n](xi, xi+1) ∈ R ∧ u = x1 ∧ v = xn+1}.

Observe that for any binary relation R over universe D, we have R0 = {(x, x) |
x ∈ D}.
Definition 2.32 (Constraint language) A constraint language over D is a finite
set of relations over D; a Boolean constraint language is a constraint language
over {0, 1}.

For a constraint language Γ over a domain D, we define CSP(Γ) as follows.
CSP(Γ)

Input: A tuple (C, V), where C is a finite set of constraints, V is a finite
set of variables, and each constraint is a pair R(x1, . . . , xk) for R ∈ Γ and
x1, . . . , xk ∈ V.
Parameter: n = |V|.
Question: Does there exist a satisfying assignment, that is, an assignment
f : V → D such that for each constraint R(x1, . . . , xk) ∈ C it holds that
( f (x1), . . . , f (xk)) ∈ R?
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There are three well-known logic problems, that can be seen as constraint
satisfaction problems, that we will regularly encounter. First of all, d-CNF-SAT,
as introduced previously. Furthermore, d-EXACT SAT and d-NAE-SAT, which are
defined below.

d-NAE-SAT

Input: A d-CNF formula F , where every clause has size at most d.
Parameter: The number of variables n.
Question: Does there exist a satisfying assignment to F , such that each
clause of F contains at least one false and at least one true literal?

d-EXACT SAT

Input: A d-CNF formula F , where every clause has size at most d.
Parameter: The number of variables n.
Question: Does there exist a satisfying assignment to F , such that each
clause of F contains exactly one true literal?

We define CNF-SAT, EXACT SAT, and NAE-SAT as in definitions above, except
that for these problems there is no bound on the clause length.

I Example 2.33 We can define 3-EXACT SAT as a constraint satisfaction problem
as follows. Consider the relations

R0 := {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
R1 := {(1, 0, 1), (1, 1, 0), (0, 0, 0)}
R2 := {(1, 1, 1), (1, 0, 0), (0, 1, 0)}
R3 := {(1, 1, 0), (1, 0, 1), (0, 1, 1)}.

Let Γ := {R0, R1, R2, R3}, then 3-EXACT SAT corresponds to CSP(Γ), as follows.
The satisfying assignments of clauses with no negated variables are given by R0.
Clauses with one negated variable can be rewritten to a constraint using R1
by swapping the literals such that the negated variable is in the first position.
Similarly, clauses with two or three negated literals can be represented using R2
and R3 respectively. For example, the 3-EXACT SAT formula

(x ∨ y ∨ z) ∧ (¬x ∨ ¬z ∨ w) ∧ (x ∨ v ∨ ¬w)

gives the CSP(Γ) instance (C, V) with:

C = {R0(x, y, z), R2(x, z, w), R1(w, x, v)}, V = {v, w, x, y, z}. J

We define a Boolean operation as a mapping from {0, 1}k to {0, 1}, where k
is said to be the arity of the operation. From here, we define a partial Boolean
operation as a mapping from a subset of {0, 1}k to {0, 1}.
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Definition 2.34 (Idempotent, self-dual) We say that a (partial) Boolean operation
of arity k is idempotent if f (0, . . . , 0) = 0 and f (1, . . . , 1) = 1. We say the
operation is self-dual if for all a1, . . . , ak ∈ {0, 1}, when f (a1, . . . , ak) is defined,
then f (¬a1, . . . ,¬ak) is defined and f (a1, . . . , ak) = ¬ f (¬a1, . . . ,¬ak).

We now introduce the notion of polymorphisms of a constraint language. In
the study of CSP(Γ), it turned out that studying the polymorphisms of Γ is a
useful tool in understanding the complexity of CSP(Γ).
Definition 2.35 (Polymorphism) Let f be a (partial) operation of arity k on a
domain D, and let R ⊆ Dn be a relation. We say that f is a polymorphism
of R when for any tuples t1 = (t1,1, . . . , t1,n), . . . , tk = (tk,1, . . . , tk,n) ∈ R, if all
entries of the tuple ( f (t1,1, . . . , tk,1), . . . , f (t1,n, . . . , tk,n)) are defined, then this
tuple is in R. We say f is a polymorphism of a constraint language Γ if f is a
polymorphism of each relation in Γ.

We say that a relation R is preserved by a (partial) operation f if f is a
polymorphism of R, similarly we say a constraint language Γ is preserved by f
if f is a polymorphism of Γ.

Let f : Dk → D be a k-ary (partial) operation and let t1, . . . , tk ∈ Dn be
tuples. We use the following notational convention:

f (t1, . . . , tk) := ( f (t1,1, . . . , tk,1), . . . , f (t1,n, . . . , tk,n)).

I Example 2.36 Consider the 2-ary operation f : {0, 1}2 → {0, 1} correspond-
ing to the binary OR, meaning that f is given by f (a1, a2) := a1 ∨ a2. Consider
the 3-ary Boolean relation

R := {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

We can for example compute that

f ((0, 0, 1), (1, 1, 0)) = ( f (0, 1), f (0, 1), f (1, 0)) = (0∨ 1, 0∨ 1, 1∨ 0)
= (1, 1, 1).

In the example above, we see that for the tuples (0, 0, 1), (1, 1, 0) ∈ R, we get
f ((0, 0, 1), (1, 1, 0)) = (1, 1, 1) ∈ R. We leave it as an exercise to the reader to
show that for any two tuples t1, t2 ∈ R it holds that f (t1, t2) ∈ R. It follows
that f is a polymorphism of R; or equivalently that R is preserved by f . J

For b ∈ {0, 1}, let ub : {0, 1} → {0, 1} be the unary operation defined by
ub(0) = ub(1) = b; let major : {0, 1}3 → {0, 1} be the operation defined by
major(x, y, z) := (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z), hence, the value of major(x, y, z)
is the Boolean that occurs at the majority of the positions of x, y, z. Let
minor : {0, 1}3 → {0, 1} be the operation defined by minor(x, y, z) := x⊕ y⊕ z,
where ⊕ denotes exclusive OR. Observe that hereby minor(1, 1, 1) = 1 and
minor(0, 0, 0) = 0.
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The following is a well-known result, it is a rephrasing of the original
theorem that was proven by Schaefer [83]. See [25] for a proof; in particular,
refer there to the proof of Theorem 3.21.

I Theorem 2.37 Let Γ be a Boolean constraint language. The problem CSP(Γ)
is polynomial-time decidable when Γ is preserved by one of the six following
operations: u0, u1,∧,∨,major,minor. Otherwise, CSP(Γ) is NP-complete. J

As such, we will say a Boolean constraint language Γ is tractable when it
is preserved by one of the operations u0, u1,∧,∨,major,minor, and intractable
otherwise.

I Example 2.38 Recall the constraint language used for 3-EXACT SAT in Exam-
ple 2.33. We can show that 3-EXACT SAT is NP-complete using Theorem 2.37
by verifying that Γ = {R0, R1, R2, R3} is not preserved by any of the six oper-
ations above. We will show this by showing that R0 is not preserved by these
operations.

Since u0(1, 0, 0) = (0, 0, 0) and (1, 0, 0) ∈ R0, while (0, 0, 0) /∈ R0, it follows
that R0 is not preserved by u0. Similarly, since u1(1, 0, 0) = (1, 1, 1) /∈ R0, we
obtain that R0 is not preserved by u1. Furthermore, while (0, 0, 1), (0, 1, 0) ∈ R0,
we have (0 ∨ 0, 0 ∨ 1, 1 ∨ 0) = (0, 1, 1) /∈ R0. Similarly, (0 ∧ 0, 0 ∧ 1, 1 ∧ 0) =
(0, 0, 0) /∈ R0. Therefore, R0 is not preserved by operations ∧ and ∨. Finally,
one may observe that applying the majority operation to all tuples in R0 results
in the tuple (0, 0, 0) /∈ R0, while taking the minority operation results in the
tuple (1, 1, 1) /∈ R0. We conclude that Γ is intractable (observe that we may
even conclude that the constraint language Γ′ := {R0} is intractable). J

Definition 2.39 (Γ∗) When Γ is a constraint language over D, we use Γ∗ to
denote the expansion of Γ where each element of D appears as a relation. That
is, we define Γ∗ := Γ ∪ {{(d)} | d ∈ D}.

Effectively, the added relations in Γ∗ make it possible to enforce via a
constraint that a variable must be assigned a fixed value by any satisfying
assignment.

Definition 2.40 (pp-definability [25]) A relation T ⊆ Dk is pp-definable (short
for primitive positive definable) from a constraint language Γ if for some m ≥ 0
there exists a finite conjunction C consisting of constraints over Γ and equalities
over variables {v1, . . . , vk, x1, . . . , xm} such that

T(v1, . . . , vk) ≡ ∃x1, . . . , ∃xm : C.

That is, for each map f : {v1, . . . , vk} → {0, 1}, it holds that f can be extended
to a satisfying assignment of C if and only if ( f (v1), . . . , f (vk)) ∈ T.

I Example 2.41 Recall the constraint language Γ = {R0, R1, R2, R3} used to
define 3-EXACT SAT in Example 2.33. We can show that Γ pp-defines the 3-OR

relation given by T = {(v1, v2, v3) ∈ {0, 1}3 | v1 ∨ v2 ∨ v3}. Consider the
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v1 v2 v3 x1 x2 x3 x4

1 1 1 1 0 0 1
1 1 0 1 0 0 0
1 0 1 0 1 0 1
1 0 0 0 1 0 0

v1 v2 v3 x1 x2 x3 x4

0 1 1 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 1 0
0 0 0 7 7 7 7

Table 2.1 All assignments to v1, v2, and v3, together with an extension that satisfies
Equation (2.1) if (v1, v2, v3) ∈ 3-OR.

following pp-definition:

C := R1(v1, x1, x2) ∧ R0(v2, x2, x3) ∧ R1(v3, x3, x4), (2.1)

over variable set V = {v1, v2, v3, x1, x2, x3, x4}. To show that ∃x1, . . . , x4 : C
is a pp-definition of T, we need to show that an assignment to v1, v2, v3 can
be extended to an assignment satisfying all constraints in C if and only if
(v1, v2, v3) ∈ 3-OR.

Suppose the assignment is such that (v1, v2, v3) ∈ 3-OR, thus there exists
i ∈ [3] such that vi = 1. One may verify (see Table 2.1) that in this case, the
assignment can be extended to a satisfying assignment of the entire formula.
Suppose the assignment is such that (v1, v2, v3) /∈ 3-OR, thus v1 = v2 = v3 = 0.
Then the first constraint in C implies that x1 = x2 = 0, and the third constraint
implies that x3 = x4 = 0, in any assignment satisfying C. However, this does not
satisfy the second constraint, since (0, 0, 0) /∈ R0, which is a contradiction. J

The next theorem gives an important relation between pp-definability and
polymorphisms.

I Theorem 2.42 ([20, 47]) Let Γ be a constraint language over domain D. A
non-empty relation R over domain D is pp-definable over Γ if and only if each
polymorphism of Γ is a polymorphism of R. J

The following proposition is a known fact.

I Proposition 2.43 ([25, Exercise 5.3]) If Γ is an intractable Boolean constraint
language, then every Boolean relation is pp-definable from Γ∗.

Proof. The idea is as follows. It follows from the intractability of Γ and Theo-
rem 5.1 of [25], that all polymorphisms of Γ are “essentially unary”. This means
that if f is a k-ary polymorphism of Γ, there exists i ∈ [k] and g : {0, 1} → {0, 1}
such that f (x1, . . . , xk) = g(xi) for all (x1, . . . , xk) ∈ {0, 1}k. It follows from this
that the only polymorphisms of Γ∗ are in fact constant. Since any relation has
any constant function as a polymorphism, it follows from Theorem 2.42 that
any Boolean relation is pp-definable from Γ∗. J

We now give a result about the existence of linear-parameter transforma-
tions. Recall that Γ∗ is defined as the relation Γ together with all constants, by
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Definition 2.39.

I Theorem 2.44 (Follows from [23]) Let Γ be a constraint language over a finite
set D such that each unary operation u : D → D that preserves Γ is a bijection.
Then, there exists a linear-parameter transformation from CSP(Γ∗) parameterized
by the number of variables to CSP(Γ) parameterized by the number of variables.

Note that in particular, an intractable Boolean constraint language can only
be preserved (recall Definition 2.35) by unary operations that are bijections,
as otherwise it is preserved by u0 or u1 and thus the constraint language is
tractable by Theorem 2.37. Hence the above theorem implies that for intractable
Boolean Γ, there is a linear-parameter transformation from CSP(Γ∗) to CSP(Γ).

Proof of Theorem 2.44. The desired transformation is the final polynomial-time
reduction given in the proof of Theorem 4.7 of [23]. This reduction translates
an instance of CSP(Γ∗) with n variables to an instance of CSP(Γ ∪ {=D})
with n + |D| variables; here, =D denotes the equality relation on domain D.
Each constraint of the form =D (v, v′) may be removed (while preserving
satisfiability) by taking one of the variables v, v′, and replacing each instance of
that variable with the other. The resulting instance of CSP(Γ) has ≤ n + |D|
variables. J

2.8 Graph coloring problems

A proper q-coloring of a graph G is a function f : V(G) → [q] such that for
all {u, v} ∈ E(G) it holds that f (u) 6= f (v). Based on this, the q-COLORING

problem for a fixed integer q is defined as follows.

q-COLORING

Input: A graph G.
Question: Does G have a proper q-coloring?

A generalization of the q-COLORING problem is the H-COLORING problem.
To define this problem, we first need the notion of homomorphisms.

Definition 2.45 (Homomorphism) Let G and H be (not necessarily simple)
graphs. A homomorphism from G to H is a mapping f : V(G) → V(H) such
that { f (u), f (v)} ∈ E(H) for all {u, v} ∈ E(G). We denote the existence of a
homomorphism from G to H by G → H. If G → H we say G is homomorphic
to H, and if both G → H and H → G we say G and H are homomorphically
equivalent, which we denote by G ↔ H.

For a fixed graph H, we can now define the H-COLORING problem as fol-
lows.
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H-COLORING

Input: A graph G.
Question: Does there exist a homomorphism from G to H?

When there is a homomorphism f from G to H we will often say G is
H-colorable, and for a vertex v ∈ V(G) we may refer to f (v) as the color of
vertex v, as is consistent with the terminology for q-COLORING. Observe that
the q-COLORING problem is equivalent to the problem of Kq-COLORING, where
Kq is the clique on q vertices.

When H is a simple graph, H-COLORING can be viewed as equivalent to a con-
straint satisfaction problem over the domain V(H). In particular, H-COLORING

corresponds to CSP(H) where H is defined as the constraint language contain-
ing the single relation F, which is the symmetric binary relation given by F =
{(u, v) | {u, v} ∈ E(H)}. A mapping f : V(G) → V(H) is a homomorphism
from a graph G to H if and only if it is a satisfying assignment of the CSP({F})
instance on variables V(G) and constraints {F(u′, v′) | {u′, v′} ∈ E(G)}.
I Example 2.46 Let H be the graph defined on three vertices a, b, and c, that
form a triangle, such that H is the graph K3. Then the constraint language
H := {F} is defined by

F := {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}.

If now G is an arbitrary graph, checking whether G is homomorphic to H
is equivalent to checking if the CSP(H)-instance (V, C) given by V := V(G)
and C := {F(u, v) | {u, v} ∈ E(G)} is satisfiable over domain D = {a, b, c}. In
this example, observe that any satisfying assignment simply corresponds to a
3-coloring of G with colors a, b, and c. J

Definition 2.47 (H∗) In correspondence with Definition 2.39, we define H∗ as
the constraint language that contains the relation F = {(u, v) | {u, v} ∈ E(H)}
and, for each v ∈ V(H), the arity-1 relation {(v)}. The arity-1 relations in H∗

effectively allow the value of a variable to be forced to a constant value, so
that CSP(H∗) corresponds to the PRE-H-COLORING EXTENSION problem.

Definition 2.48 (Core) A graph H is a core if there exists no homomorphism
from H to an induced proper subgraph of H. We may say that a graph H′ is the
core of a graph H if H′ is an induced subgraph of H such that H′ is a core, and
H′ ↔ H. Observe that for any graph H, its core is unique up to isomorphism.



3Chapter 3
Sparsification Using Low-Degree

Polynomials

In this chapter we provide techniques to obtain sparsifications for certain Con-
straint Satisfaction Problems. Here we aim to reduce the number of constraints,
without changing the satisfiability of the formula. In particular, we want to
obtain guarantees on the number of remaining constraints, in terms of the
number of variables. To this end, we will study CSPs where for each constraint,
the satisfying assignments can be captured by low-degree polynomials in an
appropriate sense. Let us start by giving a simple example of this technique,
before studying the problem in full generality, by considering the EXACT SAT

problem (as defined in Section 2.7).
Let an instance of EXACT SAT with m clauses over variable set V with |V| = n

be given. Any constraint of an instance of EXACT SAT is satisfied by an assignment
τ : V → {0, 1} if and only if it contains exactly one true literal, where we equate
true with the value 1 and false with 0. This is equivalent to saying that a clause
(x1, . . . , xi,¬xi+1, . . . ,¬xd) is satisfied by τ if and only if the following equation
holds:

i

∑
j=1

τ(xj) +
d

∑
j=i+1

(1− τ(xj)) = 1.

To find redundant clauses, transform each of the m input clauses into a linear
equality, to obtain a system of equalities Ax = b where A is an m× n matrix,
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x is the column vector (x1, . . . , xn), and b is an integer column vector. Using
Gaussian elimination, we can efficiently compute a basis B for the row space of
the extended matrix (A|b). So, B is a set of equalities such that every equality
corresponding to a clause can be written as a linear combination of equalities
in B. One can even compute B such that it is a subset of the set of original
equalities. Since (A|b) has n + 1 columns, it follows that it has rank at most
n + 1 and thus B contains at most n + 1 equalities. To perform the sparsification,
remove all clauses from the EXACT SAT instance for which the corresponding
equality does not appear in B.

Since we only removed clauses, it is clear that any assignment satisfying the
original instance, will satisfy the sparsified instance. The other direction follows
from the fact that if x satisfies f1(x) = b1 and f2(x) = b2, then it will also satisfy
f1(x) + f2(x) = b1 + b2. Using that any equality we are interested in can be
written as a linear combination of equalities in B gives us that any assignment
satisfying the sparsified instance, also satisfies the original input instance. Thus,
we have given a sparsification for EXACT SAT with O(n) clauses.

In terms of kernelization, the measure for kernel size is not the number of
clauses of the sparsified instance, but the number of bits required to store it. If
clauses are assumed to have size at most d for some constant d, the instance
can be stored in O(n log n) bits. This can for example be done by encoding
each clause individually by storing the d variables it contains. Since there are n
variables, we can represent a single variable by log n bits, resulting in a total
size of O(d · n log n), which equals O(n log n) for d constant.

When the number of literals in a clause can be as large as O(n), it may
however take Ω(n) bits to encode a single clause. After reducing the number of
clauses in EXACT SAT to n + 1, it may therefore still take Θ(n2) bits to encode
the instance. Observe that obtaining an encoding of bitsize O(n2) instead of
O(n2 log n) is in this case possible: we can safely assume that each clause
contains every literal at most twice. Since there are 2n literals, we can represent
each clause by storing for each literal whether it occurs zero, one, or two times
in the clause, which can be done in O(n) bits. This leads to an encoding of size
O(n2) when we have n + 1 clauses.

The change from O(n log n) bits for bounded clause length to O(n2) bits
for unbounded clause length turns out to be unavoidable: we prove that EXACT

SAT has no kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly in
Corollary 3.23.

The example given above uses that d-EXACT SAT can be expressed using
degree-1 polynomials over the rationals. We show that d-NAE-SAT and d-CNF-SAT

can be expressed using equalities of polynomial expressions of degree d− 1
and d. We therefore study the following problem, where F is a field. Refer to
Section 2.6 for relevant definitions on polynomials.
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d-POLYNOMIAL ROOT CSP over F

Input: A list L of polynomial equalities over variables V = {x1, . . . , xn}.
An equality is of the form f (x1, . . . , xn) = 0, where f is a multivariate
polynomial over F of degree at most d.
Parameter: The number of variables n.
Question: Does there exist an assignment of the variables τ : V → {0, 1}
satisfying all equalities in L?

When interpreting truth assignments as elements of a ring or field, we equate
the value true with the 1 element in the ring (multiplicative identity), and the
value false with the 0 element (additive identity). Consequently, for a Boolean
variable x its negation ¬x corresponds to (1− x). Note that over a field, we can
assume this without loss of generality: for any a and b in F with a 6= b , there
exists a linear bijection that maps 0 to b and 1 to a, and this bijection does not
change the degree of the resulting polynomial.

Overview We show in Section 3.1.1 that using a generalization of the argu-
ment presented for EXACT SAT, the number of constraints in an instance of
d-POLYNOMIAL ROOT CSP can efficiently be reduced to O(nd), even when the
number of variables that occur in a constraint is not restricted. Assuming that
each constraint can be encoded in Õ(n) bits, this allows us to compress instances
of d-POLYNOMIAL ROOT CSP to bitsize Õ(nd+1). This reduction argument in
fact works over arbitrary fields F. We then extend our results to obtain similar
results over Z/mZ. When m is not prime, the resulting structure is not a field
and this imposes additional technical difficulties.

In Section 3.1.2, we consider Boolean CSPs whose constraints are formed by
disequalities, rather than equalities, of degree-d polynomials. This leads to the
following generic problem:

d-POLYNOMIAL NON-ROOT CSP over F

Input: A list L of polynomial disequalities over variables V = {x1, . . . , xn}.
A disequality is of the form f (x1, . . . , xn) 6= 0, where f is a multivariate
polynomial over F of degree at most d.
Parameter: The number of variables n.
Question: Does there exist an assignment of the variables τ : V → {0, 1}
satisfying all disequalities in L?

This problem formulation is related to the weak representation of Boolean
functions by polynomials: a polynomial f weakly represents a Boolean func-
tion g when f (x1, . . . , xn) 6= 0 if and only if g(x1, . . . , xn) 6= 0 (cf. [7,11]). This
means that effectively, the d-POLYNOMIAL NON-ROOT CSP problem asks to find
an assignment that satisfies a list of constraints which are weakly represented
by degree-d polynomials. For a prime p, we show that the number of constraints
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Problem d-POLY. ROOT CSP d-POLY. NON-ROOT CSP

Lower bound1 Upper bound2 Lower bound1 Upper bound2

Q Ω(nd+1−ε) Õ(nd+1) Superpolynomial
Z/pZ Ω(nd+1−ε) Õ(nd+1) Ω(nd(p−1)−ε) Õ(nd(p−1)+1)

Z/mZ Ω(nd+1−ε) Õ(nd+1) Ω(n(d/2)r−ε) ?

Theorem 3.26, 3.27 3.1, 3.6, 3.12 3.28, 3.30, 3.29 3.13
1 The lower bounds hold for any ε > 0, for the problems that are not polynomial-time

solvable and under the assumption that NP * coNP/poly.
2 The upper bounds hold when each n-variate polynomial constraint in the input can

be encoded in Õ(n) bits.

Table 3.1 Summary of the kernel upper and lower bounds obtained in this chapter,
expressed in the number of bits. The bounds depend on whether the polynomials
defining the constraints are over the rationals Q, the integers modulo a prime p, or the
integers modulo a composite m. The integer r denotes the number of distinct prime
divisors of m. The values of p, m, r, and d are treated as constants in these bounds.

for d-POLYNOMIAL NON-ROOT CSP over Z/pZ can be efficiently reduced to
O(nd(p−1)), resulting in an instance of bitsize Õ(nd(p−1)+1).

We conclude this chapter (Section 3.2) by showing a number of kernelization
lower bounds that (nearly) match the upper bounds obtained in Section 3.1. We
show that for d-POLYNOMIAL ROOT CSP no kernel of size O(nd+1−ε) is possible,
unless NP ⊆ coNP/poly. For d-POLYNOMIAL NON-ROOT CSP over Z/pZ for
a prime p, we obtain a lower bound of O(nd(p−1)−ε), which leaves a factor-n
gap with the upper bound. For general d-POLYNOMIAL NON-ROOT CSP, we
show that it does not admit a polynomial kernel unless NP ⊆ coNP/poly. For
d-POLYNOMIAL NON-ROOT CSP over Z/mZ we give a lower bound. We do not
have a polynomial upper bound for this problem, the difficulties in obtaining a
polynomial kernel are discussed in Section 3.3. An overview of the upper and
lower bound results obtained for d-POLYNOMIAL ROOT CSP and d-POLYNOMIAL

NON-ROOT CSP can be found in Table 3.1.

3.1 Upper bound techniques

3.1.1 Sparsification for Polynomial root CSP
We start by showing how to reduce the number of constraints in instances of
d-POLYNOMIAL ROOT CSP, by extending the argument given for EXACT SAT in
the introduction. Let a field F be efficient if the field operations and Gaussian
elimination can be done in polynomial time in the size of a reasonable input
encoding. By this definition, Q and Z/pZ for a prime p are examples of efficient
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fields.

I Theorem 3.1 There is a polynomial-time algorithm that, given an instance
(L, V) of d-POLYNOMIAL ROOT CSP over an efficient field F, outputs an equivalent
instance (L′, V) with at most nd + 1 constraints such that L′ ⊆ L.

Proof. Given a list L of polynomial equalities over variables V for d-POLYNOMIAL

ROOT CSP, we use linear algebra to find redundant constraints. Observe
that (xi)

c = xi for all 0/1-assignments and c ≥ 1. As constraints are evaluated
over 0/1-assignments, we may assume without loss of generality that the
monomials in each of the polynomials are multilinear: each monomial consists
of a coefficient from F multiplied by distinct variables. Note that we also need
the constant monomial 1.

Create a matrix A with |L| rows and a column for every multilinear mono-
mial of degree at most d over variables from V. Let position ai,j in A be
the coefficient of the monomial corresponding to column j in the polynomial
equality corresponding to row i.

Compute a basis B of the row space of matrix A, for example using Gaussian
elimination [50], and let L′ consist of the equalities in L whose corresponding
row appears in the basis. Since L′ ⊆ L, it follows that if the original instance
has a satisfying assignment, the reduced instance has a satisfying assignment as
well. The crucial part of the correctness proof is to establish the converse.

B Claim 3.2 If an assignment τ : V → {0, 1} of the variables in V satisfies the
equalities in L′, then it satisfies all equalities in L.

Proof. Consider any equality ( f (x) = 0) ∈ L \ L′, and assume it corresponds to
the i’th matrix row. Let f j(x) be the polynomial represented in the j’th row of
matrix A for j ∈ [|L|]. Without loss of generality, let the basis of A correspond
to its first m rows a1, . . . , am. We then have i > m, and by the definition of
basis there exist β1, . . . , βm ∈ F such that ai = ∑m

j=1 β jaj . Let t be the column
vector containing, for each multilinear monomial of degree ≤ d in variables
x1, . . . , xn, the evaluation under τ. For example, for monomial x1x3 it contains
τ(x1) · τ(x3). By using the same order of monomials as in the construction of
A, we obtain for all j ∈ [|L|] that f j(τ(x1), . . . , τ(xn)) = aj t, the inner product
of aj and t. It follows that aj t = 0 for all j ∈ [m], since satisfying L′ implies
f j(τ(x1), . . . , τ(xn)) = 0. Now observe that

fi(x) = ait =
m

∑
j=1

(β jaj)t =
m

∑
j=1

β j(aj t) =
m

∑
j=1

β j · 0 = 0,

which proves the claim. C

We now prove an upper bound on the number of constraints in the resulting
kernel.
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B Claim 3.3 The number of constraints in the resulting kernel is bounded by
nd + 1.

Proof. The size of a basis of any matrix over a field equals its rank, which is
bounded by the number of columns. As there is exactly one column for each
multilinear monomial of degree at most d, it follows from Lemma 2.27 that
there are at most nd + 1 columns and the claim follows. C

This concludes the proof of Theorem 3.1. J

When each constraint can be encoded in Õ(n) bits, for example when each
polynomial can be represented as an arithmetic circuit of sizeO(n), Theorem 3.1
gives a kernelization of size Õ(nd+1). When constraints can be encoded in Õ(1)
bits, which may occur when constraints have constant arity, we obtain kernels
of bitsize Õ(nd).

Example application Let us consider the following problem, that generalizes
the d-EXACT SAT and d-NAE-SAT problems. Optionally, a prime p may be chosen.

GENERALIZED d-SAT (MOD p)

Input: A set of clauses C over variables V := {x1, . . . , xn}, and for each
clause a set Si ⊂N with |Si| ≤ d. Each clause is a set of distinct literals of
the form xi or ¬xi.
Parameter: |V| = n.
Question: Does there exist a truth assignment τ : V → {0, 1} such that the
number of satisfied literals in clause i modulo p lies in Si for all i?

We can now use the results obtained for d-POLYNOMIAL ROOT CSP, to give a
kernelization for the above problem.

I Corollary 3.4 GENERALIZED d-SAT and GENERALIZED d-SAT MOD p both have
a kernel with nd + 1 clauses, such that the kernelized instance can be encoded
in O(nd+1 log n) bits. Furthermore, the clauses of the kernelized instance are a
subset of the clauses of the original instance.

Proof. To reduce the number of clauses using Theorem 3.1, we only have to
provide a polynomial of degree at most d to represent each constraint. Consider
a clause involving k variables xi1 , . . . , xik , with set S`. Let tj = xij if variable xij

occurs positively in the clause, and let tj = (1 − xij) if the variable occurs
negatively. Then the number of satisfied literals in the clause is given by the
degree-1 polynomial f (xi1 , . . . , xik ) := ∑k

j=1 tj. Let F(x) be a polynomial with
root set S` (mod p) of degree at most |S`|, which exists by Observation 2.28.
We obtain that F( f (x)) ≡p 0 if and only if x satisfies the clause. Note that the
degree of F( f (x)) is at most |S`| ≤ d.
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Applying Theorem 3.1 to the resulting instance of d-POLYNOMIAL ROOT CSP
identifies a subset of at most nd + 1 constraints which preserve the answer to
the SAT problem. Each clause contains at most 2n literals, which can be encoded
in O(log n) bits each. Additionally, for each clause we need to store the set S`

of at most d integers, which have value at most 2n in relevant inputs. As d is a
constant, the instance can be encoded in O(nd+1 log n) bits. J

Corollary 3.4 yields a new way to get a non-trivial compression for d-NAE-
SAT, which is conceptually simpler than the existing approach which requires
an unintuitive lemma by Lovász [75]. The new approach gives the same size
bound as given earlier [59, Theorem 6].

I Corollary 3.5 d-NAE-SAT has a kernel with nd−1 + 1 clauses, such that the
kernelized instance can be encoded in O(nd−1 log n) bits.

Proof. A clause of size k ≤ d is not-all-equal satisfied if and only if the number
of satisfied literals lies in S := {1, . . . , k− 1}. Using Corollary 3.4 we can reduce
the number of clauses to nd−1 + 1. Each clause has d ∈ O(1) variables and can
thus be encoded in O(log n) bits. J

We can generalize Theorem 3.1 to also obtain a sparsification for d-POLY-
NOMIAL ROOT CSP over the integers modulo a non-prime. We give two different
approaches for sparsifying such problems. The first approach gives the small-
est number of constraints after reduction, but has the disadvantage that the
resulting list of constraints is not necessarily a subset of the original list of
constraints. The second approach results in a larger (but still bounded) number
of constraints, which form a subset of the original constraints. We first give
some linear-algebraic background.

Consider an instance (L, V) of d-POLYNOMIAL ROOT CSP over a ring R
with n variables and m constraints. We consider the matrix A over R with m
rows and ∑d

i=0 (
n
d) columns, in which the i’th row contains the coefficients of the

multilinear monomials in the polynomial for the i’th constraint. The satisfiability
of the constraints by a 0/1-assignment then comes down to the following
question: is there a 0/1-assignment to the variables, such that the vector x
consisting of all multilinear monomial evaluations of the variables x1, . . . , xn
satisfies Ax = 0 over R? The key insight for the sparsification is that any
matrix B for which the row-space over R is equal to that of A, satisfies Ax =
0⇔ Bx = 0. (Recall that the row-space over R consists of the vectors that can
be written as a linear combination of the rows, with coefficients from R.) Hence
we can obtain an encoding of an equivalent problem by selecting a matrix B
whose row-space equals that of A. When working over a field we can just
extract a basis for the row-space to obtain B, which is exactly what happened
in Theorem 3.1. When working over the integers modulo m for composite m,
the existence of a basis is not guaranteed (for more details, see the discussion
after Definition 2.18). For our first approach we therefore use the Howell
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normal form of the matrix, which is a canonical matrix form which has the same
row-space.

I Theorem 3.6 There is a polynomial-time algorithm that, given an instance
(L, V) of d-POLYNOMIAL ROOT CSP over Z/mZ for some integer m ≥ 2, outputs
an equivalent instance (L′, V) of d-POLYNOMIAL ROOT CSP over Z/mZ with at
most nd + 1 constraints.

Proof. In a similar way as in Theorem 3.1, we use linear algebra to find redun-
dant constraints. Let a list L of polynomial equalities over variable set V be
given. We again assume without loss of generality that the monomials in each
of the polynomials are multilinear. Construct a matrix A with |L| rows and
a column for every multilinear monomial of degree at most d over variables
from V.

We now compute the Howell form H of matrix A (Definition 2.24), such that
A = PH, where P is invertible over Z/mZ. This can be done in polynomial
time by Theorem 2.25. Let H′ be the matrix H with all zero rows removed. Let
L′ contain the polynomial equations where the left-hand sides are given by the
rows of H′ and the right-hand sides are all 0. We now prove the correctness of
this procedure.

B Claim 3.7 An assignment τ : V → {0, 1} of the variables in V satisfies the
equalities in L′, if and only if it satisfies the equalities in L.

Proof. (⇒) Suppose assignment τ : V → {0, 1} satisfies all equalities in L′.
Consider the vector x with the assignment given to the j’th monomial on position
j. Then

H′x = 0⇔ Hx = 0⇒ PHx = P0⇒ Ax = 0,

which implies that τ is also a satisfying assignment for L.
(⇐) Suppose assignment τ : V → {0, 1} satisfies all equalities in L. Consider

the vector x with the assignment given to the j’th monomial on position j. Then

Ax = 0⇔ PHx = 0⇒ P−1PHx = P−10⇒ Hx = 0⇒ H′x = 0,

which implies that τ is also a satisfying assignment for L′. C

B Claim 3.8 The number of constraints in the resulting kernel L′ is bounded by
nd + 1.

Proof. The number of constraints in L′ equals the number of rows in H′. We will
use the following properties of a matrix in Howell form (recall Definition 2.24)
to give an upper bound on the number of non-zero rows in H.

• Let r be the number of non-zero rows of H. Then the first r rows of H are
non-zero.
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• For 1 ≤ i ≤ r let the first non-zero entry in row i of H be in column ji. Then
j1 < j2 < . . . < jr.

By these two properties any matrix in Howell form has at most as many non-zero
rows as it has columns. Thereby there are at most nd + 1 polynomial equations
in L′. C

This concludes the proof of Theorem 3.6. J

Compared to Theorem 3.1, the sparsification of Theorem 3.6 has the disad-
vantage that it may output polynomials (representing constraints) that were not
part of the input. If the input polynomials had an efficient encoding, for example
as an arithmetic circuit, this property may be lost in the transformation. In
general, to represent an output polynomial one may have to store all its O(nd)
coefficients individually. We present an alternative approach that alleviates this
issue by ensuring that the set of constraints in the output instance is a subset
of the original constraints. However, it comes at the expense of increasing the
number of constraints. The following lemma captures the key linear-algebraic
insight behind the approach.

I Lemma 3.9 Let m ≥ 2 be an integer with r distinct prime divisors. For
any S ⊆ Z/mZ there exists a subset S′ ⊆ S of size at most r such that any
element in S can be written as a linear combination over Z/mZ of elements
in S′. For any fixed m, one can compute S′ and expressions of all a ∈ S as linear
combinations of S′ in polynomial time.

Proof. Let p1, . . . , pr be the distinct prime divisors of m, which can be found in
constant time for fixed m. For a prime p and positive integer a, define:

µp(a) := max{k ∈N | pk divides a}.
νp(a) := max{k ∈N | pk divides both a and m}.

Observe that νp(a) ≤ µp(a) for all a. For any a that divides m we have νp(a) =
µp(a).

Using these notions we construct the set S′ as follows. For each i ∈ [r] select
an element a ∈ S that minimizes νpi (a) and add this element to S′. Since m is
constant this can be done in polynomial time. The resulting set S′ has size at
most r. We prove it spans S using the following claim.

B Claim 3.10 Let d be the largest integer that simultaneous divides m and all
elements of S′. For any b ∈ S \ S′, the integer d divides b. Equivalently:

gcd(m, S′) | b.

Proof. If d = 1 then the claim is trivial. Suppose all prime factors p of d are
also prime factors of b with µp(d) ≤ µp(b). Then the factorization of b can be
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written as the factorization of d multiplied by remaining factors. Hence d | b,
and the claim follows.

Now suppose there is a prime factor p of d with µp(d) > µp(b). Since p
is a factor of d = gcd(m, S′), we know p is a factor of m and was there-
fore considered during the construction of S′. Since d divides m we know
that µp(d) = νp(d). Combined with the fact that νp(b) ≤ µp(b) it follows
that νp(b) ≤ µp(b) < µp(d) = νp(d). Since d divides all members of S′, it
follows that νp(b) < νp(d) ≤ νp(a) for all a ∈ S′. But then b should have been
added to S′ during its construction; a contradiction. C

To conclude the proof, we use Claim 3.10 to show that any b ∈ S \ S′ can
efficiently be written as a linear combination of S′ over Z/mZ. By Bézout’s
identity (Theorem 2.15), the greatest common divisor of a set of integers
can be written as an integer linear combination of the elements in that set.
Such a combination can efficiently be found using the extended Euclidean
algorithm. Hence there are integer coefficients αi such that d = gcd(m, S′) =
αm ·m + ∑a∈S′ αa · a. Let b′ := b/ gcd(m, S′), which is integral by Claim 3.10.
But then

b = b′ · gcd(m, S′) = (b′ · αm)m + ∑
a∈S′

(b′ · αa)a,

which implies that

b ≡m ∑
a∈S′

(b′ · αa)a ≡m ∑
a∈S′

((b′ · αa) mod m)a

is a linear combination over Z/mZ resulting in b. J

The following lemma follows from a procedure similar to Gaussian elimina-
tion, using Lemma 3.9 as a subroutine.

I Lemma 3.11 Let m ≥ 2 be an integer with r distinct prime divisors. For any
matrix A over Z/mZ in which k ≥ 1 columns contain a nonzero element, there is
a subset B of r · k rows of A that spans the row-space of A. For any fixed m, such
a subset B can be found in polynomial time.

Proof. Proof by induction on k. Consider the first column ci of A that contains a
nonzero and let S be the elements appearing in that column. Using Lemma 3.9,
compute a subset S′ ⊆ S of size at most r that spans S, and find the correspond-
ing linear combinations. For each element a ∈ S′ select one row with value a
in column ci and add it to B1. If ci is the only column containing a nonzero,
then it is easy to see that B := B1 is a valid output for the procedure. Otherwise,
since all elements of S are linear combinations of elements of S′, by subtracting
the relevant linear combinations of rows of B1 from rows in A we can obtain
zeros at all positions in column ci, without introducing nonzeros in earlier
columns. Let A′ be the resulting matrix, which therefore has at most k − 1
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nonzero columns. Apply induction to find a spanning subset B′ of the rows of A′

of size at most r · (k− 1). Let B2 be the rows of A corresponding to rows B′

in A′. Then B1 ∪ B2 consists of at most r + (k− 1)r = rk rows of A. It is easy
to verify that these rows indeed span the row-space of A. The inductive proof
directly translates into a polynomial-time recursive algorithm, using the fact
that the procedure of Lemma 3.9 provides the required linear combinations. J

Using the lemmas above, we can now give our sparsification procedure for
d-POLYNOMIAL ROOT CSP over Z/mZ that outputs a subset of the original
constraints.

I Theorem 3.12 There is a polynomial-time algorithm that, given an instance
(L, V) of d-POLYNOMIAL ROOT CSP over Z/mZ for some fixed integer m ≥
2 with r distinct prime divisors, outputs an equivalent instance (L′, V) of d-
POLYNOMIAL ROOT CSP over Z/mZ with at most r · (nd + 1) constraints such
that L′ ⊆ L.

Proof. We proceed similarly as in the proof of Theorem 3.6. Consider an in-
put (L, V) of d-POLYNOMIAL ROOT CSP over Z/mZ with n := |V| variables.
Let A be the matrix with |L| rows and ∑d

i=0 (
n
i ) columns, containing the coeffi-

cients of the multilinear monomials that form the constraints for each of the |L|
constraint polynomials. A 0/1-assignment to the variables satisfies all con-
straints if and only if the vector x of all monomial evaluations satisfies Ax = 0.
Use Lemma 3.11 to compute a subset B of at most r · ∑d

i=0 (
n
i ) ≤ r · (nd + 1)

rows of A that span the row-space of A. Let L′ contain the constraints whose
corresponding row appears in B and output the instance (L′, V) as the result
of the procedure. Using the guarantee of Lemma 3.11 this procedure runs
in polynomial time for fixed m. Since L′ ⊆ L, the instance (L′, V) can be
satisfied if (L, V) can. For the reverse direction, consider a satisfying assign-
ment for (L′, V) and the corresponding vector x of evaluations of multilinear
monomials of degree at most d. Then Bx = 0 since the assignment satisfies all
constraints in L′. As any row in A can be written as a linear combination of
rows in B, it follows that Ax = 0, showing that (L, V) is satisfiable and hence
that the output instance is equivalent to the input. J

3.1.2 Sparsification for Polynomial non-root CSP
We will now change focus to constraint satisfaction problems with constraints
given by polynomial disequalities. Therefore, we consider the d-POLYNOMIAL

NON-ROOT CSP problem. In Section 3.2.3 we will show that, over the field
of rational numbers, the problem cannot be compressed to size polynomial
in n, unless NP ⊆ coNP/poly. We therefore consider the field Z/pZ of integers
modulo a prime p.
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I Theorem 3.13 There is a polynomial-time algorithm that, given an instance
(L, V) of d-POLYNOMIAL NON-ROOT CSP over Z/pZ, outputs an equivalent
instance (L′, V) with at most nd(p−1) + 1 constraints such that L′ ⊆ L.

Proof. Suppose we are given a list of polynomial disequalities L over variables V.
Observe that a disequality f (x) 6≡p 0 is equivalent to f (x) mod p ∈ {1, . . . , p−
1}. Recall that Fermat’s little theorem states that ap ≡p a for any integer a
and prime p, which implies that a(p−1) ≡p 1 if and only if a 6= 0. Hence
the disequality f (x) 6≡p 0 can equivalently be stated as ( f (x))p−1 − 1 ≡p 0.
Therefore, L can be written as an instance of d(p − 1)-POLYNOMIAL ROOT

CSP by replacing every polynomial disequality f (x) 6≡p 0 by the equality
( f (x))p−1 − 1 ≡p 0. By Theorem 3.1, the theorem statement follows. J

In Section 3.2.3 we will establish a nearly-matching lower-bound counterpart
to Theorem 3.13. We do not have upper bounds for d-POLYNOMIAL NON-ROOT

CSP modulo a composite number m, the difficulty of obtaining these is discussed
in the conclusion of this Chapter (Section 3.3).

3.2 Tightness of upper bound techniques
We now turn our attention to lower bounds and show that the results ob-
tained for d-POLYNOMIAL ROOT CSP and d-POLYNOMIAL NON-ROOT CSP in
Sections 3.1.1 and 3.1.2 are (almost) tight.

3.2.1 1-Polynomial root CSP over the rationals
We will start with d-POLYNOMIAL ROOT CSP over Q and over Z/mZ. We start
by proving that EXACT RED-BLUE DOMINATING SET does not have generalized
kernels of bitsize O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. The same
lower bound for both variants of 1-POLYNOMIAL ROOT CSP will follow by a
linear-parameter transformation. We then show how to generalize this result to
d-POLYNOMIAL ROOT CSP. As a starting problem for the cross-composition we
will use the NP-hard RED-BLUE DOMINATING SET (RBDS) problem [34,65].

RED-BLUE DOMINATING SET (RBDS)

Input: A bipartite graph G = (R ∪ B, E) containing red (R) and blue (B)
vertices, and an integer k.
Question: Does there exist a set D ⊆ R with |D| ≤ k such that every vertex
in B has at least one neighbor in D?

EXACT RED BLUE DOMINATING SET (ERBDS) is defined similarly, except that
every vertex in B must have exactly one neighbor in D. Furthermore we will
not bound the size of such a set, but merely ask for the existence of any ERBDS.
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Finally, we define a weakening of the notion of an ERBDS of a graph, called a
SEMI-ERBDS. Given a bipartite graph G and set S ⊆ B, a set X ⊆ V(G) is a
SEMI-ERBDS of G with respect to S if it is a RBDS of G and furthermore, any blue
vertex x /∈ S has exactly one neighbor in X. Vertices from S may be dominated
multiple times.

The following lemma gives a degree-2 cross-composition from RBDS to SEMI-
ERBDS, which will be used to prove Theorem 3.22. It is proven separately
because the construction will also be used in the proofs of Theorems 3.26
and 3.27, which is also the reason we require part (4) of the lemma statement.

I Lemma 3.14 There exists a polynomial-time algorithm that, given t instances
of RBDS with

√
t ∈ N, labeled X`1,`2 with `1, `2 ∈ [

√
t], which all ask for a

solution of size k and all have mR red and mB blue vertices, constructs a bipartite
graph G′ with vertices partitioned into red (R) and blue (B) vertices, and a subset
V of the blue vertices, such that the following holds:

1. |R|+ |B| ≤ O(
√

t · (mR + mB)
3).

2. If there exist `1, `2 ∈ [
√

t] such that X`1,`2 has a RBDS of size k, then G′ has an
ERBDS.

3. If G′ has a SEMI-ERBDS with respect to V, then there exist `1, `2 ∈ [
√

t] such
that X`1,`2 has a RBDS of size k.

4. There are at most 2 vertices in B \V with degree more than mR + k + 2.

In particular, the lemma shows how to embed a series of t size-n instances
X`1,`2 = (G`1,`2 , k) for `1, `2 ∈ [

√
t] that share the same target value k, into a

single graph G′ with O(
√

t · poly(n)) vertices such that G′ has an ERBDS if and
only if some input instance has a size-k RBDS. This straightforwardly gives a
kernelization lower bound for ERBDS: since the number of output vertices is
roughly

√
t, by choosing a suitable polynomial equivalence relation we get a

degree-2 cross composition. Now the actual lemma statement is even stronger
than the statement “some input has a RBDS ⇔ G′ has an ERBDS”, because the
(⇐) implication already holds when G′ has a SEMI-ERBDS. The fact that it
is only required to be exact on a set of vertices B \ V that has almost only
small-degree vertices, will be used later. Later constructions “pay extra” for
checking exactness of large-degree vertices, and the bound in (4) guarantees
this does not happen too often.

Before proving the lemma, let us give the main ideas. The standard approach
to give a degree-2 cross composition (see Section 2.4.3) is to have a table-like
structure with sets of vertices U` consisting of mR vertices and V` consisting
of mB vertices for all ` ∈ [

√
t]. In this way we can add connections between U

and V such that G′[U`1 ∪V`2 ] is isomorphic to G`1,`2 , thereby embedding the
adjacency information of all t individual inputs while only needing

√
t · (mR +

mB) vertices in the graph. Selector gadgets are then used to ensure that the
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part of a (SEMI)-ERBDS in G′ in U`1 for some `1 corresponds to a RBDS of size k
in G`1,`2 for some `2. In the case of ERBDS however, difficulties arise when we
try to use this type of construction. Given a RBDS for some input instance G`1,`2 ,
finding an ERBDS in G′ can be problematic. The issue is that adding the vertices
in U`1 corresponding to a solution in G`1,`2 to an ERBDS in G′, may dominate
some of the vertices from V multiple times. This is not easy to avoid, as there is
simply no guarantee on how many times a vertex in the set V` with ` 6= `2 will
be dominated by this choice of red vertices.

To resolve this problem, every set U` and V` has k copies of each vertex.
Connections are made such that the i’th copy of a vertex may only connect to
the i’th copy of another vertex, such that G[U`1 ∪V`2 ] contains k disjoint copies
of G`1,`2 . To translate a RBDS in G`1,`2 to a ERBDS in G′, we take at most one
vertex from the i’th set of copies in U`1 . Hereby, any vertex in V is dominated
at most once. Furthermore, for each vertex in V`2 , at least one of its copies is
dominated. We add additional gadgets to ensure that the remaining vertices
can also be dominated.

Proof of Lemma 3.14. Let instance X`1,`2 have graph G`1,`2 , with red vertices
R`1,`2 and blue vertices B`1,`2 . For each input graph G`1,`2 enumerate the red
vertices as r1, . . . , rmR and the blue vertices as b1, . . . , bmB , arbitrarily. Create a
graph G′ by the following steps. Figure 3.1 shows a sketch of G′.

1. Create
√

t sets U1, . . . , U√t each consisting of k ·mR red vertices, with U` :=
{u`

i,j | i ∈ [k], j ∈ [mR]} for each ` ∈ [
√

t]. Let U be the union of all sets

U`, for ` ∈ [
√

t].

2. Similarly create
√

t sets V1, . . . , V√t, each consisting of k ·mB blue vertices,

and define V` := {v`i,j′ | i ∈ [k], j′ ∈ [mB]} for all ` ∈ [
√

t]. Let V be the
union of all sets V`. Note that a SEMI-ERBDS wrt. V must dominate all blue
vertices that are created in the remainder of the construction exactly once.

3. For each i ∈ [k] add the edge from u`1
i,j to v`2

i,j′ if {rj, bj′} is an edge in instance

X`1,`2 with `1, `2 ∈ [
√

t], j ∈ [mR], and j′ ∈ [mB].

By Steps 1 to 3, the subgraph of G′ induced by the vertices in U`1 ∪V`2 consists
of k vertex-disjoint copies of G`1,`2 . The next steps are used to ensure that
there are exactly k vertices from U in any SEMI-ERBDS, which must all belong to
the same set U`. These vertices will correspond to a RBDS in one of the input
instances.

4. Create blue vertices d`i for ` ∈ [
√

t] and i ∈ [k]. Connect vertex d`i to all
vertices u`

i,j with j ∈ [mR]. Define D := {d`i | ` ∈ [
√

t], i ∈ [k]}. These blue
vertices ensure that a SEMI-ERBDS wrt. V, which dominates each vertex of D
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Figure 3.1 The graph G′ created in the proof of Lemma 3.14, for k = 2, mR = 5, mB = 4,
and t = 9. Edges between U and V are left out for simplicity. Of the 24 gadgets in C
only c`1,1 and c`2,1 are shown for all ` ∈ [

√
t]. Vertices in R are shown in red and vertices

in B are shown in dark blue. The set V of vertices that may be dominated multiple times
by a SEMI-ERBDS wrt. V is highlighted by a rectangle.

exactly once, cannot contain two vertices u`
i,j and u`

i,j′ belonging to the same
row of the same set U`.

5. Add blue vertex s and add the vertices Z := {z`, z′`, z′′` | ` ∈ [
√

t]}. Let z`
and z′′` be red and let z′` be blue for all ` ∈ [

√
t]. Connect z′′` to d`i for i ∈ [k]

and ` ∈ [
√

t]. Add the edges {z`, z′`} and {z′`, z′′` } for all ` ∈ [
√

t]. Connect
each vertex z` to s for ` ∈ [

√
t], thereby ensuring that exactly one vertex z`

is contained in a SEMI-ERBDS wrt. V. Intuitively, the index `1 for which z`1
belongs to a SEMI-ERBDS controls the first index of the input instance X`1,`2
to which the solution corresponds.

The next steps ensure that some of the blue vertices in one set V`2 need to be
dominated by vertices from U, while all other vertices in V can be dominated
“for free”. This will control the second index of the input instance X`1,`2 to which
the solution corresponds.

7. Add sets of gadgets C` for ` ∈ [
√

t]. Each set C` consists of mB · k selector
gadgets c`i,j′ for i ∈ [k], j′ ∈ [mB]. Selector gadget c`i,j′ consists of k + 1 red
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vertices labeled a`,1
i,j′ , . . . , a`,k+1

i,j′ that are all connected to a blue vertex b`i,j′
that is the only blue vertex inside the gadget. Furthermore, for j′ ∈ [mB],
` ∈ [
√

t] and i ∈ [k], in gadget c`i,j′ the vertex a`,x
i,j′ for x ∈ [k] is connected to

v`x,j′ . We refer to the vertex set of gadget c`i,j′ by V(c`i,j′).

By Step 7 of the construction a SEMI-ERBDS uses at most one red vertex from each
gadget, which can be used to dominate one vertex from V. Using vertex a`,k+1

i,j′ of
a gadget, the blue vertex of that gadget can be dominated without dominating
any other blue vertices. Using the k gadgets introduced for j′ ∈ [mB], ` ∈ [

√
t],

we can thus precisely dominate all vertices in {v`i,j′ | i ∈ [k]}. Now we will

ensure that there is a `2 ∈ [
√

t] such that in V`2 , for each j′ ∈ [mB], one of the

vertices {v`2
i,j′ | i ∈ [k]} is not dominated by a gadget and must therefore be

dominated by a vertex from U.

8. Add red vertices Y := {y1, . . . , y√t}. For each ` ∈ [
√

t] connect y` to the
blue vertices of the gadgets c`1,j′ for all j′ ∈ [mB], thereby making gadget

c`i,j′ special for i = 1. Connect y1, . . . , y√t to the new blue vertex s′, which
ensures that exactly one vertex y`2 ∈ Y belongs to any SEMI-ERBDS wrt. V.

This concludes the construction of graph G′, with red vertices

R := U ∪Y ∪ {z`, z′′` | ` ∈ [
√

t]}
∪ {a`,x

i,j′ | ` ∈ [
√

t], x ∈ [k + 1], i ∈ [k], j′ ∈ [mB]},

and blue vertices

B := V ∪ D ∪ {s, s′} ∪ {b`i,j′ | ` ∈ [
√

t], i ∈ [k], j′ ∈ [mB]} ∪ {z′` | ` ∈ [
√

t]}.

The following observation follows immediately from the construction above.

Observation 3.15 Let x /∈ V be a blue vertex in G′. The neighborhood of x
depends only on mR, mB, t, and k; it is independent of the structure of the given
input instances.

Furthermore, we can show that requirement 4 of this lemma is satisfied.

B Claim 3.16 There are at most 2 vertices in B \V with degree more than mR +
k + 2.

Proof. We list all vertices in B \ V, together with an upper bound on their
degree.

Vertices s and s′: It follows from Steps 5 and 8 that these two vertices both
have large degree, namely

√
t.
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Vertices in D: It follows from Steps 4 and 5 that these vertices have degree
mR + 1.

Vertices in Z ∩B: It follows from Step 5 that vertex z′` has degree two for all
` ∈ [
√

t].

Vertices in gadgets: The blue vertex of any gadget has degree at most k + 2,
the incident edges are added in Steps 7 and 8.

Thus there are at most 2 vertices of degree larger than mR + k + 2 in B \V. C

We now continue by providing a number of relevant properties of the
graph G′, that will be used to prove that the construction satisfies require-
ment 3 of the lemma statement.

B Claim 3.17 For any SEMI-ERBDS E of G′ wrt. V, there exists an index `1 ∈ [
√

t]
such that U` ∩ E = ∅ for all ` 6= `1 ∈ [

√
t] and |E ∩ {u`1

i,j | j ∈ [mR]}| = 1 for all
i ∈ [k].

Proof. By Step 5, blue vertex s /∈ V has neighborhood {z` | ` ∈ [
√

t]}. Since the
semi-exact RBDS is exact on blue vertices outside V, exactly one neighbor of s
is contained in E; let this be z`1 . Thereby, for all ` ∈ [

√
t] with ` 6= `1 we obtain

z` /∈ E. Since blue vertex z′` has neighborhood exactly NG′(z′`) = {z`, z′′` }, it
follows that z′′` ∈ E for all ` 6= `1 with ` ∈ [

√
t].

Let ` ∈ [
√

t] with ` 6= `1, we show that no vertex in U` is in E. Consider
vertex u`

i,j with i ∈ [k], j ∈ [mR]. Then u`
i,j ∈ NG′(d`i ) for blue vertex d`i . Since

z′′` ∈ NG′(d`i ) and z′′` ∈ E, it follows that u`
i,j /∈ E.

It remains to show that |E ∩ {u`1
i,j | j ∈ [mr]}| = 1 for all i ∈ [k]. Since

NG′(z′`1
) = {z`1 , z′′`1

} and z`1 ∈ E, it follows that z′′`1
/∈ E. As d`1

i ∈ B \V and E

is an exact RBDS on vertices outside V, it follows that |E ∩ NG′(d
`1
i )| = 1 for all

i ∈ [k]. Since z′′`1
/∈ E, it thereby follows that |E ∩ {u`1

i,j | j ∈ [mR]}| = 1 for all
i ∈ [k]. C

B Claim 3.18 For any SEMI-ERBDS E of G′ wrt. V, there exists an index `2 ∈ [
√

t]
such that E ∩V(c`2

1,j′) = ∅ for all j′ ∈ [mB].

Proof. By Step 8, blue vertex s′ has neighborhood {y` | ` ∈ [
√

t]}. Since s′ /∈ V,
exactly one of these vertices is contained in E; let this be y`2 . It is connected

to the blue vertex of all gadgets c`2
1,j′ for j′ ∈ [mB]. Since all red vertices in

a gadget c`2
1,j′ for j′ ∈ [mB] have the blue neighbor b`2

1,j′ that is also adjacent

to y`2 ∈ E, the red vertices in these gadgets are not present in E, as b`2
1,j′ has

exactly one red neighbor in E. C
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B Claim 3.19 For any SEMI-ERBDS E of G′ wrt. V, there exists an index `2 ∈ [
√

t]
such that for every j′ ∈ [mB] at least one of the vertices in {v`2

i,j′ | i ∈ [k]} has a
neighbor in E ∩U.

Proof. By Claim 3.18 there exists `2 ∈ [
√

t] such that E ∩ V(c`2
1,j′) = ∅ for all

j′ ∈ [mB]. Consider an arbitrary j′ ∈ [mB]. The k vertices in {v`2
i,j′ | i ∈ [k]} are

connected to vertices of the k gadgets c`2
1,j′ , c`2

2,j′ , . . . , c`2
k,j′ , and to some vertices

in U. From each gadget, at most one red vertex is in E, since the red vertices
have a common blue neighbor that is not in V. Any red gadget vertex is
connected to only one vertex in V. Since no vertex of gadget c`2

1,j′ is in E, at most

k− 1 of the vertices in {v`2
i,j′ | i ∈ [k]} have a neighbor in E ∩ C`2 . Consequently,

at least one of these vertices has a neighbor in E ∩U for each j′ ∈ [mB]. C

We can now prove that G′ and V fulfill requirement 3 of the lemma statement.

B Claim 3.20 If G′ has a SEMI-ERBDS wrt. V, then some input X`1,`2 has a RBDS

of size at most k.

Proof. Assume G′ has a SEMI-ERBDS wrt. V, say E. By Claim 3.19, there exists
`2 ∈ [

√
t], such that for every j′ ∈ [mB] at least one of the vertices in {v`2

i,j′ | i ∈
[k]} has a neighbor in E ∩U. By Claim 3.17, there exists `1 ∈ [

√
t] such that for

all ` 6= `1 we have U` ∩ E = ∅, so these neighbors lie in U`1 .
We now construct a RBDS E′ for instance X`1,`2 . For each j ∈ [mR], add rj to

E′ if E ∩ {u`1
i,j | i ∈ [k]} 6= ∅. By Claim 3.17, it follows that E′ has size at most k,

as required. It remains to show that every vertex in B`1,`2 has a neighbor in E′.
If some vertex bj′ from B`1,`2 does not have a neighbor in E′, then none of the

vertices {v`2
i,j′ | i ∈ [k]} have a neighbor in E ∩U`1 . This contradicts our choice

of `2. Hence E′ is an RBDS of size at most k for instance X`1,`2 . C

Furthermore we show that requirement 2 is fulfilled in the following claim.

B Claim 3.21 If some input instance has a RBDS of size at most k, then G′ has an
ERBDS.

Proof. Suppose instance X`1,`2 has a RBDS E′ of size k consisting of vertices
ri1 , . . . , rik ⊆ R`1,`2 . We construct an ERBDS E for G′. Start by choosing vertices

u`1
x,ix

for x ∈ [k], so for every vertex in E′ we pick one vertex in the ERBDS for G′.
Add the red vertex z`1 and the vertices z′′` for all ` 6= `1 to E. Furthermore, we
let the vertex y`2 be in E.

To exactly dominate the blue vertices in V, we use the gadgets in C as
follows. For ` 6= `2 ∈ [

√
t], add red vertex a`,x

x,j′ of gadget c`x,j′ if vertex v`x,j′ does
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not yet have a neighbor in E, for j′ ∈ [mB] and x ∈ [k]. Else, add vertex a`,k+1
x,j′

of gadget c`x,j′ to E, in order to exactly dominate the blue vertex of this gadget.
To exactly dominate the vertices in V`2 we apply a similar procedure, except

that gadget c`2
1,j′ cannot be used since its blue vertex b`2

1,j′ is already dominated
by y`2 . Since E′ is a RBDS of instance X`1,`2 , for each j′ ∈ [mB] at least one vertex

from set {v`2
i,j′ | i ∈ [k]} has a neighbor in E ∩U. As such, the k− 1 remaining

gadgets can be used to each dominate one of the k− 1 remaining vertices in
this set, if they do not already have a neighbor in E ∩U. If no red vertex of a
gadget c`2

x,j′ is needed to dominate, we choose vertex a`2,k+1
x,j′ of the gadget in E

to dominate the blue vertex in the gadget.
It is straight-forward to verify that this results in an ERBDS for G′. C

From Claims 3.20 and 3.21 it follows that graph G′ has a SEMI-ERBDS wrt. V
if and only if at least one of the input instances has a RBDS of size at most k. The
graph G′ has O(

√
t · (mR +mB)

3) vertices and can be constructed in polynomial
time. J

Using the lemma above, we now prove the kernel lower bound for ERBDS.

I Theorem 3.22 EXACT RED-BLUE DOMINATING SET parameterized by the
number of vertices n does not have a generalized kernel of size O(n2−ε) for any
ε > 0, unless NP ⊆ coNP/poly.

Proof. We will prove this result by giving a degree-2 cross-composition from
RBDS to ERBDS. We start by giving a polynomial equivalence relation R on
inputs of RBDS. Let two instances of RBDS be equivalent under R if they have
the same number of red vertices mR, the same number of blue vertices mB, and
the same maximum size k of a RBDS. It is easy to check that R is a polynomial
equivalence relation.

Assume we are given t instances of RBDS, labeled X`1,`2 for `1, `2 ∈ [
√

t],
from the same equivalence class of R. If the number of instances given is not
a square, we duplicate one of the input instances until a square number is
reached. Since this changes the number of inputs by at most a factor four, this
does not influence the cross-composition. Call the number of red vertices in
every instance mR, the number of blue vertices mB, and the required size of the
dominating set k. By Lemma 3.14, we can in polynomial time construct graph
G′ such that

• |V(G)| ≤
√

t · poly(mB + mR) and

• G′ has an ERBDS if and only if at least one input instance has a RBDS. This
follows from requirements 2 and 3 from Lemma 3.14, and the fact that any
ERBDS is also a SEMI-ERBDS.
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Thereby we have given a degree-2 cross-composition and the lower bound
follows from Theorem 2.14. J

Using Theorem 3.22 we provide lower bounds for constraint satisfaction
problems. It is easy to give a linear-parameter transformation from ERBDS to
both 1-POLYNOMIAL ROOT CSP and EXACT SAT, by introducing a variable for
each red vertex and adding a constraint for each blue vertex such that exactly
one of its neighbors is chosen in any assignment. Using Theorem 2.8, this results
in the following corollary.

I Corollary 3.23 The problems EXACT SAT and 1-POLYNOMIAL ROOT CSP over Q,
parameterized by the number of variables n, do not have a generalized kernel of
size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. J

3.2.2 Polynomial root CSP (modulo an integer)
In order to also establish a lower bound for 1-POLYNOMIAL ROOT CSP over the
integers modulo m, we will need the following lemma. It allows us to enforce
a linear equality constraint over Q using constraints over Z/mZ, through the
use of auxiliary 0/1-dummy variables. Since ∑i xi = 1 implies ∑i xi ≡m 1, the
non-trivial part is to add extra constraints which, together with ∑i xi ≡m 1, also
imply ∑i xi = 1.

I Lemma 3.24 Let m ≥ 3 be an integer. Given a linear equality ∑i∈[N] xi = 1
over Q, there exists a system S of linear equalities over Z/mZ using the variables
{xi | i ∈ [N]} and at most 4N additional variables, such that

1. Any 0/1-solution to the system S sets exactly one of the variables {xi | i ∈ [N]}
to 1,

2. any assignment to {xi | i ∈ [N]} setting exactly one variable xi to 1 can be
extended to a 0/1-solution of S, and

3. S can be constructed in polynomial time.

Proof. Given the linear equality ∑i∈[N] xi = 1, first of all add the equation

∑
i∈[N]

xi ≡m 1

to S. Any choice of x1, . . . , xN satisfying ∑i∈[N] xi = 1 also satisfies the equal-
ity modulo m. Furthermore, any 0/1-assignment of x1, . . . , xN satisfying the
equation ∑i∈[N] xi ≡m 1 ensures that at least one variable xi is set to 1.

To ensure that at most one of these variables is set to 1, we add additional
constraints in the following way. Construct a complete binary tree with N′ :=
2dlog Ne leaves, implying N ≤ N′ < 2N. Identify the first N leaves with variables
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x1, . . . , xN and introduce dummy variables for all other vertices. For every non-
leaf d in the tree with children d` and dr, each corresponding to a unique
variable, add the equation

d` + dr ≡m d.

It is clear that this construction can be done in polynomial time, thus Property 3
holds. To show that Properties 1 and 2 hold, we prove the following claim.

B Claim 3.25 Let a 0/1-assignment satisfying all equalities in S be given. The
value assigned to any variable x corresponds to the number of leaves in the subtree
rooted in x that are assigned value 1.

Proof. We prove this by induction on the height of the tree rooted in x. If x is
a leaf, the result is obvious. Suppose the tree has height larger than one and
let x` and xr be the left and right child of x. By the induction hypothesis, the
values of x` and xr correspond to the number of leaves in the left (respectively,
right) subtree that were assigned 1. Since x`, xr ∈ {0, 1} and x ≡m x` + xr with
m > 2, the result follows. C

Suppose we are given any 0/1-assignment satisfying all equalities in S.
Hence the variable corresponding to the root r of the binary tree has value 0
or 1. By Claim 3.25, it follows that the number of leaves (and thus the number
of variables in {x1, . . . , xN}) that are assigned the value 1 is at most one. As
we have seen earlier, at least one variable xi is set to 1, to fulfill ∑i∈[N] xi ≡m 1,
and thus ∑i∈[N] xi = 1. Hence Property 1 holds.

Given a 0/1-assignment to x1, . . . , xN such that ∑i∈[N] xi = 1, it can be
extended to a satisfying assignment of S by setting all dummy leaves to 0. For
every other dummy vertex, let its value be the number of variables corresponding
to leaves in its subtree, that are set to 1. Note that this number is always either 0
or 1 since there is only one leaf whose corresponding variable is set to 1.
Therefore Property 2 holds as well. J

For m = 2, an input to the problem 1-POLYNOMIAL ROOT CSP over the
integers mod m only consists of linear equations over the two-element field
{0, 1} and is thus polynomial time solvable by Schaefer’s dichotomy theorem
(Theorem 2.37). For larger moduli, we use Lemma 3.24 to prove the following
result.

I Theorem 3.26 Let m ≥ 3 be an integer. The problem 1-POLYNOMIAL ROOT

CSP over Z/mZ, parameterized by the number of variables n, does not have a
generalized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. We will use the graph constructed in Lemma 3.14, by transforming the
constructed instance G′ of (SEMI)-ERBDS of size O(

√
t · poly(mR + mB)) to an

instance I of 1-POLYNOMIAL ROOT CSP over Z/mZ withO(
√

t ·poly(mR +mB))
variables. In this way we obtain a degree-2 cross-composition from RBDS to
1-POLYNOMIAL ROOT CSP over Z/mZ, proving the lower bound.
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Suppose we are given t instances of RBDS, such that
√

t is integer and such
that every instance has mB blue vertices and mR red vertices and asks for a RBDS

of size k ≤ mR. This can be assumed by choosing an appropriate polynomial
equivalence relation. Apply Lemma 3.14 to obtain graph G′ and V ⊆ V(G′).
By requirements 2 and 3 of Lemma 3.14, it is sufficient to ensure that G′ has a
SEMI-ERBDS with respect to V if I is satisfiable, and that I is satisfiable if G has
an ERBDS, to obtain the cross-composition.

Recall that a SEMI-ERBDS of G′ with respect to V contains at least one
neighbor of each blue vertex, and contains exactly one neighbor of each blue
vertex in V(G′) \V.

First of all introduce a variable vr for every red vertex r in G′. For every
blue vertex b, we add the following equation to ensure that it has at least one
neighbor in the SEMI-ERBDS:

∑
r∈NG′ (b)

vr ≡m 1. (3.1)

For every blue vertex b /∈ V, we add a number of linear equations that
ensure b has exactly one neighbor in a SEMI-ERBDS, using at most 4 · |NG′(b)|
additional variables. This is done by applying Lemma 3.24 to the equation
∑r∈NG′ (b)

vr = 1.

This completes the construction. If G′ has an ERBDS, then I can be satisfied
by setting the variables corresponding to the ERBDS to 1 and all other variables
corresponding to vertices to 0. The dummy variables can then be chosen in such
a way that all equations are satisfied according to Lemma 3.24.

For the opposite direction, suppose I has a satisfying assignment. Define
set Y to contain the vertices whose corresponding variable is set to 1. From
Equation (3.1) it follows that every blue vertex has at least one neighbor in the
set Y. Furthermore every blue vertex not in V has exactly one neighbor in Y by
Lemma 3.24. It follows that Y is a SEMI-ERBDS of G′.

It remains to bound the number of used variables. The key idea is that we
have only few variables outside of V whose corresponding vertex has a large
neighborhood, and for which the number of dummy variables added depends
on
√

t. Furthermore there are many variables whose corresponding vertices
have small neighborhoods, with size depending only on mB + mR. Note that
the degree of any vertex, and the total number of vertices, is bounded by the
order of the graph O(

√
t · (mR + mB)

3).
For every blue vertex in V(G) \V with a degree larger than mR + k + 2 we

add O(
√

t(mB + mR)
3) dummy variables. By requirement 4 of Lemma 3.14,

there are at most 2 such vertices. Furthermore for any vertex with a degree
smaller than mR + k + 2 we add O(mR + k) dummy vertices. This together
results in using O(

√
t · poly(mB + mR)) variables, which is properly bounded

for a degree-2 cross-composition. J
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We now generalize this result to polynomial equalities of higher degree.

I Theorem 3.27 Let m ≥ 2, and d ≥ 2 be integers. The problems d-POLYNOMIAL

ROOT CSP over Z/mZ and d-POLYNOMIAL ROOT CSP over Q parameterized by
the number of variables n do not have a generalized kernel of size O(nd+1−ε) for
any ε > 0, unless NP ⊆ coNP/poly.

Proof. We will only provide the proof over Z/mZ, the result for d-POLYNOMIAL

ROOT CSP over Q can be obtained in the same way (using the same equations
without the moduli). Let m ≥ 2, d ≥ 2 be given. The result will be proven by a
degree-(d + 1) cross-composition from RBDS, using Lemma 3.14. Suppose we
are given t = rd+1 instances of RBDS, all having mR red vertices, mB blue vertices,
and the same target size k. By a similar padding argument as before, we may
assume r is an integer. Split the inputs into rd−1 groups of size r2 each and apply
the algorithm given by Lemma 3.14 to each group. We obtain rd−1 instances
of (SEMI)-ERBDS with O(r · (mR + mB)

3) vertices each, such that the answer to
each composed instance is the logical OR of the answers to the RBDS instances
in its group. Label the instances resulting from the group compositions Xi1,...,id−1

with i1, . . . , id−1 ∈ [r]. Let instance Xi1,...,id−1
have graph Gi1,...,id−1

and let the set
on which the RBDS is not required to be exact be Vi1,...,id−1

. All produced graphs
have the same number of red and blue vertices; let the number of red vertices
in each graph be N ≤ |V(Gi1,...,id−1

)| ≤ O(r · (mR + mB)
3). We create N new

variables and identify each red vertex x with one variable vx. It is essential for
the remaining part of this proof that vertices from the produced (SEMI)-ERBDS

instances that had the same label are mapped to the same new variable and vice
versa. Since the set Vi1,...,id−1

that is produced by Lemma 3.14 does not depend
on the structure of the input graphs, only on their size, all produced graphs
have the same labeled vertices in the set Vi1,...,id−1

. Hence we can treat it as a
single set V of vertex labels. Create an instance for d-POLYNOMIAL ROOT CSP as
follows.

1. Add sets Y1, . . . , Yd−1 of r variables each, where Yi := {yi,j | j ∈ [r]}. Add
the requirement ∑j∈[r] yi,j ≡m 1 to L′ for each i ∈ [d− 1].

2. Consider each graph Gi1,...,id−1
for i1, . . . , id−1 ∈ [r]. For each blue vertex b in

this instance, add the following equation to L′: ∑
x∈NGi1,...,id−1

(b)
vx

 · ∏
z∈[d−1]

yz,iz ≡m ∏
z∈[d−1]

yz,iz . (3.2)

Furthermore, if b is not an element of V, then for every pair of distinct
vertices x, x′ ∈ N(b) add the following constraint to L′:

vx · vx′ ≡m 0. (3.3)
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Note that, by Observation 3.15, the neighborhood of a blue vertex b 6∈ V
does not depend on the graphs to which Lemma 3.14 is applied, but only on
the number of red and blue vertices and the target size of the RBDS. As these
are identical for all applications of the lemma, it does not matter in which of
the graphs we evaluate N(b) when finding relevant pairs x, x′.

The polynomial equalities have degree ≤ d as d is at least two. The number
of variables, which is the parameter of the CSP, is suitably bounded for a
degree-(d + 1) cross-composition:

N + (d− 1) · r ∈ O(r · (d + (mR + mB)
3)) = O(t1/(d+1)(mR + mB)

3).

As the construction can easily be performed in polynomial time, it remains
to show that the constraints in L′ can be satisfied if and only if one of the input
instances of RBDS has a solution of size k. First assume that some input instance
of RBDS indeed has a solution of size k. Consider the indices i1, . . . , id−1 of
the group containing the satisfiable RBDS instance. Then Lemma 3.14 ensures
that Gi1,...,id−1

has an ERBDS. Set the variables corresponding to vertices in the
ERBDS of Gi1,...,id−1

to 1 and the others to 0. Furthermore, set variables yz,iz for
z ∈ [d− 1] to 1. Set all other variables to 0. Thereby the sum of variables in each
set Yi is 1, as required. Furthermore, each equation defined by (3.2) is satisfied
in the following way. If it was defined for Xi1,...,id−1

, it is satisfied since the large
summation equals one (exactly one neighbor is in the exact dominating set)
and the product term is one on both sides. Equations belonging to any other
instance are trivially satisfied since the term ∏z yz,jz is zero on both sides if
there exists z ∈ [d− 1] for which jz 6= iz. It remains to show that the equations
defined by (3.3) are satisfied. This is follows from Observation 3.15 and the fact
that an ERBDS contains at most one neighbor of each blue vertex.

For the reverse direction, suppose the constraints in L′ are satisfied by some
0/1-assignment to the variables. Then from each set Yi with i ∈ [d− 1], at least
one variable is set to 1. So suppose variables yz,iz are set to 1 for z ∈ [d− 1], iz ∈
[r]. We show instance Xi1,...,id−1

has a SEMI-ERBDS wrt. V consisting of the
vertices whose corresponding variable is set to 1. Since the product ∏z∈[d−1] yz,iz
is 1 on both sides of the equations defined by (3.2) for Gi1,...,id−1

, for each blue
vertex b in the graph we have:

∑
x∈NGi1,...,id−1

(b)
vx ≡m 1

implying all blue vertices have at least one neighbor in the SEMI-ERBDS. Fur-
thermore if x /∈ V, we know that it has at most one neighbor in the SEMI-
ERBDS since the multiplication of any two of its neighbors yields zero by (3.3).
Hence Gi1,...,id−1

has a SEMI-ERBDS wrt. V. By Lemma 3.14, this implies the group
of RBDS instances from which it was constructed contained a satisfiable instance.
Hence there was a yes-instance among the inputs of the cross-composition. J
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Observe that the polynomials constructed in Theorem 3.27 have a simple
form: each polynomial is a product of (d− 1) Y-variables multiplied by a sum
of variables corresponding to red vertices, or simply a multiplication of two
variables corresponding to red vertices. Each polynomial can therefore be
encoded in Õ(n) bits, where n is the number of variables in the constructed CSP.
The sparsification of Theorem 3.1 therefore encodes such instances in Õ(nd+1)

bits. The lower bound shows that this is optimal up to no(1) factors.

3.2.3 Polynomial non-root CSP
We start our lower bound discussion for d-POLYNOMIAL NON-ROOT CSP by
considering polynomials over the rationals. Using existing kernel lower bounds
for CNF-SAT parameterized by the number of variables, we first show that 1-
POLYNOMIAL NON-ROOT CSP over Q does not have a generalized kernel of size
bounded by any polynomial in n, unless NP ⊆ coNP/poly.

I Theorem 3.28 1-POLYNOMIAL NON-ROOT CSP over Q parameterized by the
number of variables n does not have a generalized kernel of polynomial size unless
NP ⊆ coNP/poly.

Proof. We present a linear-parameter transformation from CNF-SAT with un-
bounded clause length parameterized by the number of variables. Existing
results [33,41] imply that this problem does not have a generalized kernel of
polynomial size. The linear-parameter transformation will transfer this lower
bound to 1-POLYNOMIAL NON-ROOT CSP over Q.

A clause in conjunctive normal form can directly be translated into a non-
root constraint of a degree-1 polynomial over Q. For example, the clause (x1 ∨
¬x3 ∨ x4) is satisfied by a 0/1-assignment if and only if x1 + (1− x3) + x4 6= 0
over Q. More generally, a clause (xi1 ∨ . . . ∨ xik ∨ ¬xik+1

∨ . . . ∨ ¬xi`) translates
into the constraint (∑k

j=1 xij) + (∑`
j=k+1(1− xij)) 6= 0. Hence the system of

disequalities derived by transforming all clauses in a CNF-formula is satisfiable
if and only if the formula is. As the number of variables is preserved by this
transformation, the theorem follows. J

We now turn our attention to d-POLYNOMIAL NON-ROOT CSP over finite rings
and fields. In Theorem 3.13 we provided a kernel for d-POLYNOMIAL NON-ROOT

CSP over Z/pZ for primes p. It is natural to ask whether similar results can
be obtained when working with polynomials modulo an arbitrary integer m.
When m is composite, our kernelization fails. We can show that this is not a
shortcoming of our proof strategy, but a necessity due to the fact that constraints
expressed by degree-d polynomials modulo composite numbers can model more
complex constraints than degree-d polynomials modulo a prime. For example,
it is known (cf. [7, §2]) that there is a degree-3 polynomial f over the integers
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modulo 6 which represents a logical OR of size 27 in the following way:

f (x1, . . . , x27) 6≡6 0⇔ (x1 ∨ . . . ∨ x27). (3.4)

By this expressibility of a size-27 OR by a polynomial of degree 3 over Z/6Z us-
ing the same variables, one easily constructs a linear-parameter transformation
from 27-CNF-SAT to 3-POLYNOMIAL NON-ROOT CSP over Z/6Z by mimick-
ing the proof of Theorem 3.28. Since 27-CNF-SAT does not have a kernel of
size O(n27−ε) for any ε > 0 unless NP ⊆ coNP/poly (Theorem 2.9), this linear-
parameter transformation rules out kernels of size O(n27−ε) for 3-POLYNOMIAL

NON-ROOT CSP over Z/6Z under the same conditions. Plugging in the degree
of 3 and modulus 6 into the bound of Theorem 3.13 would give a reduction
to O(n3·(6−1)) = O(n15) constraints and would contradict the lower bound.
The example therefore shows that the problem is more complex for composite
moduli: the bound for the prime case cannot be matched. In particular, we
will see that the exponent in the kernel size may depend super-linearly on the
degree d of the CSP. For general non-primes, we give a lower bound using a
construction by Bhowmick et al. [11] of low-degree polynomials representing
OR in the sense of Equation (3.4).

I Theorem 3.29 Let m be a non-prime with a prime factorization consisting
of r distinct primes, such that m = ∏i∈[r] pi. Let d be an even integer. Then
d-POLYNOMIAL NON-ROOT CSP over Z/mZ parameterized by the number of
variables n does not have a generalized kernel of size O(n(d/2)r−ε) for any ε > 0,
unless NP ⊆ coNP/poly.

Proof. For any integer N ≥ 1, Bhowmick et al. [11, Appendix A] provide a way
to construct a polynomial f of degree 2dN1/re such that for all x1, . . . , xN ∈
{0, 1},

f (x1, . . . , xN) 6≡m 0⇔ (x1 ∨ · · · ∨ xN).

This implies that for even values of d and N = (d/2)r, we can find a polyno-
mial f of degree d satisfying the above equation. As such, d-POLYNOMIAL NON-
ROOT CSP can express a logical OR of size (d/2)r without introducing auxiliary
variables. As in the proof of Theorem 3.28, this gives a linear-parameter transfor-
mation from (d/2)r-CNF-SAT to d-POLYNOMIAL NON-ROOT CSP. By Theorem 2.9,
the latter problem does not have a generalized kernel of size O(n(d/2)r−ε) for
any ε > 0, unless NP ⊆ coNP/poly. Hence the same lower bound applies to the
CSP. J

In case m does not have a prime factorization in which all primes are distinct,
it is possible to obtain weaker a lower bound using a result by Barrington et
al. [8], which proves that there exists a polynomial of degree O(`N1/r) that
represents a logical OR when taken modulo m. Here ` is the largest prime factor
of m. For prime moduli, the following result provides a lower bound almost
matching the upper bound in Theorem 3.13.
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I Theorem 3.30 Let p be a prime. Then d-POLYNOMIAL NON-ROOT CSP
over Z/pZ parameterized by the number of variables n does not have a gen-
eralized kernel of size O(nd(p−1)−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. We use a linear-parameter transformation from d(p− 1)-CNF-SAT. We
proceed similarly as in the proof of Theorem 3.29. It is known (cf. [9, Theorem
24]) that for each prime p and integer d, there is a polynomial f of degree d
modulo p, such that for any x1, . . . , xd(p−1) ∈ {0, 1} we have:

f (x1, . . . , xd(p−1)) 6≡p 0⇔ (x1 ∨ x2 ∨ · · · ∨ xd(p−1)).

This allows the linear-parameter transformation to be carried out as in Theo-
rem 3.29. J

3.3 Conclusion
We have given upper and lower bounds on the kernelization complexity of
Boolean CSPs that can be represented by polynomial (dis)equalities, obtaining
(nearly) tight sparsification bounds in several cases. For d-POLYNOMIAL NON-
ROOT CSP over the integers modulo a prime, there is a factor n difference
between the upper and lower bound. It would be interesting to see whether this
can be resolved.

Our main conceptual contribution is to analyze constraints on Boolean
variables based on the minimum degree of multivariate polynomials whose
roots, or non-roots, capture the satisfying assignments. The ultimate goal of this
line of research is to characterize the optimal sparsification size of a Boolean
CSP based on easily accessible properties of the constraint language. To reach
this goal, several significant hurdles have to be overcome.

One such issue is that we do not have upper bounds for d-POLYNOMIAL

NON-ROOT CSP modulo a composite number m. For example, for d-POLYNOMIAL

NON-ROOT CSP over the integers modulo 6, we do not know of any way to
reduce the number of constraints to polynomial in n. This difficulty is connected
to longstanding questions regarding the minimum degree of a multivariate
polynomial modulo 6 that represents the OR-function of n variables in the sense
of Equation (3.4). In the lower bound construction in Theorem 3.29, we will
use that if the OR-function with g(d) inputs can be represented by polynomi-
als of degree d, then d-POLYNOMIAL NON-ROOT CSP cannot be compressed
to size O(ng(d)−ε) unless NP ⊆ coNP/poly. By contraposition, a kernelization
with size bound Õ(nh(d)) implies a lower bound of h−1(d) on the degree of a
polynomial representing an OR of arity h(d), assuming NP * coNP/poly. Kernel
upper bounds where h(d) is polynomially bounded in d, would therefore estab-
lish lower bounds of the form Ω(nα) on the degree of polynomials representing
an n-variable OR modulo 6, for some α > 0. However, the current-best degree
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lower bound [88] is only Ω(log n), which has not been improved in nearly two
decades (cf. [11, §1.4]).

A simple example of a CSP whose kernelization complexity is currently
unclear has constraints of the form “the number of satisfied literals is one or two,
modulo six”. The approach of Theorem 3.1 fails, since there is no polynomial
modulo six with root set {1, 2}.

On the other hand, we will see in the next chapter that this framework
does give a number of insights into the sparsifiability of Boolean CSPs, as
it for example allows us to classify which Boolean CSPs have a non-trivial
sparsification.

Fully classifying the sparsifiability of all CSPs furthermore requires under-
standing of CSPs over larger domains. Our upper bound techniques easily
extend to CSPs over domains of size k > 2. Suppose we have to determine
whether there is an assignment τ : V → {0, . . . , k− 1} to a set of variables V,
such that f (τ(x1), . . . , τ(xn)) = 0 for all degree-d polynomial equalities f on a
given list L. Using the same technique as in Theorem 3.1, one can efficiently
find a subset of O(nd) constraints that preserve the answer to the problem.
This bound is slightly worse than over the Boolean domain, because we can no
longer assume all monomials to be multilinear.

The real challenge in analyzing CSPs over any domain is to find low-degree
polynomials that represent constraints of interest. We will see the usefulness of
this technique in Chapter 6, in which constraints of the form “variables x1, . . . , xk
do not all receive distinct values from 1, ..., k” are represented by polynomials of
degree k− 1 to compress k-coloring problems on graphs.

Finally, we mention that all our results extend to the setting of min-ones
and max-ones CSPs, in which one has to find a satisfying assignment that sets
at least, or at most, a given number of variables to true. For example, our
results easily imply that EXACT HITTING SET parameterized by the number
of variables n has a sparsification of size O(n2), which cannot be improved
to O(n2−ε) unless NP ⊆ coNP/poly.
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Chapter 4
Sparsification Bounds for CSPs

In Chapter 3, we have given a way to sparsify CSP instances for which the
constraints are given as equalities of low-degree polynomials. In this chapter
we will further study the sparsifiability of CSP(Γ) (Sec. 2.7) for finite Boolean
constraint languages Γ, applying the main results of the previous chapter.

We start by extending the results obtained in the previous chapter in Sec-
tion 4.1. We will show for a fixed constraint language Γ, that if Γ can be
captured by polynomials in an appropriate sense, the results in the previous
chapter allow us to obtain a kernelization whose size will depend on the degree
of these polynomials. Clearly, the upper bound results carry over if CSP(Γ) is
equivalent to d-POLYNOMIAL ROOT CSP for some d, but it turns out that we can
still apply our results under somewhat weaker conditions on Γ.

In Section 4.2, we will give a general lower bound technique for CSP(Γ).
We give a simple condition that, if satisfied by Γ, leads to a kernelization
lower bound for CSP(Γ). The lower bounds are obtained by linear-parameter
transformations from VERTEX COVER (for quadratic lower bounds) and d-CNF-
SAT (for other polynomial lower bounds).

Using the results from Sections 4.1 and 4.2, we continue in Section 4.3 with
a dichotomy theorem. We fully classify for which Boolean constraint languages
CSP(Γ) allows for a non-trivial sparsification, assuming NP * coNP/poly. It
turns out that, contrary to the pessimistic picture that arose during the initial
investigation of sparsifiability, the phenomenon of non-trivial sparsification is
widespread and occurs for almost all Boolean CSPs! When considering constraint
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languages whose largest constraint has arity d, a trivial sparsification withO(nd)
constraints can be obtained for CSP(Γ). Dell and Van Melkebeek [33] showed
that d-CNF-SAT does not allow for a non-trivial sparsification. However, it turns
out that the d-OR relation is special in this sense: if Γ is a constraint language
whose largest constraint has arity-d, then the only reason that CSP(Γ) does not
have a non-trivial sparsification, is that it contains a relation that is essentially a
d-OR relation. In all other cases, sparsification is possible.

The polynomial-based framework also resulted in some linear sparsifications.
As seen in the introductory example in Chapter 3, the d-EXACT SAT problem
has a sparsification with O(n) constraints for each constant d. This prompted
a detailed investigation into linear sparsifications for CSPs by Lagerkvist and
Wahlström [70], who used the toolkit of universal algebra in an attempt to
obtain a characterization of the Boolean CSPs with a linear sparsification. Their
results give a necessary and sufficient condition on the constraint language of a
CSP for having a so-called Maltsev embedding over an infinite domain. They also
show that when a CSP has a Maltsev embedding over a finite domain, then this
can be used to obtain a linear sparsification. Alas, it remains unclear whether
Maltsev embeddings over infinite domains can be exploited algorithmically, and
a characterization of the linearly-sparsifiable CSPs is currently not known.

In Section 4.4, we give a necessary and sufficient condition for a relation
to be captured by degree-1 polynomials. We introduce the notion of balanced
operations, and say that a relation is balanced if and only if it is preserved
by all balanced operations. We prove that if a Boolean relation R is balanced,
then it can efficiently be captured by a degree-1 polynomial and the number
of constraints that are applications of this relation can be reduced to O(n).
Hence when all relations in a constraint language Γ are balanced—we call such
a constraint language balanced—then CSP (Γ) has a sparsification with O(n)
constraints. We also show that, on the other hand, if a Boolean relation R
is not balanced, then there does not exist a degree-1 polynomial over any
ring that captures R in the sense required for application of the polynomial
framework. The property of being balanced is (as defined) a universal-algebraic
property; these results thus tightly bridge universal algebra and the polynomial
framework. In Section 4.7 we compare our universal-algebraic approach to the
approach proposed by Lagerkvist and Wahlström [70].

In Section 4.5, we continue our investigation of CSPs that have linear sparsi-
fication by considering Boolean symmetric constraint satisfaction problems. A
constraint satisfaction problem is symmetric if the satisfiability of a constraint
only depends on the number of true variables, and not on their positions (see
Definition 4.30 for a complete definition). Using the results from Section 4.4,
we obtain that CSP(Γ) has a linear sparsification when Γ is balanced. In the
case of symmetric CSPs, we can furthermore show that when Γ is intractable
and not balanced, then there must exist a relation in Γ that cone-defines 2-OR.
Using the results from Section 4.2, this implies a quadratic lower bound on the
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sparsification size. Consequently, we obtain a characterization of the sparsi-
fication complexity of NP-complete Boolean CSPs whose constraint language
consists of symmetric relations: there is a linear sparsification if and only if the
constraint language is balanced. This yields linear sparsifications in several new
scenarios that were not known before.

In Section 4.6, we combine the results on non-trivial sparsification obtained
in Section 4.3 with the results on linear sparsification obtained in Section 4.4.
This allows us to obtain an exact characterization of the optimal sparsification
size for all Boolean CSPs where each relation has arity at most three. For a
Boolean constraint language Γ consisting of relations of arity at most three, we
characterize the sparsification complexity of Γ as an integer k ∈ {1, 2, 3} that
represents the largest OR that Γ can cone-define. Then we prove that CSP(Γ)
has a sparsification of size O(nk), but no sparsification of size O(nk−ε) for
any ε > 0, giving matching upper and lower bounds. Hence for all Boolean
CSPs with constraints of arity at most three, the polynomial-based framework
gives provably optimal sparsifications.

4.1 Sparsification for Boolean CSPs captured by
polynomials

In this section, we will consider the problem CSP(Γ) for fixed Γ. We show
that under certain conditions on Γ, the problem allows for a sparsification. We
will rely heavily on the results from Section 3.1.1. We will need the following
definition.

Definition 4.1 Let R be a k-ary Boolean relation (recall Definition 2.29). We
say that a polynomial pu over a ring Eu captures an unsatisfying assignment
u ∈ {0, 1}k \ R with respect to R, if the following two conditions hold over Eu.

pu(x1, . . . , xk) = 0 for all (x1, . . . , xk) ∈ R, and (4.1)

pu(u1, . . . , uk) 6= 0. (4.2)

We will say a k-ary relation R is captured by degree-d polynomials if for all
u ∈ {0, 1}k \R there exists a ring Eu ∈ {Q}∪{Z/muZ | mu > 1 and mu ∈N}
and polynomial pu over Eu of degree at most d that captures u with respect
to R.

In the previous chapter, we obtained a sparsification in the case that each
constraint was given by a degree-d polynomial over the same field or ring. In
this section we will generalize this result by allowing the use of polynomials
over different rings, and by allowing multiple polynomials per constraint. We
first show the result for constraint languages consisting of a single relation in
the next lemma, and then generalize this to arbitrary finite constraint languages
in Theorem 4.6
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I Lemma 4.2 Let R ⊆ {0, 1}k be a fixed k-ary relation that is captured by
degree-d polynomials. There exists a polynomial-time algorithm that, given a set of
constraints C over {R} over n variables, outputs C ′ ⊆ C with |C ′| = O(nd), such
that any Boolean assignment satisfies all constraints in C if and only if it satisfies
all constraints in C ′.

Proof. Let C be a set of constraints over R and let V be the set of variables
used. We will create |{0, 1}k \ R| instances of d-POLYNOMIAL ROOT CSP with
variable set V. For each u ∈ R \ {0, 1}k, we create an instance (Lu, V) of
d-POLYNOMIAL ROOT CSP over Eu, as follows. Choose a ring Eu ∈ {Q} ∪
{Z/muZ | mu > 1 and mu ∈N} and a polynomial pu over Eu such that (4.1)
and (4.2) are satisfied for u. For each constraint (x1, . . . , xk) ∈ C, add the
equality pu(x1, . . . , xk) = 0 to the set Lu; note that these are equations over the
ring Eu. Let L :=

⋃
u/∈R Lu be the union of all created sets of equalities. From

this construction, we obtain the following property.

B Claim 4.3 Any Boolean assignment f that satisfies all equalities in L, satisfies
all constraints in C.

Proof. Let f be a Boolean assignment that satisfies all equalities in L. Suppose f
does not satisfy all equalities in C, thus there exists (x1, . . . , xk) ∈ C, such that
( f (x1), . . . , f (xk)) /∈ R. Let u := ( f (x1), . . . , f (xk)). Since u /∈ R, the equation
pu(x1, . . . , xk) = 0 was added to Lu ⊆ L. However, it follows from (4.2) that
pu( f (x1), . . . , f (xk)) 6= 0, which contradicts the assumption that f satisfies all
equalities in L. C

For each instance (Lu, V) of d-POLYNOMIAL ROOT CSP over Eu with Eu 6= Q,
apply Theorem 3.6 to obtain an equivalent instance (L′u, V) with L′u ⊆ Lu
and |L′u| = O(rund), where ru is the number of distinct prime divisors of mu.
Similarly, for each instance (Lu, V) of d-POLYNOMIAL ROOT CSP over Eu with
Eu = Q, apply Theorem 3.1 and obtain an equivalent instance (L′u, V) with
L′u ⊆ Lu and |L′u| = O(nd). Let L′ :=

⋃
L′u. By this definition, any Boolean

assignment satisfies all equalities in L, if and only if it satisfies all equalities in
L′. Construct C ′ as follows. For any (x1, . . . , xk) ∈ C, add (x1, . . . , xk) to C ′ if
there exists u ∈ {0, 1}k \ R such that pu(x1, . . . , xk) = 0 ∈ L′. Hereby, C ′ ⊆ C.
The following two claims show the correctness of this sparsification procedure.

B Claim 4.4 Any Boolean assignment f satisfies all constraints in C ′, if and only
if it satisfies all constraints in C.

Proof. Since C ′ ⊆ C, it follows immediately that any Boolean assignment satis-
fying the constraints in C also satisfies all constraints in C ′. It remains to prove
the opposite direction.

Let f be a Boolean assignment satisfying all constraints in C ′. We show
that f satisfies all equalities in L′. Let pu(x1, . . . , xk) = 0 ∈ L′. Thereby,
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(x1, . . . , xk) ∈ C ′ and since f is a satisfying assignment, ( f (x1), . . . , f (xk)) ∈ R.
It follows from property (4.1) that pu( f (x1), . . . , f (xk)) = 0 as desired.

Since f satisfies all equalities in L′, it satisfies all equalities in L by the choice
of L′. It follows from Claim 4.3 that thereby f satisfies all constraints in C. C

B Claim 4.5 |C ′| = O(nd).

Proof. By the construction of C ′, it follows that |C ′| ≤ |L′|. Let r be the maxi-
mum of all ru for u ∈ {0, 1}k \ R. Since R is fixed, r is a constant. We know
|L′| = ∑u/∈R |L′u| ≤ ∑u/∈RO(r · nd) ≤ 2k · O(r · nd) = O(nd), as |R| ≤ 2k and k
is a constant. C

Claims 4.4 and 4.5 complete the proof of Lemma 4.2. J

By applying the above lemma repeatedly, we obtain a sparsification for finite
Boolean constraint languages consisting of multiple relations.

I Theorem 4.6 Let Γ be a finite Boolean constraint language such that every
R ∈ Γ is captured by degree-d polynomials. Then there exists a polynomial-time
algorithm that, given a set of constraints C over Γ over n variables, outputs C ′ ⊆ C
with |C ′| = O(nd), such that any Boolean assignment satisfies all constraints in C
if and only if it satisfies all constraints in C ′.

Proof. Suppose we are given an instance of CSP(Γ), with set of constraints C.
We show how to define C ′ ⊆ C. For a k-ary relation R ∈ Γ, let CR contain all
constraints in C of the form R(x1, . . . , xk). For all R ∈ Γ, apply Theorem 4.2 to
obtain C ′R ⊆ CR such that |C ′R| = O(nd) and any Boolean assignment satisfies
all constraints in C ′R if and only if it satisfies the constraints in CR. Let C ′ be the
union of all C ′R. It is easy to verify that |C ′| ≤ |Γ| · O(nd) = O(nd). J

4.2 Lower bounds using cone-definability
In this section we will show that if one of the relations in Γ can be used to define
a k-OR in a specific way, then CSP(Γ) does not have a kernel of size O(nk−ε)
unless NP ⊆ coNP/poly. To formalize this, we need the following definition.

Definition 4.7 Let us say that a Boolean relation T of arity m is cone-definable
from a Boolean relation U of arity n if there exists a tuple (y1, . . . , yn) where:

• for each j ∈ [n], it holds that yj is an element of {0, 1} ∪ {x1, . . . , xm} ∪
{¬x1, . . . ,¬xm};

• for each i ∈ [m], there exists j ∈ [n] such that yj ∈ {xi,¬xi}; and,

• for each f : {x1, . . . , xm} → {0, 1}, it holds that ( f (x1), . . . , f (xm)) ∈ T if and
only if ( f̂ (y1), . . . , f̂ (yn)) ∈ U. Here, f̂ denotes the natural extension of f
where f̂ (0) = 0, f̂ (1) = 1, and f̂ (¬xi) = ¬ f (xi).
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(The prefix cone indicates the allowing of constants and negation.)
Let us say that two Boolean relations T, U are cone-interdefinable if each is

cone-definable from the other.

I Example 4.8 Let R = {(0, 0), (0, 1)} and let S = {(0, 1), (1, 1)}. We have
that R is cone-definable from S via the tuple (¬x2,¬x1); also, S is cone-definable
from R via the same tuple. J

The following is a key property of cone-definability; it states that relations
that are cone-definable from a constraint language Γ may be simulated by
the constraint language, and thus used to prove hardness results for CSP(Γ).
Recall that Γ∗ is the constraint language Γ together with all constants (as in
Definition 2.39).

I Proposition 4.9 Suppose that Γ is an intractable Boolean constraint language,
and that ∆ is a constraint language such that each relation in ∆ is cone-definable
from a relation in Γ. Then, there exists a linear-parameter transformation from
CSP(Γ∗ ∪ ∆) to CSP(Γ), parameterized by the number of variables.

Proof. It suffices to give a linear-parameter transformation from CSP(Γ∗ ∪ ∆)
to CSP(Γ∗), by Theorem 2.44. Let (C, V) be an instance of CSP(Γ∗ ∪ ∆), and
let n denote |V|. We generate an instance (C ′, V′) of CSP(Γ∗) as follows.

• For each variable v ∈ V, introduce a primed variable v′. By Proposition 2.43,
the relation 6= (that is, the relation {(0, 1), (1, 0)}) is pp-definable (Defini-
tion 2.40) from Γ∗. Fix such a pp-definition, and let d be the number of
variables in the definition. For each v ∈ V, include in C ′ all constraints in the
pp-definition of 6=, but where the variables are renamed so that v and v′ are
the distinguished variables, and the other variables are fresh.

The number of variables used so far in C ′ is nd.

• For each b ∈ {0, 1}, introduce a variable zb and add the constraint {(b)}(zb)
to C ′. This is equivalent to requiring that z0 = 0 and z1 = 1 in any satisfying
assignment. Observe that for this step, it is required that we can use relations
from Γ∗, instead of just Γ.

• For each constraint T(v1, . . . , vk) in C such that T ∈ Γ∗, add the constraint
to C ′.
• For each constraint T(v1, . . . , vk) in C such that T ∈ ∆ \ Γ∗, we use the

assumption that T is cone-definable from a relation in Γ to add a constraint
to C ′ that has the same effect as T(v1, . . . , vk). In particular, assume that T is
cone-definable from U ∈ Γ via the tuple (y1, . . . , y`), and that U has arity `.
Add to C ′ the constraint U(w1, . . . , w`), where, for each i ∈ [`], the entry wi
is defined as follows:

wi =


vj if yi = xj,
v′j if yi = ¬xj,

z0 if yi = 0, and
z1 if yi = 1.
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See Example 4.10 for an example of this whole construction. The set V′ of
variables used in C ′ is the union of V ∪ {v′ | v ∈ V} ∪ {z0, z1} with the other
variables used in the copies of the pp-definition of 6=. We have |V′| = nd + 2. It
is straightforward to verify that an assignment f : V → {0, 1} satisfies C if and
only if there exists an assignment f ′ : V′ → {0, 1} of f that satisfies C ′. J

I Example 4.10 We give an example of the linear-parameter transformation
used in the proof of Proposition 4.9. Let us consider R = {(0, 0, 1), (0, 1, 0),
(1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} and let Γ = {R}. Thus, a three-tuple is in R
unless all three variables are equal.

Define R′ = {(0, 0), (1, 0), (1, 1)} and ∆ := {R′}. Observe that Γ is an
intractable constraint language, as can be shown using Theorem 2.37. We can
cone-define R′ from R by the following tuple:

(x1,¬x2, 0).

Verify that indeed (x1, x2) ∈ R′ if and only if (x1,¬x2, 0) ∈ R. As such, the
preconditions of the proposition are satisfied, we now show the linear-parameter
transformation from CSP(Γ∗ ∪ ∆) to CSP(Γ∗), based on an example. Consider
the input

V = {v, w, x, y, z}, C = {R′(x, y), R′(v, x), R(w, v, z), {(0)}(w)}

for CSP(Γ∗ ∪ ∆). We create an instance (V′, C ′) of CSP(Γ∗). Initialize

V′ := {v, v′, w, w′, x, x′, y, y′, z, z′, z0, z1}.

In the first step, we want to add the inequality requirements on the variables and
their primed counterparts. For this, we need a pp-definition of {(0, 1), (1, 0)}
from Γ∗. For example, we may use the following definition.

∃b, c : R(x1, x2, b) ∧ {(0)}(b) ∧ R(x1, x2, c) ∧ {(1)}(c).

As such, we add variables {bv, bw, bx, by, bz, cv, cw, cx, cy, cz} to V′ and initialize
C ′ as

{R(v, v′, bv), {(0)}(bv), R(w, w′, bw), {(0)}(bw),

R(x, x′, bx), {(0)}(bx), R(y, y′, by), {(0)}(by),

R(z, z′, bz), {(0)}(bz)} ∪
{R(v, v′, cv), {(1)}(cv), R(w, w′, cw), {(1)}(cw),

R(x, x′, cx), {(1)}(cx), R(y, y′, cy), {(1)}(cy),

R(z, z′, cz), {(1)}(cz)}.

In this particular case, we could have re-used the variables for b and c, as
they are constant, but this is not generally true. In the next step, we add the
constraints in

{{(0)}(z0), {(1)}(z1)}.
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Then, we add all constraints that are using relations from Γ∗, thus adding the
constraints in

{R(w, v, z), {(0)}(w)}

to C ′. Finally, we use the cone-definability result for ∆, and add the constraints
in

{R(x, y′, z0), R(v, x′, z0)},

concluding the construction of C ′. J

The following theorem combines existing ideas for kernelization lower
bounds due to several authors [33,35,70] with the formalism of cone-definition.

I Theorem 4.11 Let Γ be an intractable Boolean constraint language, and let
k ≥ 1. If there exists R ∈ Γ such that R cone-defines k-OR, then CSP(Γ) does not
have a generalized kernel of size O(nk−ε), unless NP ⊆ coNP/poly.

Proof. We do a case distinction on k.

(k = 1) Suppose that there exists ε > 0 such that CSP(Γ) has a (gener-
alized) kernel of size O(n1−ε) into a parameterized decision problem L.
Let L̃ := {x#1` | (x, `) ∈ L} denote the classical (non-parameterized) problem
corresponding to L, in which the parameter is written in unary and appended
to the end of each input string. Here 1 is an arbitrary character in the encoding
alphabet, and # is a separator character that is freshly added to the alphabet.

Using this hypothetical generalized kernel, one could obtain a polynomial-
time algorithm that takes as input a series of instances (C1, V1), . . . , (Ct, Vt) of
CSP(Γ), and outputs in polynomial time an instance x̃ of L̃ such that:

• x̃ ∈ L̃ if and only if (Ci, Vi) is a yes-instance of CSP(Γ) for all i ∈ [t], and

• x̃ has bitsize O(N1−ε), where N := ∑t
i=1 |Vi|.

To obtain such an AND-compression algorithm from a hypothetical generalized
kernel of CSP(Γ) into L, it suffices to do the following:

1. On input a series of instances (C1, V1), . . . , (Ct, Vt) of CSP(Γ), form a new
instance (C∗ :=

⋃t
i=1 Ci, V∗ :=

⋃t
i=1 Vi) of CSP(Γ). Hence we take the dis-

joint union of the sets of variables and the sets of constraints, and it follows
that the new instance has answer yes if and only if all the inputs (Ci, Vi)
have answer yes.

2. Run the hypothetical generalized kernel on (C∗, V∗), which has |V∗| = N
variables and is therefore reduced to an equivalent instance (x∗, k∗) of L
with size and parameter bounded by O(N1−ε). Let x̃ be the classical
instance corresponding to (x∗, k∗).
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If we apply this AND-compression scheme to a sequence of t1(m) := mα in-
stances of m bits each (which therefore have at most m variables each), the
resulting output has O(|V∗|1−ε) = O((m ·mα)1−ε) = O(m(1+α)(1−ε)) bits. By
picking α large enough that it satisfies (1 + α)(1− ε) ≤ α, we therefore com-
press a sequence of t1(m) instances of bitsize m into one instance expressing
the logical AND, of size at most t2(m) ≤ O(m(1+α)(1−ε)) ≤ C · t1(m) for some
suitable constant C. Drucker [35, Theorem 5.4] has shown that an error-free
deterministic AND-compression algorithm with these parameters for an NP-
complete problem into a fixed decision problem L, implies NP ⊆ coNP/poly.
Hence the lower bound for k = 1 follows since CSP(Γ) is NP-complete.

(k ≥ 2) For k ≥ 2, we prove the lower bound using a linear-parameter trans-
formation (recall Definition 2.7). Let ∆ be the set of k-ary relations given by
∆ := {{0, 1}k \ {u} | u ∈ {0, 1}k}. In particular, note that ∆ contains the k-OR

relation. Since R cone-defines k-OR, it is easy to see that by variable negations,
R cone-defines all relations in ∆. Thereby, it follows from Proposition 4.9 that
there is a linear-parameter transformation from CSP(Γ∗ ∪∆) to CSP(Γ). Thus,
to prove the lower bound for CSP(Γ), it suffices to prove the desired lower
bound for CSP(Γ∗ ∪ ∆). We do a further case distinction on k.

Case (k = 2) If k = 2, we do a linear-parameter transformation from VERTEX

COVER to CSP(Γ∗ ∪ ∆). Since it is known that VERTEX COVER parameterized
by the number of vertices n has no generalized kernel of size O(n2−ε) for any
ε > 0, unless NP ⊆ coNP/poly (Theorem 2.10), the result will follow.

Suppose we are given a graph G = (V, E) on n vertices and integer k ≤ n,
forming an instance of the VERTEX COVER problem. The question is whether
there is a set S of k vertices, such that each edge has at least one endpoint
in S. We create an equivalent instance (C, V′) of CSP(Γ∗ ∪ ∆) as follows. We
introduce a new variable xv for each v ∈ V. For each edge {u, v} ∈ E, we add
the constraint 2-OR(xu, xv) to C.

At this point, any vertex cover in G corresponds to a satisfying assignment, and
vice versa. It remains to ensure that the size of the vertex cover is bounded by
k. Let Hn,k be the n-ary relation given by

Hn,k = {(x1, . . . , xn) | xi ∈ {0, 1} for all i ∈ [n] and ∑
i∈[n]

xi = k}.

By Proposition 2.43, we obtain that Γ∗ pp-defines all Boolean relations. It
follows from [70, Lemma 17] that Γ∗ pp-defines Hn,k using O(n + k) con-
straints and O(n + k) existentially quantified variables. We add the constraints
from this pp-definition to C, and add the existentially quantified variables
to V′. This concludes the construction of C. It is easy to see that C has a
satisfying assignment if and only if G has a vertex cover of size k. Furthermore,
we used O(n + k) ∈ O(n) variables and thereby this is a linear-parameter
transformation from VERTEX COVER to CSP(Γ∗ ∪ ∆).
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Case (k ≥ 3) In this case there is a trivial linear-parameter transformation
from CSP(∆) to CSP(Γ∗ ∪ ∆). It is easy to verify that CSP(∆) is equivalent to
k-CNF-SAT. The result now follows from the fact that for k ≥ 3, k-CNF-SAT has
no kernel of size O(nk−ε) for any ε > 0, unless NP ⊆ coNP/poly (Theorem
2.9). J

4.3 Classification of CSPs with worst-case
sparsification

It is well known that k-CNF-SAT allows no non-trivial sparsification, for each
k ≥ 3 (Theorem 2.9). This means that we cannot efficiently reduce the number
of clauses in such a formula to O(nk−ε). The k-OR relation is special, in the
sense that there is exactly one k-tuple that is not contained in the relation. We
show in this section that when considering k-ary relations for which there is
more than one k-tuple not contained in the relation, a non-trivial sparsification
is always possible. In particular, the number of constraints of any input can
efficiently be reduced to O(nk−1).

We start by showing that if R is a relation for which at least two k-tuples are
not contained in R, then R is captured by degree-(k− 1) polynomials. Recall
from Section 4.1, that d-NAE-SAT was captured by polynomials of degree d− 1.
In the next lemma, we will reuse some of the ideas that construction. The reader
may verify that d-NAE-SAT can indeed be represented by a constraint language
for which every relation contains 2d − 2 tuples.

Since relations with |R| = 2k have a sparsification of size O(1), as con-
straints over such relations are satisfied by any assignment, this will allow us to
obtain the desired sparsification for k-ary relations with |{0, 1}k \ R| 6= 1 using
Theorem 4.6.

I Lemma 4.12 Let R be a k-ary Boolean relation with |R| < 2k − 1. The relation
R is captured by degree-(k− 1) polynomials.

Proof. We will prove this by showing that for every u ∈ {0, 1}k \R, there exists a
k-ary polynomial pu over Q of degree at most k− 1 satisfying requirements (4.1)
and (4.2) from Definition 4.1, such that the result follows.

We will prove the existence of such a polynomial by induction on k. For
k = 1, the lemma statement implies that R = ∅. Thereby, for any u /∈ R, we
simply choose pu(x1) := 1. This polynomial satisfies the requirements, and has
degree 0.

Let k > 1 and let u = (u1, . . . , uk) ∈ {0, 1}k \ R. Since |R| < 2k − 1, we can
choose w = (w1, . . . , wk) such that w ∈ {0, 1}k \ R and w 6= u. Choose such w
arbitrarily, we now do a case distinction.

(There exists no i ∈ [k] for which ui = wi) This implies ui = ¬wi for all i.
One may note that for u = (0, . . . , 0) and w = (1, . . . , 1) this situation corre-



4

4.3 Classification of CSPs with worst-case sparsification 73

sponds to MONOTONE k-NAE-SAT. We show that there exists a polynomial pu
such that pu(u1, . . . , uk) 6= 0, and pu(x1, . . . , xk) = 0 for all (x1, . . . , xk) ∈ R.
Hereby pu satisfies conditions (4.1) and (4.2) for u. For i ∈ [k], define
ri(x) := (1− x) if ui = 1 and ri(x) := x if ui = 0. It follows immediately from
this definition that ri(ui) = 0 and ri(wi) = 1 for all i ∈ [k]. Define

pu(x1, . . . , xk) :=
k−1

∏
i=1

(
i−

k

∑
j=1

rj(xj)

)
.

By this definition, pu has degree k− 1. It remains to verify that pu has the
desired properties. First of all, since ∑k

j=1 rj(uj) = 0 by definition, it follows
that

pu(u1, . . . , uk) =
k−1

∏
i=1

i 6= 0,

as desired. Since ri(wi) = 1 for all i, we obtain pu(w1, . . . , wk) = ∏k−1
i=1 (i−

k) 6= 0, which is allowed since w /∈ R. It is easy to verify that in all other cases,
∑k

j=1 rj(xj) ∈ {1, 2, . . . , k− 1} and thereby one of the terms of the product is
zero, implying that pu(x1, . . . , xk) = 0.

(There exists i ∈ [k], such that ui = wi) Let u′ and w′ be defined as the re-
sults of removing coordinate i from u and w respectively. Note that u′ 6= w′.
Define

R′ := {(x1, . . . , xi−1, xi+1, . . . , xk) | (x1, . . . , xi−1, ui, xi+1, . . . , xk) ∈ R}.

By this definition, u′, w′ /∈ R′ and thereby R′ is a (k − 1)-ary relation with
|R′| < 2k−1 − 1. By the induction hypothesis, there exists a polynomial pu′ of
degree at most k− 2, such that pu′(u′1, . . . , u′k−1) 6= 0 and pu′(x′1, . . . , x′k−1) = 0
for all x′ ∈ R′. Now define

pu(x1, . . . , xk) := (1− xi − ui) · pu′(x1, . . . , xi−1, xi+1, . . . , xk).

We show that pu has the desired properties. By definition, pu has the degree of
pu′ plus one. Since pu′ has degree k− 2 by the induction hypothesis, it follows
that pu has degree k− 1. Let (x1, . . . , xk) ∈ R. We do a case distinction on the
value taken by xi.

• xi 6= ui. In this case, (1− xi − ui) = 0, and thereby pu(x1, . . . , xk) = 0, thus
satisfying condition (4.1).

• xi = ui. Since x = (x1, . . . , xi−1, ui, xi+1, . . . , xk) ∈ R, it follows that
(x1, . . . , xi−1, xi+1, . . . , xk) ∈ R′. By definition of pu′ , it follows that

pu′(x1, . . . , xi−1, xi+1, . . . , xk) = 0

and thus pu(x1, . . . , xk) = 0, showing (4.1).
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It remains to show that pu(u1, . . . , uk) 6= 0. This follows from (1− ui − ui) ∈
{−1, 1}, and pu′(u1, . . . , ui−1, ui+1, . . . , uk) 6= 0, showing that (4.2) holds.

Since we have shown for all u ∈ {0, 1}k \ R that there exists a polynomial pu
over Q of degree at most k − 1 satisfying (4.1) and (4.2), R is captured by
degree-(k− 1) polynomials. J

The next lemma formalizes the idea that any k-ary relation with |{0, 1}k \
R| = 1 is equivalent to k-OR, up to negation of variables. The dichotomy result
will follow from Lemma 4.12, together with the next lemma and Theorem 4.11.

I Lemma 4.13 If R is a Boolean k-ary relation with |R| = 2k − 1, then R
cone-defines k-OR.

Proof. Let u = (u1, . . . , uk) be the unique k-tuple not contained in R. Define
the tuple (y1, . . . , yk) as follows. Let yi := xi if ui = 0, and let yi := ¬xi
otherwise. Clearly, this satisfies the first two conditions of cone-definability.
It remains to prove the last condition. Let f : {x1, . . . , xk} → {0, 1}. Sup-
pose ( f (x1), . . . , f (xk)) ∈ k-OR. We show ( f̂ (y1), . . . , f̂ (yk)) ∈ R. It follows
from ( f (x1), . . . , f (xk)) ∈ k-OR, that there exists at least one i ∈ [k] such that
f (xi) 6= 0. Thereby, f̂ (yi) 6= ui and thus ( f̂ (y1), . . . , f̂ (yk)) 6= u, implying
( f̂ (y1), . . . , f̂ (yk)) ∈ R.

Suppose ( f (x1), . . . , f (xk)) /∈ k-OR, implying f (xi) = 0 for all i ∈ [k]. But
this implies f̂ (yi) = ui for all i ∈ [k] and thus ( f̂ (y1), . . . , f̂ (yk)) = u /∈ R. J

Using Lemmas 4.12 and 4.13, the next theorem will give a complete classifi-
cation of the constraint languages that admit a non-trivial sparsification.

I Theorem 4.14 Let Γ be a finite intractable Boolean constraint language. Let k
be the maximum arity of any relation R ∈ Γ. The following dichotomy holds.

• If for all R ∈ Γ it holds that |R| 6= 2k − 1, then CSP(Γ) has a kernel with
O(nk−1) constraints that can be stored in O(nk−1 log n) bits.

• If there exists R ∈ Γ with |R| = 2k − 1, then CSP(Γ) has no generalized kernel
of bitsize O(nk−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. Suppose that for all R ∈ Γ, it holds that |R| 6= 2k − 1. We give the
following kernelization procedure. Suppose we are given an instance of CSP(Γ),
with set of constraints C. We show how to define C ′ ⊆ C. For each constraint
R(x1, . . . , x`) ∈ C where R is a relation of arity ` < k, add one such constraint
to C ′ (thus removing duplicate constraints). Note that this adds at most O(n`)
constraints for each `-ary relation R ∈ Γ.

Let Γk ⊆ Γ contain all relations of arity k for which |R| < 2k − 1. It
follows from Lemma 4.12 that every relation in Γk is captured by degree-(k− 1)
polynomials. Let Ck ⊆ C contain all constraints using a relation from Γk.
Use Theorem 4.6 to obtain C ′k ⊆ Ck such that any assignment satisfying all
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constraints in C ′k satisfies all constraints in Ck, and |Ck| = O(nk−1). Add the
constraints in C ′k to C ′. This concludes the construction of C ′. Note that the
procedure removes constraints of the form R(x1, . . . , xk) with |R| = 2k, as these
are always satisfied. It is easy to verify that |C ′| ≤ |Γ| · O(nk−1) = O(nk−1).
Since each constraint can be stored in O(log n) bits, this gives a kernel of bitsize
O(nk−1 log n).

Suppose that there exists R ∈ Γ with |R| = 2k − 1. It follows from
Lemma 4.13 that R cone-defines k-OR. Since Γ is intractable, it now follows
from Theorem 4.11 that CSP(Γ) has no generalized kernel of size O(nk−ε),
unless NP ⊆ coNP/poly. J

4.4 Towards a classification of CSPs with linear
sparsification

In this section we will introduce an algebraic property of constraint languages,
namely whether a constraint language is balanced (introduced below). We
will show that for Γ satisfying the property, CSP(Γ) has a kernel with O(n)
constraints. This sparsification will be obtained using the method of representing
constraints by low-degree polynomials. The following definitions capture the
key notions for this universal-algebraic approach to sparsification via low-degree
polynomials. Relevant definitions relating to (partial) Boolean operations and
CSPs can be found in Section 2.7.

Definition 4.15 A partial Boolean operation f : {0, 1}k → {0, 1} is balanced if
there exist integer values α1, . . . , αk, called the coefficients of f , such that

• ∑i∈[k] αi = 1,

• (x1, . . . , xk) is in the domain of f if and only if ∑i∈[k] αixi ∈ {0, 1}, and

• f (x1, . . . , xk) = ∑i∈[k] αixi for all tuples in its domain.

Definition 4.16 We say that a Boolean relation is balanced if it is preserved by
all balanced operations, and that a Boolean constraint language is balanced if
each relation therein is balanced.

Definition 4.17 Define an alternating operation to be a balanced operation
ak : {0, 1}k → {0, 1} such that k is odd and the coefficients alternate between
+1 and −1, so that α1 = +1, α2 = −1, α3 = +1, . . ., αk = +1. For example, by
this definition we have

a3(x1, x2, x3) = x1 − x2 + x3

for all (x1, x2, x3) in the domain of a3, and the domain of a3 is {(0, 0, 0), (0, 0, 1),
(0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)}.
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While alternating operations form a restricted type of balanced operations,
the following proposition shows that being preserved by all balanced operations
is equivalent to being preserved by all alternating operations.

I Proposition 4.18 A Boolean relation R is balanced if and only if for all odd k ≥
1, the relation R is preserved by the alternating operation of arity k.

Proof. It suffices to show that if a relation T is not balanced, then there exists
an alternating operation that does not preserve T. Let f be a k-ary balanced
operation that does not preserve T. Then there exist tuples t1, . . . , tk in T such
that α1t1 + · · ·+ αktk is not in T, where the sum of the αi is equal to 1 (and
where we may assume that no αi is equal to 0). For each positive αi, replace αiti
in the sum with ti + · · ·+ ti (αi times); likewise, for each negative αi, replace
αiti in the sum with −ti − · · · − ti (−αi times). Each tuple then has coefficient
+1 or −1 in the sum; since the sum of coefficients is +1, by permuting the sum’s
terms, the coefficients can be made to alternate between +1 and −1. J

As an example, consider the 2-OR relation given by {(1, 1), (1, 0), (0, 1)}
and observe that it is not balanced, since (1, 0)− (1, 1) + (0, 1) = (0, 0) and
(0, 0) /∈ 2- OR. The relation R := {(0, 0, 1), (0, 1, 0), (1, 0, 0)} (corresponding to
MONOTONE EXACT 3-SAT), is an example of a relation that is balanced.

We will use the following straightforwardly verified fact tacitly, throughout
(recall Definition 2.34).

Observation 4.19 Each balanced operation is idempotent and self-dual.
The main result of this section is that when Γ is balanced, then CSP(Γ) has

a kernel with linearly many constraints. To prove this result, we will use two
additional technical lemmas. When S is a matrix, we use si to refer to the i’th
row of S. The proof of the following lemma was contributed by Emil Jeřábek.

I Lemma 4.20 Let S be an m× n integer matrix. Let u ∈ Zn be a row vector.
If u /∈ spanZ({s1, . . . , sm}), then there exists a prime power q such that u /∈
spanq({s1, . . . , sm}). Furthermore, there is a polynomial-time algorithm that
computes a (possibly composite) integer q′ for which u /∈ spanq′({s1, . . . , sm}).

Proof. Suppose u /∈ spanZ({s1, . . . , sm}), thus u cannot be written as a linear
combination of the rows of S over Z; equivalently, the system yS = u has no
solutions for y over Z. We will show that there exists a prime power q, such
that yS ≡q u has no solutions over Z/qZ and thus u /∈ spanq({s1, . . . , sm}).

There exist an m×m matrix M and an n× n matrix N over Z, such that M
and N are invertible over Z and furthermore S′ := MSN is in Smith Normal
Form (recall Definition 2.21). In particular, this implies that S′ is a diagonal
matrix. Furthermore, M, S, and N can be computed in polynomial time by
Theorem 2.23. Define u′ := uN.

B Claim 4.21 If y′S′ = u′ is solvable for y′ over Z, then yS = u is solvable for y
over Z.
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Proof. Consider y′ such that y′S′ = u′. One can verify that y := y′M solves
yS = u, as

yS = y′MS = y′MSNN−1 = y′S′N−1 = u′N−1 = uNN−1 = u. C

B Claim 4.22 Let q ∈N. If yS ≡q u is solvable for y, then y′S′ ≡q u′ is solvable
for y′.

Proof. Let y be such that yS ≡q u. Define y′ := yM−1. We verify that y′S′ ≡q u′

as follows.

y′S′ = y′MSN = yM−1MSN = ySN ≡q uN = u′. C

Using these two claims, our proof proceeds as follows. From our starting
assumption u /∈ spanZ({s1, . . . , sm}), it follows by Claim 4.21 that y′S′ = u′

has no solution y′ over Z. Below, we prove that this implies there exists a
prime power q such that y′S′ ≡q u′ is unsolvable. Furthermore we show how to
find a (possibly composite) integer q in polynomial time such that y′S′ ≡q u′

is unsolvable. By Claim 4.22 this will imply that yS ≡q u is unsolvable and
complete the proof.

We inferred that y′S′ = u′ has no solutions over Z. Since all non-zero
elements of S′ are on the diagonal, this implies that either there exists i ∈ [n],
such that u′i is not divisible by s′i,i, or s′i,i is zero while u′i 6= 0. We finish the proof
by a case distinction.

• Suppose there exists i ∈ [n] such that s′i,i = 0, while u′i 6= 0. Choose a prime
power q such that q - u′i. Observe that such q can be obtained in polynomial-
time, for example by taking the smallest power of two that is larger than u′i.
It is easy to see that thereby, u′i 6≡q 0. Since s′i,i ≡q 0 holds trivially in this
case, the system y′S′ ≡q u′ has no solution.

• Otherwise, there exists i ∈ [n] such that s′i,i - u′i. Choose a prime power q such
that q - u′i and q | s′i,i. Such a prime power can be chosen by letting q := p`

for a prime p that occurs ` ≥ 1 times in the prime factorization of s′i,i, but
less often in the prime factorization of u′i. Thereby, u′i 6≡q 0, while s′i,i ≡q 0. It
again follows that the system y′S′ ≡q u′ has no solutions.

It is not clear how to obtain q as described above in polynomial time, as
it requires computing the prime decompositions of possibly large integers.
However, observe that letting q := s′i,i means u′i 6≡q 0 while s′i,i ≡q 0, implying
that for this choice of q the system y′S′ ≡q u′ again has no solutions. Since
this q is trivial to obtain in polynomial time, that concludes the proof. J

Given that u /∈ spanZ({s1, . . . , sm}), we can thus use Lemma 4.20 to obtain
an integer q such that u /∈ spanq({s1, . . . , sm}). The next lemma shows that
in this case the system S′x ≡q b, where b = (0, . . . , 0, c) and S′ is the matrix
consisting of rows {s1, . . . , sm, u}, has a solution x for some c 6≡q 0.
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I Lemma 4.23 Let q > 1 be an integer. Let A be an m× n matrix over Z/qZ.
Suppose am /∈ spanq({a1, . . . , am−1}). Then there exists a constant c 6≡q 0 for
which the system Ax ≡q b has a solution, where b := (0, . . . , 0, c)T is the vector
with c on the last position and zeros in all other positions. Furthermore, x and c
can be computed in polynomial time.

Proof. Let A′ be the (m− 1)× n matrix consisting of the first m− 1 rows of A.
Find the Smith decomposition (Definition 2.21) of A′ over Z, thus there exist
an (m− 1)× (m− 1) matrix M′ and an n× n matrix N, such that S′ := M′A′N
is in Smith Normal Form and M′ and N are invertible over Z. The only property
of the Smith Normal Form we will rely on is that S′ is a diagonal matrix.

We show that similar properties hold over Z/qZ. Let (M′)−1, N−1 be
the inverses of M′ and N over Z. It is easy to verify that NN−1 = I ≡q I
and M′(M′)−1 = I ≡q I, such that M′ and N are still invertible over Z/qZ.
Furthermore, S′ (mod q) remains a diagonal matrix.

Define M to be the following m×m matrix

M :=
(

M′ 0
0 1

)
,

then M has an inverse over Z/qZ that is given by the following matrix

M−1 ≡q

(
(M′)−1 0

0 1

)
.

Define S := MAN and verify that

S := MAN ≡q

(
S′

amN

)
, (4.3)

meaning that the first m− 1 rows of S are equal to the first m− 1 rows of S′,
and the last row of S is given by the row vector amN.

The following two claims will be used to show that proving the lemma
statement for matrix S, will give the desired result for A.

B Claim 4.24 Let b := (0, . . . , 0, c) for some constant c. The system Sx′ ≡q b
has a solution, if and only if the system Ax ≡q b has a solution.

Proof. Let x be a solution for Ax ≡q b. Define x′ := N−1x. Then MANx′ ≡q
MAx ≡q Mb. Observe that by the definitions of M and b, Mb ≡q b, which
concludes this direction of the proof.

For the other direction, let x′ be a solution for MANx′ ≡q b. Define
x := Nx′. Then M−1MANx′ ≡q M−1b and thus ANx′ ≡q M−1b and thereby
Ax ≡q M−1b. By the definition of M−1 and b, we again have M−1b ≡q b. C
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B Claim 4.25 Let S be defined as above. Then sm ∈ spanq({s1, . . . , sm−1}) if
and only if am ∈ spanq({a1, . . . , am−1}).

Proof. Suppose sm ∈ spanq({s1, . . . , sm−1}). This implies that there exist
α1, . . . , αm−1 such that ∑i∈[m−1] αisi ≡q sm ≡q amN. Thus, ∑i∈[m−1] αis′i ≡q

amN, and for α = (α1, . . . , αm−1) we therefore have αS′ ≡q amN, implying
(αM′)A′N ≡q amN. Since N is invertible, it follows that

(αM′)A′ ≡q am

and thus am ∈ spanq({a1, . . . , am−1}).
For the other direction, suppose am ∈ spanq({a1, . . . , am−1}). Thus, there

exists α ≡q (α1, . . . , αm−1) such that αA′ ≡q am. Let α′ := α(M′)−1. Then

α′S′ ≡q α′M′A′N ≡q αA′N ≡q amN ≡q sm,

and it follows from the definition of S in Equation (4.3) that thereby sm ∈
spanq({s1, . . . , sm−1}). C

It follows from Claims 4.24 and 4.25, that it suffices to show that Sx =
(0, . . . , 0, c)T has a solution for some c 6≡q 0 if sm /∈ spanq({s1, . . . , sm−1}).
Observe that since S′ (the first m − 1 rows of S) is a diagonal matrix, there
must exist i ∈ [m− 1] for which there is no αi satisfying si,i · αi ≡q sm,i. Oth-
erwise, it is easy to see that ∑i∈[m−1] αisi ≡q sm, contradicting that sm /∈
spanq({s1, . . . , sm−1}). We now do a case distinction.

Suppose there exists i ∈ [m− 1] such that si,i ≡q 0, while sm,i 6≡q 0. Let
x = (0, . . . , 0, 1, 0, . . . , 0) be the vector with 1 in the i’th position and zeros in all
other positions. It is easy to verify that Sx ≡q (0, . . . , 0, sm,i)

T and thereby the
system Sx ≡q b has a solution for c = sm,i.

Otherwise, choose i such that si,i 6≡q 0 and there exists no integer αi satisfying
si,i · αi ≡q sm,i. We consider the following two cases.

• Suppose gcd(si,i, q) | sm,i over the integers. Let d ∈ Z such that sm,i = d ·
gcd(si,i, q) over the integers. It follows from Bézout’s identity (Theorem 2.15)
that there exist integers a and b such that gcd(si,i, q) = a · si,i + b · q. Thereby,

sm,i ≡q d · (a · si,i + b · q) ≡q d · a · si,i

which is a contradiction with the assumption that no integer αi exists such
that si,i · αi ≡q sm,i.

• Suppose gcd(si,i, q) - sm,i over the integers, let y := q/ gcd(si,i, q). Define
x := (0, . . . , 0, y, 0, . . . , 0)T as the vector with y in position i. Then

Sx ≡q (0, . . . , 0, y · si,i, 0, . . . , 0, y · sm,i)
T.
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Then y · si,i = si,i · q/ gcd(si,i, q) = ±lcm(q, si,i) ≡q 0, recall that lcm stands
for least common multiple. It remains to show that y · sm,i 6≡q 0. Sup-
pose for contradiction that y · sm,i ≡q 0, such that over the integers q ·
sm,i/ gcd(si,i, q) = d · q for some d ∈ Z. But then sm,i/ gcd(si,i, q) = d ∈ Z

contradicting that gcd(si,i, q) - sm,i. It follows that y · sm,i 6≡q 0. Thus, for
x defined as above and c := y · sm,i 6≡q 0 we obtain that Sx = (0, . . . , 0, c)T,
concluding the proof.

Computing the Smith decomposition of a matrix can be done in polynomial time
(Theorem 2.23) and computing the greatest common divisor of two integers
can be done in time polynomial in their binary encoding. Hereby, it is straight-
forward to turn the above proof in a polynomial-time algorithm that computes
both x and c. J

In the context of capturing a Boolean relation R by degree-1 polynomials,
the constructive proof of Lemma 4.23 effectively shows the following: given
a ring Z/qZ over which a degree-1 polynomial exists that captures a certain
tuple u /∈ R, one can constructively find the coefficients x of a polynomial that
captures u by following the steps in the proof. We will formalize this idea in
Theorem 4.28, but first we prove the main sparsification result.

I Theorem 4.26 Let Γ be a balanced Boolean constraint language. Then CSP(Γ)
has a kernel with O(n) constraints that are a subset of the original constraints.
The kernel can be stored using O(n log n) bits.

Proof. We start by showing in the following claim that for all relations R ∈ Γ
we can find linear polynomials over an appropriate ring that capture the tuples
that are not in R. We will then use this representation to obtain our kernel.

B Claim 4.27 For all relations R in a balanced Boolean constraint language Γ,
for all u /∈ R, there exists a linear polynomial pu over a ring Eu ∈ {Z/quZ |
qu is a prime power} that captures u with respect to R.

Proof. Suppose for a contradiction that there exists R ∈ Γ and u /∈ R, such
that no prime power q and polynomial p over Z/qZ exist that capture u with
respect to R. Let R = {r1, . . . , r`}. By the non-existence of p and q, the system

1 r1,1 r1,2 . . . r1,k
1 r2,1 r2,2 . . . r2,k
...

...
...

. . .
...

1 r`,1 r`,2 . . . r`,k
1 u1 u2 . . . uk




α0
α1
α2
...

αk

 ≡q


0
0
...
0
c


has no solution for any prime power q and c 6≡q 0. Otherwise, it is easy to
verify that q is the desired prime power and p(x1, . . . , xk) := α0 + ∑k

i=1 αixi is
the desired polynomial.
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The fact that no solution exists, implies that (1, u1, . . . , uk) is in the span
of the remaining rows of the matrix, by Lemma 4.23. But this implies that
for any prime power q, there exist coefficients β1, . . . , β` over Z/qZ such that
u ≡q ∑ βiri. Furthermore, since the first column of the matrix is the all-ones
column, we obtain that ∑ βi ≡q 1. By Lemma 4.20, it follows that there exist
integer coefficients γ1, . . . , γ` such that ∑ γi = 1 and furthermore u = ∑ γiri.
But it immediately follows that R ∈ Γ is not preserved by the balanced operation
given by f (x1, . . . , x`) := ∑ γixi, which contradicts the assumption that Γ is
balanced. C

The theorem statement now follows directly from Theorem 4.6. J

The next theorem shows that given an arbitrary constraint language, it is
possible to decide in polynomial time whether it is balanced. Furthermore, for
balanced constraint languages there is a polynomial-time algorithm to obtain
the capturing polynomials. Here we assume that the relation R is encoded
explicitly as a list of tuples contained in the relation, together with a list of
tuples not contained in the relation, making the total encoding size of a Boolean
k-ary relation at least 2k.

I Theorem 4.28 There is a polynomial-time algorithm that, given a k-ary
Boolean relation R, decides whether R is balanced and for balanced R outputs a
polynomial pu and integer qu for all u ∈ {0, 1}k \ R such that pu captures u over
Z/quZ.

Proof. Let R = {r1, . . . , rm}. Define si as (1, ri,1, . . . , ri,k) for i ∈ [m]. Relation R
is balanced if and only if there exists no u ∈ {0, 1}k \ R such that ext(u) ∈
spanZ({s1, . . . , sm}), where ext(u) = (1, u1, . . . , uk). Thereby, R is balanced if
and only if for all u ∈ {0, 1}k \ R, the following system has no solutions over Z.

(
α1, . . . , αm

)


1 r1,1 r1,2 . . . r1,k
1 r2,1 r2,2 . . . r2,k
...

...
...

. . .
...

1 rm,1 rm,2 . . . rm,k

 =
(
1, u1, . . . , uk

)

The solvability of these systems over the integers can be tested in time that is
polynomial in the size of an explicit encoding of R that indicates for each tuple
whether or not it is contained in R. This computation can be done, for example,
by first computing the Smith Normal Form of the matrix.

Suppose R is balanced. Let u ∈ {0, 1}k \ R, we show how to find pu and
qu. Let si be defined as above. Then ext(u) /∈ spanZ({s1, . . . , sm}) since R is
balanced. Apply Lemma 4.20 to obtain qu ∈ N in polynomial time such that
ext(u) /∈ spanqu({s1, . . . , sm}). It follows from Lemma 4.23 that the following
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system has a solution
1 r1,1 r1,2 . . . r1,k
1 r2,1 r2,2 . . . r2,k
...

...
...

. . .
...

1 rm,1 rm,2 . . . rm,k
1 u1 u2 . . . uk




α0
α1
α2
...

αk

 ≡qu


0
0
...
0
c


for (α0, α1, . . . , αk)

T and some c 6≡qu 0 and that we can find it in polynomial
time. Let pu(x1, . . . , xk) := α0 + ∑k

i=1 αixi. It is straightforward to verify that pu
captures u with respect to R over Z/quZ. J

The kernelization result of Theorem 4.26 above is obtained by using the fact
that when Γ is balanced, the constraints in CSP(Γ) can be replaced by linear
polynomials. We show in the next theorem that this approach fails when Γ is
not balanced.

I Theorem 4.29 Let R be a k-ary Boolean relation that is not balanced. Then
there exists u ∈ {0, 1}k \ R for which there exists no linear polynomial pu over
any ring E that captures u with respect to R.

Proof. Suppose R is not balanced. By Proposition 4.18, this implies R is violated
by an alternating operation. Let f be an alternating operation that does not
preserve R, such that f (y1, . . . , ym) := ∑m

i=1(−1)i+1yi for some odd m, and for
some (not necessarily distinct) r1, . . . , rm ∈ R we have f (r1, . . . , rm) = u with
u /∈ R (recall the definition of f (r1, . . . , rm) from Definition 2.35).

Suppose for a contradiction that there exists a linear polynomial pu that cap-
tures u over a ring Eu. Let ri = (ri,1, . . . , ri,k) for i ∈ [m]. Since f (r1, . . . , rm) =
u, we have the following equality over Z:

ui = r1,i − r2,i . . . + rm,i. (4.4)

Since rj,i ∈ {0, 1} for all i ∈ [k] and j ∈ [m], Equation (4.4) holds over any
ring, so in particular over Eu.

Let pu(x1, . . . , xk) be given by pu(x1, . . . , xk) := β0 + β1 · x1 + β2 · x2 + . . . +
βk · xk for ring elements β0, . . . , βk from Eu. By Definition 4.1, pu(ri,1, . . . , ri,k) =
0 for all i ∈ [m]. Thereby the following equalities hold over Eu:

pu(u1, . . . , uk) = β0 +
k

∑
i=1

βi · ui

= β0 +
k

∑
i=1

βi · (r1,i − r2,i . . . + rm,i)

= β0 +
k

∑
i=1

βi · r1,i − βi · r2,i . . . + βi · rm,i
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= (β0 +
k

∑
i=1

βi · r1,i)− (β0 +
k

∑
i=1

βi · r2,i) . . . + (β0 +
k

∑
i=1

βi · rm,i) (4.5)

= pu(r1,1, . . . , r1,k)− pu(r2,1, . . . , r2,k) . . . + pu(rm,1, . . . , rm,k)

= 0,

where the fourth equality follows from the fact that in line (4.5) all but one
of the terms β0 cancel, since the summation alternates between addition and
subtraction. This contradicts the fact that pu(u1, . . . , uk) 6= 0. Thereby, there
exists no linear polynomial that captures u with respect to R. J

4.5 Symmetric CSPs
In this section, we characterize the symmetric Boolean constraint languages Γ for
which CSP(Γ) has a linear sparsification. For a Boolean tuple x = (x1, . . . , xk),
let weight(x) denote the number of ones in the tuple, such that weight(x) :=
∑i xi. We can now define symmetric relations.

Definition 4.30 We say a k-ary Boolean relation R is symmetric, if there ex-
ists S ⊆ {0, 1, . . . , k} such that a tuple x = (x1, . . . , xk) is in R if and only if
weight(x) ∈ S. We call S the set of satisfying weights for R. We will say that a
constraint language Γ is symmetric, if it only contains symmetric relations.

At the end of this section we will prove that for symmetric Boolean con-
straint languages, CSP(Γ) has no sparsification with O(n2−ε) constraints if Γ is
not balanced, assuming NP * coNP/poly. Together with the results from the
previous section, this gives a dichotomy result for the sparsification of CSP(Γ)
for symmetric constraint languages.

The following lemma shows that under certain conditions on the satisfying
weights, it follows that the relation cone-defines 2-OR, which we will use to
obtain the kernelization lower bound.

I Lemma 4.31 Let R be a k-ary symmetric Boolean relation with satisfying
weights S ⊆ {0, 1, . . . , k}. Let U := {0, 1, . . . , k} \ S. If there exist a, b, c ∈ S and
d ∈ U such that a− b + c = d, then R cone-defines 2-OR.

Proof. We first show the result when b ≤ a, b ≤ c, and b ≤ d. In this case, we
use the following tuple to express x1 ∨ x2.

(¬x1, . . . ,¬x1︸ ︷︷ ︸
(a−b) copies

,¬x2, . . . ,¬x2︸ ︷︷ ︸
(c−b) copies

, 1, . . . , 1︸ ︷︷ ︸
b copies

, 0, . . . , 0︸ ︷︷ ︸
(k−d) copies

).

For a = b or c = b, the tuple above does not give a valid cone definition.
Observe however that in this case, c = d or a = d respectively, which cannot
happen as a, c ∈ S while d /∈ S.
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Let f : {x1, x2} → {0, 1}, then

(¬ f (x1), . . . ,¬ f (x1),¬ f (x2), . . . ,¬ f (x2), 1, . . . , 1, 0, . . . , 0)

has weight (a− b)(1− f (x1)) + (c− b)(1− f (x2)) + b. It is easy to verify that
for f (x1) = f (x2) = 0, this implies the tuple has weight a + c− b = d /∈ S and
thus the tuple is not in R. Otherwise, the weight is either a, b, or c. In these
cases the tuple is contained in R, as the weight is contained in S.

Note that the above case applies when b is the smallest of all four integers.
We now consider the remaining cases. Suppose a ≤ b, a ≤ c, and a ≤ d (the
case where c is smallest is symmetric by swapping a and c). In this case, use the
tuple

(¬x1, . . . ,¬x1︸ ︷︷ ︸
(d−a) copies

, x2, . . . , x2︸ ︷︷ ︸
(b−a) copies

, 1, . . . , 1︸ ︷︷ ︸
a copies

, 0, . . . , 0︸ ︷︷ ︸
(k−c) copies

).

Consider an assignment f satisfying x1 ∨ x2, verify that the weight of the above
tuple under this assignment lies in {a, b, c}, and thus the tuple is contained in
R. Assigning 0 to both x1 and x2 gives weight d, such that the tuple is not in R.

Otherwise, we have d ≤ a, d ≤ b, and d ≤ c and use the tuple

( x1, . . . , x1︸ ︷︷ ︸
(a−d) copies

, x2, . . . , x2︸ ︷︷ ︸
(c−d) copies

, 1, . . . , 1︸ ︷︷ ︸
d copies

, 0, . . . , 0︸ ︷︷ ︸
(k−b) copies

).

It is again easy to verify that any assignment to x1 and x2 satisfies this tuple if
and only if it satisfies (x1 ∨ x2), using the fact that a− d + c = b ∈ S. J

We now give the main lemma that is needed to prove Theorem 4.34. It
shows that if a relation is symmetric and not balanced, it must cone-define 2-OR,
by using the result from the lemma above.

I Lemma 4.32 Let R be a symmetric Boolean relation of arity k. If R is not
balanced, then R cone-defines 2-OR.

Proof. Let f be a balanced operation that does not preserve R. Since f has inte-
ger coefficients, it follows that there exist (not necessarily distinct) r1, . . . , rm ∈
R, such that r1 − r2 + r3 − r4 · · · + rm = u for some u ∈ {0, 1}k \ R and
odd m ≥ 3. Thereby, weight(r1)−weight(r2) + weight(r3)−weight(r4) · · ·+
weight(rm) = weight(u). Let S be the set of satisfying weights for R and let
U := {0, . . . , k} \ S. Define si := weight(ri) for i ∈ [m], and t = weight(u),
such that s1 − s2 + s3 − s4 . . . + sm = t, and furthermore si ∈ S for all i, and
t ∈ U. We show that there exist a, b, c ∈ S and d ∈ U such that a− b + c = d,
such that the result follows from Lemma 4.31. We do this by induction on the
length of the alternating sum.

If m = 3, we have that s1 − s2 + s3 = t and define a := s1, b := s2, c := s3,
and d := t.

If m > 3, we will use the following claim.
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B Claim 4.33 Let s1, . . . , sm ∈ S and t ∈ U such that s1 − s2 + s3 − s4 · · · +
sm = t. There exist distinct i, j, ` ∈ [m] with i, j odd and ` even, such that
si − s` + sj ∈ {0, . . . , k}.

Proof. If there exist distinct i, j, ` ∈ [m] with i, j odd and ` even, such that
si ≥ s` ≥ sj, then these i, j, ` satisfy the claim statement. Suppose these do not
exist, we consider two options.

• Suppose si ≥ s` for all i, ` ∈ [m] with i odd and ` even. It is easy to see that
thereby, for any i, j, ` with i, j odd and ` even it holds that si − s` + sj ≥ 0.
Furthermore, si − s` + sj ≤ s1 − s2 + s3 − s4 · · · + sm = t and t ≤ k since
t ∈ U. Thus, any distinct i, j, ` ∈ [m] with i, j odd and ` even satisfy the
statement.

• Otherwise, si ≤ s` for all i, ` ∈ [m] with i odd and ` even. It follows that
for any i, j, ` with i, j odd and ` even si − s` + sj ≤ k, as si − s` ≤ 0 and
sj ≤ k. Furthermore, si − s` + sj ≥ s1 − s2 + s3 − s4 · · ·+ sm = t and t ≥ 0
by definition. Thus, any distinct i, j, ` ∈ [m] with i, j odd and ` even satisfy
the statement. C

Use Claim 4.33 to find i, j, ` such that si − s` + sj ∈ {0, . . . , k}. We consider
two options. If si − s` + sj ∈ U, then define d := si − s` + sj, a := si, b := s`,
and c := sj and we are done. The other option is that si − s` + sj = s ∈ S.
Replacing si − s` + sj by s in s1− s2 + s3− s4 · · ·+ sm gives a shorter alternating
sum with result t. We obtain a, b, c, and d by the induction hypothesis.

Thereby, we have obtained a, b, c ∈ S, d ∈ U such that a− b + c = d. It now
follows from Lemma 4.31 that R cone-defines 2-OR. J

Using the lemma above, we can now prove the main result of this section.

I Theorem 4.34 Let Γ be a finite Boolean symmetric intractable constraint
language.

• If Γ is balanced, then CSP(Γ) parameterized by the number of variables n has a
kernel with O(n) constraints that can be stored in O(n log n) bits.

• If Γ is not balanced, then CSP(Γ) parameterized by the number of variables n
does not have a generalized kernel of size O(n2−ε) for any ε > 0, unless
NP ⊆ coNP/poly.

Proof. If Γ is balanced, it follows from Theorem 4.26 that CSP(Γ) has a kernel
with O(n) constraints that can be stored in O(n log n) bits. Note that the
assumption that Γ is symmetric is not needed in this case.

If the symmetric constraint language Γ is not balanced, then Γ contains
a symmetric relation R that is not balanced. It follows from Lemma 4.32
that R cone-defines the 2-OR relation. Thereby, we obtain from Theorem 4.11
that CSP(Γ) has no generalized kernel of size O(n2−ε) for any ε > 0, unless
NP ⊆ coNP/poly. J
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4.6 Full classification of arity-3 CSPs
In this section, we will give a full classification of the sparsifiability for constraint
languages that consist only of low-arity relations. We assume all considered
constraint languages to be Boolean. We start by providing some additional
properties of cone-definability.

Observation 4.35 If a Boolean relation T of arity m is cone-definable from a
Boolean relation U of arity n, then m ≤ n.
Observation 4.36 Suppose a Boolean relation T is cone-definable from a Boolean
relation U, and that g is a partial operation that is idempotent and self-dual. If g
preserves U, then g preserves T.

The above observation follows quite straightforwardly from the definitions.
For contradiction, suppose g does not preserve T. The proof strategy is to find a
witness to this, and using the cone-definition of T from U to find a witness that
g also does not preserve U.

The next observation is that cone-definability is transitive.

Observation 4.37 Suppose that T1, T2, T3 are Boolean relations such that T2 is
cone-definable from T1, and T3 is cone-definable from T2. Then T3 is cone-definable
from T1.

The following two propositions are consequences of the above observations.
We will tacitly use them in the sequel. Morally, they show that the properties
of relations that we are interested in are invariant under cone-interdefinability.
The first proposition is immediate from Observation 4.35.

I Proposition 4.38 If Boolean relations T, U are cone-interdefinable, then they
have the same arity. J

The next proposition is follows directly from Observation 4.36.

I Proposition 4.39 Suppose that T and U are Boolean relations that are cone-
interdefinable, and that g is a partial operation that is idempotent and self-dual.
Then, g preserves T if and only if g preserves U. J

The next results will show that when the constraint language consists of only
low-arity relations, if the constraint language is not balanced, it can cone-define
the 2-OR relation.

Observation 4.40 Each Boolean relation of arity 1 is balanced.
I Theorem 4.41 A Boolean relation of arity 2 is balanced if and only if it is not
cone-interdefinable with the 2-OR relation.

Proof. Let R ⊆ {0, 1}2 be a relation. We prove the two directions separately.
(⇒) Proof by contraposition. Suppose that R is cone-interdefinable with

2-OR. Then in particular, R cone-defines the 2-OR relation. Let (y1, y2) be a tuple
witnessing cone-definability as in Definition 4.7. Since 2-OR is symmetric in its
two arguments, we may assume without loss of generality that yi is either xi
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or ¬xi for i ∈ [2]. Define g : {0, 1}2 → {0, 1}2 by letting g(b1, b2) := (b̂1, b̂2)

where b̂i = bi if yi = xi and b̂i = 1− bi if yi = ¬xi for i ∈ [2]. By definition
of cone-definability we then have g(1, 0), g(0, 1), g(1, 1) ∈ R while g(0, 0) /∈ R.
But g(1, 0)− g(1, 1) + g(0, 1) = g(0, 0), showing that R is not preserved by all
alternating operations and therefore is not balanced.

(⇐) We again use contraposition. Suppose R is not balanced; we will
prove R is cone-interdefinable with 2-OR. Let f : {0, 1}k → {0, 1} be a bal-
anced partial Boolean operation of minimum arity that does not preserve R.
Let α1, . . . , αk ∈ Z be the coefficients of f , as in Definition 4.15. Let s1, . . . , sk ∈
R such that f (s1, . . . , sk) = u ∈ {0, 1}2 \R witnesses that f does not preserve R.
By Definition 4.15 we have u = ∑k

i=1 αisi and ∑k
i=1 αi = 1. This shows that

if αi = 0 for some coordinate i, then that position does not influence the value
of f , implying the existence of a smaller-arity balanced relation that does not
preserve T. Hence our choice of f as a minimum-arity operation ensures that αi
is nonzero for all i ∈ [k].
B Claim 4.42 The tuples s1, . . . , sk are all distinct.

Proof. Suppose that si = sj for some distinct i, j ∈ [k], and assume without
loss of generality that i = k− 1 and j = k. But then the balanced operation f ′

of arity k − 1 defined by the coefficients (α1, . . . , αk−2, αk−1 + αk) does not
preserve T since f ′(s1, . . . , sk−1) = f (s1, . . . , sk) = u /∈ R, contradicting
that f is a minimum-arity balanced operation that does not preserve R. C

B Claim 4.43 The arity k of operation f is 3.

Proof. Since s1, . . . , sk ∈ R ⊆ {0, 1}2 are all distinct, while u ∈ {0, 1}2 \ R, we
have k ≤ 3. We cannot have k = 1 since that would imply f (s1) = s1 ∈ R,
contradicting that f (s1, . . . , sk) = f (s1) = u /∈ R. It remains to show that k 6=
2. So assume for a contradiction that k = 2. Since s1 and s2 are distinct, there
is a position ` ∈ [2] such that s1,` 6= s2,`. Assume without loss of generality
that s1,` = 1 while s2,` = 0. Since f (s1, . . . , sk) = f (s1, s2) = α1s1 + α2s2 =

u ∈ {0, 1}2 \ R, we find u` = α1s1,` + α2s2,` = α1 · 1+ α2 · 0 ∈ {0, 1}. Since α1 is
a nonzero integer, we must have α1 = 1. But since α1 + α2 = 1 by definition of a
balanced operation, this implies α2 = 0, contradicting that f is a minimum-arity
balanced operation that does not preserve R. C

The previous two claims show that there are at least three distinct tuples
in R ⊆ {0, 1}2. Since u ∈ {0, 1}2 \ R it follows that |R| = 3. Hence R and
2-OR are both Boolean relations of arity two that each have three tuples. To
cone-define one from the other, one may easily verify that it suffices to use the
tuple (y1, y2), where yi = xi if ui = 0 and yi = ¬xi otherwise. J

In order to show the classification of the arity-3 relations with a linear
sparsification in Theorem 4.46, we first present some additional lemmas and
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definitions. Let U ⊆ {0, 1}n be a relation. We say that w ∈ {0, 1}n is a witness
for U if w /∈ U, and there exists a balanced operation f : {0, 1}k → {0, 1}
and tuples t1, . . . , tk ∈ U such that w = f (t1, . . . , tk). Observe that U is not
balanced if and only if there exists a witness for U.

I Lemma 4.44 Suppose that U ⊆ {0, 1}n is a Boolean relation, and that there
exist an integer c and a natural number m > 1 such that, for each u ∈ U, it holds
that

weight(u) ≡m c.

Then, if w is a witness for U, it holds that weight(w) ≡m c.

Proof. Since w is a witness for U, there exist tuples t1 = (t1,1, . . . , t1,n), . . . , tk =

(tk,1, . . . , tk,n) and a balanced operation f : {0, 1}k → {0, 1} such that

f (t1, . . . , tk) = w.

Let α1, . . . , αk be the coefficients of f . From f (t1, . . . , tk) = w, we obtain
that α1weight(t1) + · · ·+ αkweight(tk) = weight(w). Since ∑i∈[k] αi = 1 by
definition of a balanced operation, we have

α1weight(t1) + · · ·+ αkweight(tk) ≡m α1c + · · ·+ αkc =

∑
i∈[k]

αi

 c = c,

and the result follows. J

We will view Boolean tuples of arity n as maps f : [n]→ {0, 1}, via the natu-
ral correspondence where such a map f represents the tuple ( f (1), . . . , f (n)).
We freely interchange between these two representations of tuples.

For S ⊆N, we say that f : S→ {0, 1} is a no-good of U ⊆ {0, 1}n when:

• S ⊆ [n];

• each extension g : [n]→ {0, 1} of f is not an element of U; and

• there exists an extension h : [n]→ {0, 1} of f that is a witness for U.

We say that f : S → {0, 1} is a min-no-good if f is a no-good, but no proper
restriction of f is a no-good. Observe that the following are equivalent, for a
relation: the relation is not balanced; it has a witness; it has a no-good; it has a
min-no-good.

When U ⊆ {0, 1}n is a relation and S ⊆ [n], let s1 < · · · < sm denote the
elements of S; then, we use U � S to denote the relation {(h(s1), . . . , h(sm)) | h ∈
U}.
I Proposition 4.45 Let U ⊆ {0, 1}n be a relation, let S ⊆ [n], and suppose that
f : S→ {0, 1} is a min-no-good of U. Then f is a min-no-good of U � S.
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Proof. Observe that f is not in U � S; since f has an extension that is a witness
for U, it follows that f is a witness for U � S. Thus, f is a no-good of U � S. In
order to obtain that f is a min-no-good of U � S, it suffices to establish that, for
any restriction f− : S− → {0, 1} of f , it holds that f− is a no-good of U if and
only if f− is a no-good of U � S. This follows from what we have established
concerning f and the following fact: all extensions h : S→ {0, 1} of f− are not
in U � S if and only if all extensions h′ : [n]→ {0, 1} of f− are not in U. J

Using these tools we are finally in position to prove Theorem 4.46.

I Theorem 4.46 Suppose that U ⊆ {0, 1}3 is an arity-3 Boolean relation that is
not balanced. Then, the 2-OR relation is cone-definable from U.

Proof. Let f : S→ {0, 1} be a min-no-good of U.
It cannot hold that |S| = 0, since then U would be empty and hence

preserved by all balanced operations. It also cannot hold that |S| = 1, since
then f would be a min-no-good of U � S (by Proposition 4.45), which is not
possible since U � S would have arity 1 and hence would be preserved by all
balanced operations (by Observation 4.40).

For the remaining cases, by replacing U with a relation that is interdefinable
with it, we may assume that f : S→ {0, 1} maps each s ∈ S to 0.

Suppose that |S| = 2, and assume for the sake of notation that S =
{1, 2} (this can be obtained by replacing U with a relation that is interde-
finable with it). By Proposition 4.45, f is a min-no-good of U � S. By Theo-
rem 4.41, we obtain that U � S contains all tuples other than f , that is, we
have {(0, 1), (1, 0), (1, 1)} = U � S. It follows that there exists a realization,
where we define a realization to be a tuple (a1, a2, a3) ∈ {0, 1}3 such that
(0, 1, a1), (1, 0, a2), (1, 1, a3) ∈ U. Let us refer to (0, 0, 1) and (1, 1, 0) as bad
tuples, and to all other arity 3 tuples as good tuples.

B Claim 4.47 If there is a realization that is a good tuple, then the 2-OR relation
is cone-definable from U.

Proof. We show cone-definability via a tuple of the form (x1, x2, y) where y ∈
{0, 1, x1, x2,¬x1,¬x2}. The right setting for y can be derived from the realization
that forms a good tuple.

• choose y = 0 for (0, 0, 0);

• y = 1 for (1, 1, 1);

• y = x1 for (0, 1, 1);

• y = x2 for (1, 0, 1);

• y = ¬x1 for (1, 0, 0); and,

• y = ¬x2 for (0, 1, 0).
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It is easy to verify that this choice of y gives the desired cone-definition. C

B Claim 4.48 There is a realization that is a good tuple.

Proof. Proof by contradiction. If there exists no realization that is a good tuple,
every realization is a bad tuple; moreover, there is a unique realization, for
if there were more than one, there would exist a realization that was a good
tuple. We may assume (up to interdefinability of U) that the unique realization
is (1, 1, 0). Then, U is the relation {(0, 1, 1), (1, 0, 1), (1, 1, 0)} containing exactly
the weight 2 tuples; applying Lemma 4.44 to U with a = 2 and m = 3, we
obtain that for any witness w for U, it holds that weight(w) ≡3 2. This implies
that f has no extension w′ that is a witness, since any such extension must have
weight(w′) equal to 0 or 1 as f maps both s ∈ S to 0; we have thus contradicted
that f is a no-good of U. C

Together, the two claims complete the case that |S| = 2.
Suppose that |S| = 3. Since f is a min-no-good mapping all s ∈ S to 0, it

follows that (0, 0, 0) is a witness. Thereby, it follows that each of the weight 1
tuples (1, 0, 0), (0, 1, 0), (0, 0, 1) is contained in U. We claim that U contains a
weight 2 tuple; if not, then U would contain only weight 1 and weight 3 tuples,
and by invoking Lemma 4.44 with a = 1 and m = 2, we would obtain that
weight((0, 0, 0)) ≡2 1, a contradiction. Assume for the sake of notation that U
contains the weight 2 tuple (0, 1, 1). Then U cone-defines the 2-OR relation via
the tuple (0, x1, x2), since (0, 0, 0) /∈ R and (0, 1, 0), (0, 0, 1), (0, 1, 1) ∈ R. J

Combining the results in this section with the results in previous sections,
allows us to give a full classification of the sparsifiability of constraint languages
that only contain relations of arity at most three. Observe that any k-ary relation
R such that R 6= ∅ and {0, 1}k \ R 6= ∅ cone-defines the 1-OR relation. Since
we assume that Γ is intractable in the next theorem, it follows that k is always
defined and k ∈ {1, 2, 3}.
I Theorem 4.49 Let Γ be an intractable Boolean constraint language such that
each relation therein has arity ≤ 3. Let k ∈N be the largest value for which k-OR

can be cone-defined from a relation in Γ. Then CSP(Γ) has a kernel with O(nk)
constraints that can be encoded in O(nk log k) bits, but for any ε > 0 there is no
kernel of size O(nk−ε), unless NP ⊆ coNP/poly.

Proof. To show that there is a kernel with O(nk) constraints, we do a case
distinction on k.

(k = 1) If k = 1, there is no relation in Γ that cone-defines the 2-OR relation.
It follows from Observation 4.40 and Theorems 4.41 and 4.46 that thereby, Γ
is balanced. It now follows from Theorem 4.26 that CSP(Γ) has a kernel with
O(n) constraints that can be stored in O(n log n) bits.
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(k = 2) If k = 2, there is no relation R ∈ Γ with |R| = 23 − 1 = 7, as
otherwise by Lemma 4.13 such a relation R would cone-define 3-OR which
is a contradiction. Thereby, it follows from Theorem 4.14 that CSP(Γ) has
a sparsification with O(n3−1) = O(n2) constraints that can be encoded in
O(n2 log n) bits.

(k = 3) Given an instance (C, V), it is easy to obtain a kernel of with O(n3)
constraints by simply removing duplicate constraints. This kernel can be
stored in O(n3) bits, by storing for each relation R ∈ Γ and for each tuple
(x1, x2, x3) ∈ V3 whether R(x1, x2, x3) ∈ C. Since |Γ| is constant and there are
O(n3) such tuples, this results in using O(n3) bits.

It remains to prove the lower bound. By definition, there exists R ∈ Γ such
that R cone-defines the k-OR relation. Thereby, the result follows immediately
from Theorem 4.11. Thus, CSP(Γ) has no kernel of size O(nk−ε) for any ε > 0,
unless NP ⊆ coNP/poly. J

4.7 Capturing polynomials versus compression via
Maltsev embeddings

In this section we compare our polynomial-based framework for linear sparsi-
fication from Section 4.4 to the framework of Lagerkvist and Wahlström [70]
based on Maltsev embeddings.

4.7.1 Maltsev embeddings and definitions
To facilitate the discussion, we introduce some additional concepts. A ternary
operation f : D3 → D over a domain D is a Maltsev operation if it satisfies the
identities f (x, x, y) = y and f (x, y, y) = x for all x, y ∈ D.

Definition 4.50 ([70, Definition 7]) A constraint language Γ over a domain D
admits an embedding over the constraint language Γ′ over D′ ⊇ D if there exists
a bijection h : Γ → Γ′ such that for every R ∈ Γ, if the arity of R is k then the
arity of h(R) is k and h(R) ∩ Dk = R.

If Γ′ is preserved by a Maltsev operation, then Γ is said to admit a Maltsev
embedding. Lagerkvist and Wahlström proved [70, Theorems 10–11] that if Γ is a
constraint language (over a possibly non-Boolean domain) that admits a Maltsev
embedding over Γ′ with a finite domain, then CSP(Γ) has a kernel with O(n)
constraints. Hence constraint languages admitting Maltsev embeddings over
finite domains admit linear sparsifications, just as balanced constraint languages.

In a quest to understand which CSPs can be sparsified through this route,
they investigated which constraint languages admit Maltsev embeddings using
universal algebra. For this purpose, they defined a universal partial Maltsev
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operation as a partial Boolean operation f such that each Boolean constraint
language Γ that admits a Maltsev embedding is preserved by f .

Definition 4.51 For a k-ary operation f : Dk → D on a domain D ⊇ {0, 1}, the
partial Boolean operation f|B is the restriction of f to Boolean arguments that
result in a Boolean value. Hence domain( f|B) = {x ∈ {0, 1}k | f (x) ∈ {0, 1}},
and for each k-tuple x in the domain of f|B we have f|B(x) = f (x).
Definition 4.52 ([70, Definition 14]) The infinite domain D∞ is recursively de-
fined as follows. It contains the elements 0 and 1 along with each triple (x, y, z)
where x, y, z ∈ D∞ with x 6= y and y 6= z. The Maltsev operation u : D3

∞ → D∞
is defined by setting u(x, x, y) = y, setting u(x, y, y) = x, and setting u(x, y, z) =
(x, y, z) otherwise.

We define [{u}] as the set of all operations that can be defined as a term
over the algebra (D∞, {u}). Hence an arity-k operation f ∈ [{u}] can be de-
fined either as a projection, so that f (x1, . . . , xk) = xi for some i ∈ [k], or can
be recursively defined from operations f1, f2, f3 ∈ [{u}] via f (x1, . . . , xk) =
u( f1(x1, . . . , xk), f2(x1, . . . , xk), f3(x1, . . . , xk)). We will use this recursive de-
composition of operations in [{u}] later in our proofs. The universal partial
Maltsev operations can be characterized precisely [70, Theorems 13–15, p.165]
as the operations f|B for f ∈ [{u}].

Any Boolean constraint language that is preserved by all universal partial
Maltsev operations, has [71, Theorem 28] a Maltsev embedding over D∞. How-
ever, since only finite-domain Maltsev embeddings lead to linear sparsifications,
this infinite-domain embedding does not directly have algorithmic applications.

In the remainder of this section, we explore relations between balanced
Boolean constraint languages (which can be sparsified using capturing polyno-
mials) and Boolean constraint languages admitting a Maltsev embedding.

4.7.2 Balanced constraint languages versus Maltsev
embeddings

The next theorem shows that being balanced is at least as strong of a requirement
as being preserved by all universal partial Maltsev operations. In particular,
any balanced relation is preserved by all universal partial Maltsev operations.
This implies that if the Maltsev approach does not apply to obtain a linear
sparsification for a Boolean CSP, then the polynomial-based framework does
not apply either.

I Theorem 4.53 Let Γ be a Boolean constraint language. If there exists a
universal partial Maltsev operation f such that Γ is not preserved by f , then Γ is
not balanced.

Proof. We introduce a function to associate an integer value to every element
of D∞, as follows. Let val : D∞ → N be given by val(0) := 0, val(1) := 1 and
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val((d1, d2, d3)) := val(d1)− val(d2) + val(d3) for d1, d2, d3 ∈ D∞. We start by
proving the following claim.

B Claim 4.54 Let f ∈ [{u}] have arity m. There is a sequence α1, . . . , αm ∈ Z

with ∑i∈[m] αi = 1, such that for all x1, . . . , xm ∈ {0, 1}:

∑
i∈[m]

αixi = val( f (x1, . . . , xm)).

Proof. We prove this by induction on the structure of f as given by a term
over u.

(Base case) If f (x1, . . . , xm) := xj for j ∈ [m], we define αj := 1 and αi := 0
for all i 6= j. By this definition, ∑i∈[m] αi = 1 and val( f (x1, . . . , xm)) = xj =
∑i∈[m] αixi.

(Step) Let f (x1, . . . , xm) = u( f1(x1, . . . , xm), f2(x1, . . . , xm), f3(x1, . . . , xm)). For
b ∈ [3], choose coefficients αb,1, . . . , αb,m ∈ Z with ∑i∈[m] αb,i = 1 such that

∑
i∈[m]

αb,ixi = val( fb(x1, . . . , xm))

for all x1, . . . , xm ∈ {0, 1}. These coefficients exist by the induction hypothesis.
For i ∈ [m], define αi := α1,i − α2,i + α3,i. By this definition,

∑
i∈[m]

αi = ∑
i∈[m]

α1,i − ∑
i∈[m]

α2,i + ∑
i∈[m]

α3,i = 1− 1 + 1 = 1,

as desired. Let x1, . . . , xm ∈ {0, 1} be given. To show that ∑i∈[m] αixi =

f (x1, . . . , xm) we distinguish three cases.

Suppose f1(x1, . . . , xm) = f2(x1, . . . , xm). Then f (x1, . . . , xm) = f3(x1, . . . , xm)
by the definition of u, and thus

∑
i∈[m]

αixi = ∑
i∈[m]

α1,ixi − ∑
i∈[m]

α2,ixi + ∑
i∈[m]

α3,ixi

= val( f1(x1, . . . , xm))− val( f2(x1, . . . , xm)) + val( f3(x1, . . . , xm))

= val( f3(x1, . . . , xm)) = val( f (x1, . . . , xm)).

If f3(x1, . . . , xm) = f2(x1, . . . , xm), then a symmetric argument to the case
above shows that indeed ∑i∈[m] αixi = f (x1, . . . , xm).

Otherwise, we know that f3(x1, . . . , xm) 6= f2(x1, . . . , xm) and f1(x1, . . . , xm) 6=
f2(x1, . . . , xm). It follows that

f (x1, . . . , xm) = ( f1(x1, . . . , xm), f2(x1, . . . , xm), f3(x1, . . . , xm))
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and we obtain

∑
i∈[m]

αixi = ∑
i∈[m]

α1,ixi − ∑
i∈[m]

α2,ixi + ∑
i∈[m]

α3,ixi

= val( f1(x1, . . . , xm))− val( f2(x1, . . . , xm)) + val( f3(x1, . . . , xm))

= val( ( f1(x1, . . . , xm), f2(x1, . . . , xm), f3(x1, . . . , xm)) )

= val( f (x1, . . . , xm)),

concluding the proof of this claim. C

Using the claim we prove Theorem 4.53. Let h : {0, 1}m → {0, 1} be an
m-ary universal partial Maltsev operation that does not preserve Γ. As described
in Section 4.7.1, there exists f ∈ [{u}] such that h = f|B. Let R ∈ Γ be a k-ary
relation such that R is not preserved by h. We show that there exists a balanced
operation g f that does not preserve R. By Claim 4.54 there exist coefficients
α1, . . . , αm ∈ Z such that

∑
i∈[m]

αixi = val( f (x1, . . . , xm))

for all x1, . . . , xm ∈ {0, 1}. Let g f be the balanced operation with coefficients αi.
Since f|B does not preserve R, there are s1, . . . , sm ∈ R such that f|B(s1, . . . , sm)

is well-defined and f|B(s1, . . . , sm) /∈ R. Let si = (si,1, . . . , si,k). Then since
f|B(s1, . . . , sm) is well-defined, it evaluates to a 0/1-tuple and

val( f (s1,j, . . . , sm,j)) = f (s1,j, . . . , sm,j),

for all j ∈ [k]. Since ∑i∈[m] αixi = val( f (x1, . . . , xm)) for all x1, . . . , xm ∈ {0, 1},
it follows that g f violates R. So g f is a balanced operation that does not
preserve Γ, concluding the proof. J

4.7.3 Balanced constraint languages versus finite-domain
Maltsev embeddings

Theorem 4.53 implies [71, Theorem 28] that any balanced constraint language
has a Maltsev embedding over the infinite domain D∞. We show in the next
theorem that in fact, every balanced constraint language allows a Maltsev
embedding over a finite domain. Thus, there are in fact two ways to obtain a
kernel with O(n) constraints for balanced constraint languages, one given by
Theorem 4.26 and one via Maltsev embeddings [70, Theorems 10–11].

I Theorem 4.55 If Γ is a balanced Boolean constraint language, then Γ admits
a Maltsev embedding over a finite domain.
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Proof. Since Γ is balanced, it follows from Claim 4.27 that for every R ∈
Γ and u /∈ R there exists a linear polynomial pu,R and prime power qu,R
such that pu,R captures u with respect to R over Z/qu,RZ. Enumerate the
obtained polynomials arbitrarily as p1, . . . , pm and their corresponding moduli
as q1, . . . , qm. Let D be the Cartesian product of the rings Z/qu,RZ we thus
obtained, such that D = {0, . . . , q1 − 1} × {0, . . . , q2 − 1} × . . .× {0, . . . , qm −
1}. We equate the value (0, . . . , 0) ∈ D with the Boolean 0 and (1, . . . , 1) ∈ D
with the Boolean value 1. Let ϕ : D3 → D be the Maltsev operation given by
ϕ(x, y, z) = w with wi = xi − yi + zi (mod qi) for all i ∈ [m], for x, y, z ∈ D.

We now define a constraint language Γ′ over D such that Γ′ is preserved
by ϕ. For any k-ary relation R ∈ Γ, we show how to define a corresponding
k-ary relation R′ ∈ Γ′. Initialize R′ as R. Then, recursively add any x ∈ Dk

to R′ for which there exist t1, t2, t3 ∈ R′ such that ϕ(t1, t2, t3) = x. This
completes the definition of Γ′. It is easy to verify that Γ′ is preserved by ϕ. To
complete the Maltsev embedding, it remains to show that for all k-ary R ∈ Γ we
have R′ ∩ {0, 1}k = R.

Suppose for contradiction that there exists R ∈ Γ such that R′ ∩ {0, 1}k 6= R,
which implies that there exists x ∈ {0, 1}k such that x ∈ R′ but x /∈ R. From the
construction of R′ it follows by an easy induction that there exist t1, . . . , t` ∈ R
with ta = (ta,1, . . . , ta,k), such that for all entries i ∈ [k] of an assignment and
all coordinates j ∈ [m] of a domain element, we have

xi ≡qj t1,i − t2,i + t3,i − t4,i . . . + t`,i.

Consider the index j ∈ [m] for which pj = px,R. Since px,R is a linear
polynomial, it can be written as px,R(y1, . . . , yk) = α0 + ∑k

i=1 αiyi for coeffi-
cients α0, . . . , αk ∈ Z/qx,RZ. Interpreting this polynomial over the integers, we
have that pj(ta,1, . . . , ta,k) ≡qj 0 for all a ∈ [`], since pj captures x with respect
to R and ta ∈ R. Then

pj(x1, . . . , xk) ≡qj α0 +
k

∑
i=1

αixi ≡qj α0 +
k

∑
i=1

αi(t1,i − t2,i . . . + t`,i)

≡qj α0 +
k

∑
i=1

`

∑
a=1

(−1)a−1αi · ta,i

≡qj α0 +
`

∑
a=1

(−1)a−1
k

∑
i=1

αi · ta,i

≡qj

`

∑
a=1

(−1)a−1

(
α0 +

k

∑
i=1

αi · ta,i

)

≡qj

`

∑
a=1

(−1)a−1 pj(ta,1, . . . , ta,k) ≡qj 0.
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Thereby, px,R(x1, . . . , xk) ≡qx,R 0, contradicting that px,R captures x with respect
to R. This concludes the proof. J

Theorem 4.55 shows that balanced constraint languages have (finite-domain)
Maltsev embeddings. In the next theorem, we prove a partial converse: con-
straint languages that are not balanced, do not admit Maltsev embeddings of
a particular type over a (possibly infinite) domain. The particular type we
consider consists of embeddings for which the constraint language Γ′ into which
we embed has a group structure on its domain, and the Maltsev operation that
preserves Γ′ is the coset generating operation of the group. Let us give the
relevant definitions.

Definition 4.56 Let (D, ·) be a group. The coset generating operation of the
group is the Maltsev operation c : D3 → D defined by c(x, y, z) = x · y−1 · z.

I Theorem 4.57 Let Γ be a Boolean constraint language that is not balanced,
and let (D, ·) be a group with coset generating operation c. Then there is no
constraint language Γ′ over domain D ⊇ {0, 1} that is preserved by c and for
which Γ admits an embedding over Γ′, not even if the identity element of (D, ·) is
allowed to differ from {0, 1}.

Proof. Suppose for contradiction that there exists a group (D, ·) with coset
generating operation c and a constraint language Γ′ such that Γ′ is preserved
by c and Γ admits an embedding over Γ′. Let R ∈ Γ be a relation that is not
balanced, suppose R has arity k. Since R is not balanced, take r1, . . . , rm ∈ R
with r1 − r2 . . . + rm = u /∈ R. Let R̂ ∈ Γ′ be the image of R under the
considered Maltsev embedding. We start by proving the following claim.

B Claim 4.58 For all i ∈ [k], the following equation holds over the group (D, ·):

r1,i · r−1
2,i · . . . · rm,i = ui.

Proof. We show by induction that for all x1, . . . , xm ∈ {0, 1} with x1 − x2 . . . +
xm = y for y ∈ {0, 1}, it holds that x1 · x−1

2 · . . . · xm = y over D.

(Base case) If m = 1, we trivially obtain that x1 = y.

(Step) Suppose m > 1. We start by showing that there exists j ∈ [m− 1] such
that xj = xj+1. Suppose not, then we are in one of the two cases below.

• x1 = x3 = . . . = xm = 0 and x2 = x4 = . . . = xm−1 = 1, or

• x1 = x3 = . . . = xm = 1 and x2 = x4 = . . . = xm−1 = 0.

In both cases it is easily verified that for this choice of variables, x1 − x2 . . . +
xm /∈ {0, 1}, which is a contradiction. Therefore, there exists j ∈ [m− 1] such
that xj = xj+1. Suppose for ease of notation that j is even, the case when j is
odd follows symmetrically. It is easy to verify that y = x1− x2 . . . + xj−1− xj +
xj+1 − xj+2 . . . + xm = x1 − x2 . . . + xj−1 − xj+2 . . . + xm, and thus it follows
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from the induction hypothesis that x1 · x−1
2 · . . . · xj−1 · x−1

j+2 · . . . · xm = y.
Thereby

x1 · x−1
2 · . . . · xj−1 · x−1

j · xj+1 · x−1
j+2 · . . . · xm =

x1 · x−1
2 · . . . · xj−1 · (x−1

j · xj) · x−1
j+2 · . . . · xm =

x1 · x−1
2 · . . . · xj−1 · x−1

j+2 · . . . · xm−2 = y.

Since r1, . . . , rm were chosen such that r1 − r2 . . . + rm = u ∈ {0, 1}k \ R, the
statement of the claim follows. C

Recall that R̂ is preserved by c. We have the following claim.

B Claim 4.59 Let R̂ be a k-ary relation and m ≥ 3 be odd. If R̂ is pre-
served by c, then it is preserved by the m-ary operation fm : Dm → D given
by fm(x1, . . . , xm) := x1 · x−1

2 · . . . · xm.

Proof. We show this by a simple induction. If m = 3, the statement is true since
in this case f and c are equivalent. Let m > 3 and let t1, . . . , tm ∈ R̂ be given,
we show f (t1, . . . , tm) ∈ R̂. Let t′ := c(t1, t2, t3), observe that t′ ∈ R̂ since R̂ is
preserved by c. Choose i ∈ [k] and observe that

fm(t1,i, . . . , tm,i) = t1,i · t−1
2,i · t3,i · t−1

4,i · . . . · tm,i

= c(t1,i, t2,i, t3,i) · t−1
4,i · . . . · tm,i

= t′ · t−1
4,i · . . . · tm,i.

Thereby, fm(t1, . . . , tm) = fm−2(t′, t4, . . . , tm). It follows from the induction
hypothesis that fm−2 is preserved by R̂ and thus fm−2(t′, t4, . . . , tm) ∈ R̂. C

It follows from the fact that c preserves R̂ and Claim 4.59, that fm preserves
R̂. However, by Claim 4.58, it follows that fm(r1, . . . , rm) = u and thus
u ∈ R̂, contradicting that we have given a valid Maltsev embedding of Γ, since
u ∈ {0, 1}k, but u /∈ R. J

We conclude the subsection with a discussion of the implications of The-
orems 4.55 and 4.57. On the one hand, Theorem 4.55 shows that balanced
constraint languages admit Maltsev embeddings over finite domains. On the
other hand, Theorem 4.57 shows that unbalanced constraint languages do not
allow Maltsev embeddings over the coset generating operation of a group, not
even an infinite group. As a corollary to these results, we therefore obtain
an infinite-domain to finite-domain transformation, for embeddings via coset
generating operations.
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I Corollary 4.60 If Γ is a Boolean constraint language that has a Maltsev em-
bedding over Γ′, where the domain D of Γ′ is a (possibly infinite) group and Γ′

is preserved by the coset generating operation of the group, then Γ has a Maltsev
embedding over a finite domain. J

4.7.4 Preservation by balanced or universal partial Maltsev
operations

In this section we compare preservation by balanced operations to preserva-
tion by universal partial Maltsev operations. Theorem 4.53 implies that every
balanced constraint language is preserved by all universal partial Maltsev op-
erations. At this point, it is unknown whether the converse also holds. If the
Boolean constraint language Γ is preserved by all universal partial Maltsev
operations, then is it also balanced?

We have not managed to resolve this question, but we present some insights
in this direction. Recall that ai is the alternating (partial) operation of arity i, for
odd i ≥ 1. It is easy to verify that a3 is equivalent to u|B. We show the following
result about a5.

I Theorem 4.61 Let Γ be a Boolean constraint language. If Γ is not preserved by
a5, then there is a universal partial Maltsev operation that does not preserve Γ.

Proof. We start by considering the term f ∈ [{u}] defined as follows:

f (x1, . . . , x5) := u(x1, u(x2, x3, u(x1, x2, x3)), u(x5, x4, u(x3, x2, x1))).

The key of the proof is that the Boolean restriction f|B of f does not preserve Γ.
We start by showing how f relates to the alternating operation of arity 5.

B Claim 4.62 For all x1, . . . , x5 ∈ {0, 1} such that a5(x1, . . . , x5) ∈ {0, 1}, it
holds that

f (x1, . . . , x5) = a5(x1, . . . , x5).

Proof. Suppose a5(x1, . . . , x5) ∈ {0, 1}, we do a case distinction.

(u(x5,x4,u(x3,x2,x1)) ∈ {0, 1}) Observe that in particular, this implies
that u(x3, x2, x1) ∈ {0, 1}, implying that x3 = x2 or x1 = x2. If x3 = x2,
we obtain that u(x2, x3, u(x1, x2, x3)) = u(x3, x3, u(x1, x3, x3)) = x1, imply-
ing that f (x1, . . . , x5) = u(x5, x4, u(x3, x2, x1)) and since u(a, b, c) = a −
b + c if u(a, b, c) ∈ {0, 1}, the result follows. Similarly, if x1 = x2, then
u(x2, x3, u(x1, x2, x3)) = u(x1, x3, u(x1, x1, x3)) = x1. Just like in the previous
case, this implies f (x1, . . . , x5) = u(x5, x4, u(x3, x2, x1)) and the result follows.

(u(x5,x4,u(x3,x2,x1)) /∈ {0, 1}) We again consider two options, based on
whether u(x3, x2, x1) is in {0, 1} or not. Observe that if u(x3, x2, x1) ∈ {0, 1},
the reason that u(x5, x4, u(x3, x2, x1)) /∈ {0, 1} is that x5 = u(x3, x2, x1) and
x5 6= x4. But then by definition, x5 = x3− x2 + x1 and thus if x5 = 1, then x4 =
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0 and we obtain x5 − x4 + x3 − x2 + x1 = 2 /∈ {0, 1}, which is a contradiction.
Similarly, if x5 = 0 we obtain that x5− x4 + x3− x2 + x1 = −1 /∈ {0, 1}, which
is again a contradiction. We thereby conclude that u(x3, x2, x1) /∈ {0, 1}.
By definition, this implies x3 = x1 6= x2. It follows that x4 6= x5 to ensure
that a5(x1, . . . , x5) = x5 − x4 + x3 − x2 + x1 ∈ {0, 1}. Furthermore, observe
that x4 = x3 for this same reason. Thus, x1 = x3 = x4 6= x2 = x5. If follows
that a5(x1, . . . , x5) = x1. Furthermore, substituting this into the formula shows
that u(x5, x4, u(x3, x2, x1)) = u(x2, x1, u(x1, x2, x1)) = (x2, x1, (x1, x2, x1)) =
u(x2, x3, u(x1, x2, x3)), implying that f (x1, . . . , x5) = x1, as desired. C

Now let Γ be a constraint language that is not preserved by a5. It follows from
Claim 4.62 that for any (x1, . . . , x5) ∈ domain(a5), it holds that a5(x1, . . . , x5) =
f (x1, . . . , x5) and (x1, . . . , x5) ∈ domain( f|B). It follows that Γ is not preserved
by f|B, which is a universal partial Maltsev operation [70, Theorem 15]. J

Theorem 4.61, together with the observation that a3 is equivalent to u|B,
have the following consequence. If a constraint language Γ is unbalanced
because some alternating operation of arity at most five does not preserve it,
then Γ does not admit a Maltsev embedding, not even over an infinite domain.
We leave it for future work to determine whether there exist Boolean constraint
languages that admit finite-domain Maltsev embeddings, but are not balanced.
Are there constraint languages for which the Maltsev framework yields linear
kernelizations, but the polynomial-based framework does not?

4.7.5 Preservation by partial Maltsev operations versus
cone-definability

There is a close relation between cone-definability of 2-OR and preserving the
Boolean operation ϕ1, where ϕ1 is defined by ϕ1(x, x, y) = y, ϕ1(x, y, y) = x,
and domain(ϕ1) = {(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)}.
I Proposition 4.63 Let Γ be a Boolean constraint language. Then Γ is not
preserved by ϕ1 if and only if there exists R ∈ Γ such that R cone-defines 2-OR.

Proof. (⇒) Suppose R ∈ Γ is not preserved by ϕ1. We show that R cone-defines
2-OR. Let m be the arity of R and let t1, t2, t3 ∈ R and u ∈ {0, 1}m \ R such that
ϕ1(t1, t2, t3) = u.

We cone-define the 2-OR relation on variables x1 and x2 via the tuple
(y1, . . . , ym) as follows. Consider i ∈ [m], if t1,i = t2,i = t3,i = ui let y1
have the constant value ui ∈ {0, 1}. If (t1,i, t2,i, t3,i) = (1, 1, 0) let yi := x1, if
(t1,i, t2,i, t3,i) = (0, 0, 1) let yi := ¬x1. Similarly, if (t1,i, t2,i, t3,i) = (0, 1, 1) let
yi := x2, if (t1,i, t2,i, t3,i) = (1, 0, 0) let yi := ¬x2. Note that this covers all cases
for the value of (t1,i, t2,i, t3,i).

Let f : {x1, x2} → {0, 1}. We show that f (x1) ∨ f (x2) if and only if ( f̂ (y1),
. . . , f̂ (ym)) ∈ R, with f̂ as in Definition 4.7. We do a case distinction. If
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f (x1) = 1 and f (x2) = 1, then one may verify that ( f̂ (y1), . . . , f̂ (ym)) = t2 ∈ R.
If f (x1) = 0 and f (x2) = 1, then ( f̂ (y1), . . . , f̂ (ym)) = t3. If f (x2) = 0 and
f (x1) = 1, then ( f̂ (y1), . . . , f̂ (ym)) = t1 ∈ R. Finally, if f (x1) = f (x2) = 0,
then ( f̂ (y1), . . . , f̂ (ym)) = u /∈ R, as desired.

To complete the cone-definition, it remains to show that there are i, j ∈ [m]
such that yi ∈ {x1,¬x1} and yj ∈ {x2,¬x2}. Now observe that t1 6= t2 6= t3:
if t1 = t2 then by definition of ϕ1 we have ϕ1(t1, t2, t3) = t3 ∈ R, and similarly
if t2 = t3 then ϕ1(t1, t2, t3) = t1 ∈ R. Since ϕ1(t1, t2, t3) /∈ R, this cannot
be. If t1 = t3 6= t2, then consider a coordinate k ∈ [m] for which t1,k =
t3,k 6= t2,k; but then ϕ1 is not defined on this coordinate. Consequently, all
three tuples t1, t2, t3 are distinct. Now, since the argumentation above shows
that ( f̂ (y1), . . . , f̂ (ym)) can evaluate to each of t1, t2, t3, depending on the
values assigned to x1 and x2, it follows that f̂ depends on both x1 and x2 which
implies the existence of the desired positions i, j ∈ [m].

(⇐) Suppose there exists R ∈ Γ of some arity m that cone-defines 2-OR. Let
(y1, . . . , ym) be the tuple witnessing this, with yi ∈ {0, 1} ∪ {x1,¬x1, x2,¬x2}.
Define f : {x1, x2} → {0, 1} as f (x1) = 0 and f (x2) = 1. Let t1 := ( f̂ (y1),
. . . , f̂ (ym)) ∈ R where f̂ is the natural extension of f . Similarly, for f ′(x1) =

f ′(x2) = 1 let t2 := ( f̂ ′(y1), . . . , f̂ ′(ym)) and for f ′′(x1) = 1, f ′′(x2) = 0
let t3 := ( ˆf ′′(y1), . . . , ˆf ′′(ym)). Finally, let u be the tuple witnessing that for
f ′′′(x1) = f ′′′(x2) = 0, ( ˆf ′′′(y1), . . . , ˆf ′′′(ym)) = u /∈ R. We will show that
ϕ1(t1, t2, t3) = u, thus showing that ϕ1 does not preserve R.

We show that ui = t1,i − t2,i + t3,i for each i ∈ [m]. Suppose yi = 0,
then by the definition above t1,i = t2,i = t3,i = ui = 0 as f̂ (yi) = 0 for any
f : {x1, x2} → {0, 1}. Thus, ui = t1,i − t2,i + t3,i in this case. Similarly, if yi = 1
we obtain ui = 1 = t1,i − t2,i + t3,i.

Suppose yi = x1. Then by the definition above, t1,i = 0 and t2,i = t3,i = 1.
Furthermore, ui = 0 = 1− 1 + 0 as desired. For yi = ¬x1, we have t1,i = 1
and t2,i = t3,i = 0 and ui = 1, as desired. It is straightforward to verify that
also when yi = x2 and yi = ¬x2 we obtain ui = t1,i − t2,i + t3,i, concluding the
proof. J

In their work, [71, Theorem 32] Lagerkvist and Wahlström show the follow-
ing. For every integer d ≥ 3 and for every finite set P of partial polymorphisms
for which the set of Boolean relations preserved by P can pp-define all Boolean
relations, there is a polynomial-parameter transformation [16,18] from d-CNF-
SAT instances with n variables, to equivalent instances of CSP(Γ) on O(nc)
variables. Here c ∈ N depends only on P and Γ is a finite Boolean constraint
language whose relations are preserved by all operations in P. Assuming
NP * coNP/poly, Theorem 2.9 states that the problem d-CNF-SAT has no kernel
of bitsize O(nd−ε) for any ε > 0. Via the cited transformation, this implies
CSP(Γ) has no sparsification of bitsize O(nd/c−ε). Hence knowing that the
constraint language is preserved by any finite set of partial polymorphisms
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does not guarantee any polynomial compressibility. Note that any constraint
language that can cone-define k-OR for some k ≥ 2 can also cone-define 2-OR,
while Proposition 4.63 shows that being able to cone-define 2-OR is equivalent
to being violated by the partial operation ϕ1. A constraint language preserved
by the single partial polymorphism ϕ1 therefore does not cone-define k-OR for
any k ≥ 2. Using the transformation and incompressibility results mentioned
above, we find (assuming NP * coNP/poly) that for any d′ ∈ R there is a finite
Boolean constraint language Γd′ that does not cone-define 2-OR or larger, but
for which CSP(Γd′) does not have a sparsification of bitsize O(nd′). A gen-
eral characterization of optimal sparsification size by the arity of the largest
cone-definable OR is therefore impossible.

4.8 Conclusion
The ultimate goal of this line of research is to fully classify the sparsifiability
of CSP(Γ), depending on Γ. In particular, we would like to classify those Γ for
which O(n) sparsifiability is possible. In this chapter, we have shown that Γ be-
ing balanced is a sufficient condition to obtain a linear sparsification; it is tempt-
ing to conjecture that this condition is also necessary. The simplest example of a
Boolean constraint language for which we currently do not understand whether
or not it has a linear sparsification, consists of a single Boolean relation R∗ of
arity nine. Relation R∗ has five satisfying assignments s1, . . . , s5 ∈ {0, 1}9:

R∗ =


s1 = (1, 0, 0, 1, 1, 1, 0, 0, 1),
s2 = (0, 0, 0, 0, 1, 0, 0, 1, 1),
s3 = (0, 1, 0, 1, 1, 0, 1, 1, 0),
s4 = (0, 0, 0, 1, 0, 1, 1, 0, 0),
s5 = (0, 0, 1, 0, 0, 1, 1, 1, 1)


Relation R∗ is not balanced, since

s1 − s2 + s3 − s4 + s5 = (1, 1, 1, 1, 1, 1, 1, 1, 1) /∈ R∗.

By Theorem 4.61, it follows that R∗ is violated by some universal partial Maltsev
operation. Hence neither our polynomial framework for compression, nor
the Maltsev-based approach yields a linear sparsification for CSP({R∗}). On
the other hand, no superlinear lower bound is currently known. Resolving
the sparsification complexity of CSP({R∗}) is the first obstacle in a general
classification of linearly-compressible Boolean CSPs.

Note that the matrix consisting of the five satisfying assignments of R∗ has
a very succinct description: there is one column for each vector x ∈ {0, 1}5

for which x1 − x2 + x3 − x4 + x5 = 1, except for the all-ones column. The
presence of these columns ensures that ϕ1 preserves R∗, for the simple reason
that ϕ1(si, sj , sk) for i, j, k ∈ [5] is only defined when i = j or j = k, in which
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case the output tuple equals one of the input tuples. In other cases, there is
an index ` for which si,` − sj,` + sk,` ∈ {−1, 2}, making the output undefined.
Hence, using Proposition 4.63, relation R∗ does not cone-define 2-OR.

Observe that CSP({R∗}) is NP-complete by Schaefer’s dichotomy theorem
(Theorem 2.37): R∗ does not have the constantly-1 operation as a polymor-
phism, nor the constantly-0 operation; the tuples s1, s2 show that R∗ is not
preserved by the binary AND operation, nor by the binary OR operation; and
the tuples s1, s2, s3 show that R∗ is not preserved by the ternary majority or
minority operations.

Resolving the sparsification complexity of CSP({R∗}), and subsequently
obtaining a complete characterization of the Boolean CSPs that admit a lin-
ear compression, form the main open problems that remain. Other directions
include the investigation of constraint languages of larger arity and the charac-
terization of the CSPs that admit sparsifications with a quadratic, or even larger
polynomial number, of constraints.

Acknowledgements We would like to thank Emil Jeřábek for the proof of
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Chapter 5
Sparsification Lower Bounds for

H-Coloring

In this chapter, we will provide a sparsification lower bound for the H-COLORING

problem, showing that for a large class of graphs H, it does not have a non-
trivial sparsification unless NP ⊆ coNP/poly. This adds to the growing list of
problems for which the existence of non-trivial sparsification algorithms has
been ruled out under the assumption that NP * coNP/poly, which includes
VERTEX COVER [33], DOMINATING SET [59], FEEDBACK ARC SET [59], and
TREEWIDTH [56]. To the best of our knowledge, to date there is no non-trivial
sparsification algorithm for any NP-hard problem that is defined on general
graphs. This chapter adds another problem to this growing list of graph problems
not admitting a non-trivial sparsification.

A second motivation for studying H-COLORING, is its relation to constraint
satisfaction problems, as described in detail in Section 2.8. In short, any NP-
hard H-COLORING problem translates into a CSP with a non-Boolean domain
in which constraints have arity two. There have been a number of non-trivial
advances in the sparsification for CSPs in over the Boolean domain, as can be
seen from Chapters 3 and 4 in this thesis, and from recent work by Lagerkvist
and Wahlström [70]. A natural step in that line of research is to consider CSPs
over larger domain sizes, of which H-COLORING problems are an example.

Finally, the lower bound for H-COLORING provided in this chapter general-
izes earlier results on sparsification of q-COLORING problems [60].
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Related work It is well-known that H-COLORING is NP-hard if H is non-
bipartite and contains no self-loops [49], and polynomial-time solvable other-
wise. The classical complexity of H-COLORING has also been investigated when
restricted to planar [76], minor-closed [36], and bounded-degree [43,84] input
graphs G.

Overview We start by showing that when H corresponds to Cα for some odd
value for α, the H-COLORING problem has no non-trivial sparsification unless
NP ⊆ coNP/poly, in Section 5.1. This will be shown by giving a degree-2 cross-
composition from CLIQUE to Cα-COLORING. Recall that Cα is a the cycle on α
vertices.

In Section 5.2 we provide some additional preliminaries. In the remain-
der of this chapter (Section 5.3), we transfer the lower bound thus shown for
Cα-COLORING to other choices for the graph H, using linear-parameter transfor-
mations. In particular, we will show the lower bound holds in case H contains a
triangle, and in case H has odd-girth α > 3 and no edge in H is contained in
two different Cα-subgraphs.

To obtain a linear-parameter transformation, we cannot easily re-use the
techniques that were used in the NP-completeness proofs for H-COLORING

when H is nonbipartite. In particular, the constructions used by Hell and
Nešeťril introduce gadgets for every edge in the graph, which is not allowed in
a linear-parameter transformation. For the same reasons, alternative proofs for
the H-COLORING dichotomy cannot be used in our setting. Instead, we show
that if H satisfies the relevant preconditions, then there is a subset B of the
vertices of H, such that H[B] is homomorphically equivalent to an odd cycle
and furthermore, there exists a reduction from Cα-COLORING to H-COLORING

that attaches a constant-size gadget to every vertex, forcing it to be colored
with a color in B. Hence an H-coloring satisfying the constraints enforced by
these gadgets only uses the vertices of a cycle in H to color G, and is therefore
a Cα-coloring

5.1 Sparsification lower bound for Cα-Coloring
In this section, we will prove a sparsification lower bound for Cα-COLORING.
We show that Cα-COLORING on n vertices has no (generalized) kernel of size
O(n2−ε) for any ε > 0 and odd α ≥ 3, unless NP ⊆ coNP/poly. We will do
this by giving a degree-2 cross-composition from CLIQUE to Cα-COLORING, as in
Definition 2.13. An input to the decision problem CLIQUE consists of a graph G
and integer k, and asks whether G has a clique on k vertices.

For ease of presentation, we will first prove the lower bound for Cα-LIST

COLORING instead of Cα-COLORING. The input to Cα-LIST COLORING is a graph G
together with a function L that assigns each vertex v of G a list L(v) ⊆ V(Cα).
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γ1 γ2

α − 3 vertices



α ≥ 5 α = 5

γ1 γ2

α = 3

γ1 γ2

Figure 5.1 The gadget ineq-gadget for Lemma 5.1, depicted for α ≥ 5 (left), α = 5
(middle) and α = 3 (right).

The question is whether there is a homomorphism from G to Cα that maps each
vertex v to a color on its list L(v). We will show later that this construction will
also imply the sparsification bound for Cα-COLORING.

Before presenting the cross-composition, we need the following additional
lemmas.

I Lemma 5.1 For all odd α ≥ 3, there exists a Cα-COLORING instance with O(α)
vertices called ineq-gadget that has distinguished vertices γ1, γ2, such that any
mapping f : {γ1, γ2} → V(Cα) can be extended to a Cα-coloring of the ineq-gadget
if and only if f (γ1) 6= f (γ2).

Proof. A gadget with the desired properties was also developed by Maurer et
al. [79], we will use a simplified version of their gadget.

Define the ineq-gadget as a path on α− 1 vertices. Let the first vertex of the
path be γ1 and let the last vertex be γ2. The gadget is depicted in Figure 5.1.
Observe that for α = 3, the gadget simply consists of the vertices γ1 and γ2,
connected by an edge.

Since the gadget is a path of length α − 2, the colors used on this path
by any Cα-coloring form a walk in Cα of length α − 2. Suppose a mapping
f : {γ1, γ2} → V(Cα) can be extended to a coloring f ′ of the whole gadget. If
now, f (γ1) = f (γ2), the existence of f ′ means that there is a closed walk of
length α− 2 in Cα, implying that there is an odd cycle in Cα of length strictly
smaller than α, which is a contradiction. Thus, f (γ1) 6= f (γ2).

In the other direction, given a Cα-coloring f : {γ1, γ2} for which f (γ1) 6=
f (γ2) we can extend it to a Cα-coloring of the entire gadget by choosing a
length-(α− 2) walk in Cα from f (γ1) to f (γ2). Color the vertices of the path
using the vertices from this walk, in the same order. J

In our construction below, we will use the phrase connect u to v with an
ineq-gadget to mean the following: create a new ineq-gadget and identify u
with γ1 and v with γ2. The ineq-gadget can be used to make sure two vertices
of the graph are colored with two distinct colors.

We will now define so-called blocking-gadgetsα, that allow us to forbid a
certain coloring on a set of vertices in a Cα-LIST COLORING instance. The
gadget will be based on a gadget for classic graph coloring created by Jaffke and
Jansen [55]. The following lemma is a rephrased version of Lemma 14 in [55].
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I Lemma 5.2 There exists a polynomial-time algorithm that, given a tuple c =
(c1, . . . , cm) ∈ [q]m, outputs a q-LIST COLORING instance called blocking-gadget(c)
that is a path of length O(m) and contains distinguished vertices (π1, . . . , πm).
A mapping f : {πi | i ∈ [m]} → [q] can be extended to a q-list coloring of
blocking-gadget(c) if and only if f (πi) = ci for some i ∈ [m]. J

Using this gadget for q-LIST COLORING, we show how to construct a gadget for
Cα-LIST COLORING in the following lemma.

I Lemma 5.3 There is a polynomial-time algorithm that, given c = (c1, . . . , cm) ∈
[V(Cα)]m, outputs a Cα-LIST COLORING instance with O(α · m) vertices called
blocking-gadgetα(c) that contains distinguished vertices (π1, . . . , πm).

A mapping f : {πi | i ∈ [m]} → [V(Cα)] can be extended to a Cα-coloring of
blocking-gadgetα(c) if and only if f (πi) = ci for some i ∈ [m].

Proof. Enumerate the vertices in Cα such that V(Cα) = {1, . . . , α} arbitrarily
and rename the colors in c accordingly. To obtain blocking-gadgetα(c) start
from blocking-gadget(c), with the same lists L(v) for each vertex.

Replace every edge in blocking-gadget(c) by an ineq-gadget as follows. If
{u, v} is an edge in blocking-gadget(c), remove it and add a new ineq-gadget
with distinguished vertices γ1 and γ2. Identify vertex γ1 with u and γ2 with v.
This concludes the construction of blocking-gadgetα(c).

Since blocking-gadget(c) is a path, it only has O(m) edges and vertices.
Thereby, blocking-gadgetα(c) has at most O(αm) vertices.

One can now verify that by the properties of the ineq-gadget given in
Lemma 5.1 and the properties of a blocking-gadget given in Lemma 5.2, it
follows that a coloring f of π1, . . . , πm can only be extended to a Cα-coloring of
blocking-gadgetα(c) if there exists i ∈ [m] such that f (πi) = ci. J

We will use the above lemma when we want to forbid one particular col-
oring c1, . . . , cm ∈ V(Cα) from appearing on a particular sequence of vertices
v1, . . . , vm of the graph under construction, without adding further restrictions.
This can now be achieved by adding a blocking-gadgetα((c1, . . . , cm)). Then
for each i ∈ [m], connect πi to vi with an ineq-gadget. This ensures that for
any proper coloring f , it holds that f (vi) 6= f (πi) for all i ∈ [m]. Thereby,
if f (vi) = ci for all i (which we want to forbid), then f (πi) 6= ci for all i
and thus this coloring cannot be extended to properly color all vertices of
blocking-gadgetα(c). If however f (vi) 6= ci for some i, vertex πi can be col-
ored with ci and this coloring can be extended to color blocking-gadgetα(c), as
desired.

Using the gadgets introduced above, we can now prove the sparsification
lower bound for Cα-COLORING.

I Theorem 5.4 Let α ≥ 3 be an odd integer. Cα-COLORING parameterized by the
number of vertices n admits no generalized kernel of size O(n2−ε) for any ε > 0,
unless NP ⊆ coNP/poly.
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Proof. We will start by giving a degree-2 cross-composition from CLIQUE to
Cα-LIST COLORING. We define a polynomial equivalence relation R (Def. 2.12)
on instances of CLIQUE. Let any two instances that ask for a clique that is
larger than their respective number of vertices be equivalent; these are always
no-instances. Let two instances of CLIQUE be equivalent under R, when the
input graphs have same number of vertices and the problems ask for a clique
of the same size. It is easy to verify that R is indeed a polynomial equivalence
relation.

By duplicating one of the inputs multiple times if needed, we can assume
the number of inputs to the cross-composition is a square. Therefore, assume
we are given t instances of CLIQUE, such that t′ :=

√
t is integer and such

that each instance has n vertices and asks for a clique of size k. Enumerate
the given instances as Xi,j for i, j ∈ [t′] and let Gi,j denote the corresponding
graph. Name the vertices in each instance arbitrarily as x1, . . . , xn. We now
create an instance G′ of the Cα-LIST COLORING problem. To do this, we use
the colorset {L, L′, R, R′, C} ⊆ V(Cα). For α ≥ 5 the colors are chosen such
that (L, L′, C, R′, R) forms a (simple, but not necessarily induced) path in Cα.
If α = 3, simply pick three distinct colors L, R, and C and let L′ := R and
R′ := L. Observe that the pairs (L, C), (C, C), and (C, R) have a common
neighbor in {L′, R′}, but that (L, R) does not (this pair has C as a common
neighbor but that is irrelevant to the construction). Refer to Figure 5.2 for a
sketch of G′. We construct a Cα-LIST COLORING instance consisting of a graph G′

and list L(v) ⊆ V(Cα) for each v ∈ V(G′).

1. For each j ∈ [t′], ` ∈ [n], and m ∈ [k] create vertices pj
`,m and qj

`,m. Let

L(qj
`,m) := {L, C} and L(pj

`,m) := {R, C}. Let Qj contain all created vertices

pj
`,m and qj

`,m. Let Q :=
⋃

j∈[t′ ] Qj.

2. Let c := (L, C). For each j ∈ [t′], ` ∈ [n], and m ∈ [k], create a new
blocking-gadgetα(c) and let π1, π2 be its distinguished vertices. Connect π1

to qj
`,m with an ineq-gadget and connect π2 to pj

`,m via an ineq-gadget. This

ensures that any coloring that assigns L to qj
`,m, must assign color R to pj

`,m.

3. For each f ∈ ([k]2 ), each e = (e1, e2) ∈ [n]2, and each i ∈ [t′], create vertices

ri
e, f and si

e, f . Let Si := {ri
(e1,e2), f , si

(e1,e2), f | f ∈ ([k]2 ), (e1, e2) ∈ [n]2}. Note

that Si contains (k
2) vertices for each possible edge e that could exist in an

n-vertex graph (including self-loops). Let S :=
⋃

i∈[t′ ] Si. For every vertex in
S, let its list be {L′, R′}.

The goal of the construction is to ensure that the Cα-LIST COLORING instance
(G′,L) acts as the logical OR of the CLIQUE instances Xi,j, so that G′ has a Cα-
coloring respecting the lists if and only if some input graph Gi,j has a clique
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Figure 5.2 A sketch of G′ for t = 9, k = 3, and n = 4. The only edges drawn are the edges
created in Step 4, for e = (3, 4), i = 2, and j = 1, in case the edge {x3, x4} /∈ E(G2,1).

of size k. The part of G′ constructed so far allows colorings of G′ to encode
the vertex set of a k-clique through its behavior on a set Qj. To find a proper
list coloring of G′ entails highlighting vertices from one of the sets Qj that
correspond to a clique in instance Xi,j for some i ∈ [t′]. The highlighting property

will be enforced by ensuring at least one vertex in each set {qj
`,m | ` ∈ [n]}

receives color L. The index of the vertex that is colored L encodes a vertex in the
clique to which the coloring corresponds. The vertices in Si are used to verify
that the selected vertices form a clique in Gi,j. The next steps add additional
vertices and edges, in order to achieve these properties.

4. For each i, j ∈ [t′], consider instance Xi,j. For all f ∈ ([k]2 ) and e = (e1, e2) ∈
[n]2, connect qj

e1, f1
to ri

e, f , and connect pj
e2, f2

to si
e, f , whenever {xe1 , xe2} /∈
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E(Gi,j). Here f1 < f2 are such that f = { f1, f2}.

The above step uses vertices ri
e, f and si

e, f to ensure that when {xe1 , xe2} is not
an edge in some instance, we cannot select both vertices in a clique for this
instance.

5. Add vertices ai with list {L, C} for all i ∈ [t′], and let A := {ai | i ∈ [t′]}.

6. Similarly, add vertices bj with list {L, C} for all j ∈ [t′] and let B := {bj | j ∈
[t′]}.

7. Let c := (L, . . . , L) be the tuple consisting of t′ copies of color L. Add a
blocking-gadgetα(c) and for all i ∈ [t′] connect the distinguished vertex πi
of blocking-gadgetα(c) to ai. Add another blocking-gadgetα(c) and for all
j ∈ [t′] connect the distinguished vertex πj of this new gadget to bj.

The steps above ensure that there exist vertices ai ∈ A and bj ∈ B that receive
color C. This will indicate that Xi,j is selected. Now we put further constraints
on the coloring of Qi and Sj when they correspond to a selected instance.

8. Add blocking-gadgetsα and ineq-gadgets to ensure that ri
e, f and si

e, f receive
the same color whenever ai has color C, as follows. For all i ∈ [t′], f ∈
([k]2 ), and e ∈ [n]2, for all (c1, c2, c3) ∈ {L, L′, C, R′, R}3 such that c1 = C
and c2 6= c3, add a new blocking-gadgetα(c). Connect ai to π1 with an
ineq-gadget, connect ri

e, f to π2 with an ineq-gadget and connect si
e, f to π3

with an ineq-gadget.

9. Let c := (C, . . . , C) be the tuple consisting of n + 1 copies of color C. For
each j ∈ [t′], and m ∈ [k], add a new blocking-gadgetα(c). Connect πn+1

to bj with an ineq-gadget and for each ` ∈ [n] connect qj
`,m to π` with an

ineq-gadget.

This concludes the construction of G′. We will start by proving a number of
claims about the construction, starting with the “selection property” of the sets
A and B.

B Claim 5.5 Let c be a valid Cα-list coloring of G′. Then there exist i, j ∈ [t′] such
that c(ai) = c(bj) = C.

Proof. Since c is a proper coloring, it properly colors the blocking-gadgetsα
created for sets A (respectively, B) in Step 7 of the construction. By Lemma 5.3,
there exists a vertex πi in the first gadget and a vertex πj in the second gadget
such that c(πi) = c(πj) = L. As a result of the ineq-gadgets added in this step,
c(πi) 6= c(ai) and c(πj) 6= c(bj). Since L(ai) = L(bj) = {L, C}, it follows that
c(bj) = c(ai) = C. C
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We will now show that in any proper Cα-LIST COLORING, there exists a j
such that k vertices in Qj will be selected, meaning they receive color L.

B Claim 5.6 Let c be a valid Cα-list coloring of G′. There exists j ∈ [t′] such
that for all m ∈ [k], the set {qj

`,m | ` ∈ [n]} contains at least one vertex q with
c(q) = L.

Proof. By Claim 5.5, there exists j ∈ [t′] such that c(bj) = C. We show that this
choice for j has the desired property. Suppose for a contradiction that for some
m ∈ [k], for all q ∈ {qj

`,m | ` ∈ [n]} it holds that c(q) = C. Let c := (C, . . . , C)
and consider the blocking-gadgetα(c) added in Step 9 for which for all ` ∈ [n]
vertex π` was connected to qj

`,m with an ineq-gadget and bj was connected
to πn+1 with an ineq-gadget. It follows from Lemma 5.1 that for this gadget
c(πi) 6= C for all i. Using Lemma 5.3, this contradicts that c is a proper coloring
of G′.

Thereby, each set {qj
`,m | ` ∈ [n]} contains at least one vertex q with

c(q) 6= C. Since L(q) = {L, C}, it follows that c(q) = L. C

We continue by proving a claim about the coloring of the set Si, when i is
such that ai received color C.

B Claim 5.7 Let c be a valid Cα-list coloring of G′. There exists i ∈ [t′] such that
for all e ∈ [n]2 and f ∈ ([k]2 ) it holds that c(ri

e, f ) = c(si
e, f ).

Proof. Choose i ∈ [t′] such that c(ai) = C, such a value for i exists by Claim 5.5.
We show that this choice for i has the desired property.

Suppose for contradiction that there exist e ∈ [n]2, f ∈ ([k]2 ) such that
c(ri

e, f ) 6= c(si
e, f ). Let c := (C, c(ri

e, f ), c(si
e, f )). Verify that in Step 8, a blocking-

gadgetα(c) was added and its distinguished vertices π1, π2, and π3 were con-
nected with ineq-gadgets to ai, ri

e, f , and si
e, f , respectively. By Lemma 5.1, it

follows that c(π1) 6= C, c(π2) 6= c(ri
e, f ) and c(π3) 6= c(si

e, f ). But by Lemma 5.3
this contradicts that c properly colors this blocking-gadgetα, which concludes
the proof. C

B Claim 5.8 Let c be a valid Cα-list coloring of G′. Let j ∈ [t′], m ∈ [k], and
` ∈ [n]. Then c(qj

`,m) = L implies that c(pj
`,m) = R.

Proof. Suppose for contradiction that c(qj
`,m) = L but c(pj

`,m) 6= R. Since

L(pj
`,m) = {R, C} this implies that c(pj

`,m) = C. Let c := (L, C). In Step 2, a
blocking-gadgetα(c) was added and its distinguished vertex π1 was connected
to qj

`,m with an ineq-gadget, and similarly π2 was connected to pj
`,m with an

ineq-gadget. By Lemma 5.1 it follows that c(π1) 6= c(qj
`,m) = L and c(π2) 6=
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c(pj
`,m) = C. But by Lemma 5.3 it follows that this coloring cannot be extended

to color the blocking-gadgetα, which contradicts that c is a proper coloring of
G′. C

When G′ is Cα-list-colorable, we need to prove that one of the input instances
has a clique of size k. The following claim will be used to show that we never
select two vertices into this clique if there is no edge between them.

B Claim 5.9 Let c be a valid Cα-list coloring of G′, such that c(ri
e, f ) = c(si

e, f )

for some e = (e1, e2) ∈ [n]2, f = { f1, f2} ∈ ([k]2 ) with f1 < f2, and i ∈ [t′].

If {xe1 , xe2} /∈ E(Gi,j) for some j ∈ [t′], then c(qj
e1, f1

) 6= L or c(qj
e2, f2

) 6= L.

Proof. Let c be a valid coloring. Suppose for contradiction that there exist
i, j ∈ [t′], e = (e1, e2) ∈ [n]2, and f = { f1, f2} ∈ ([k]2 ) such that c(ri

e, f ) = c(si
e, f )

and {xe1 , xe2} /∈ E(Gi,j), and suppose c(qj
e1, f1

) = c(qj
e2, f2

) = L. It follows from

Claim 5.8 that c(pj
e2, f2

) = R.

Since {xe1 , xe2} /∈ E(Gi,j), it holds that {ri
e, f , qj

e1, f1
}, {si

e, f , pj
e2, f2
} ∈ E(G′) by

Step 4 of the construction. Since c(ri
e, f ) = c(si

e, f ) and L(ri
e, f ) = L(si

e, f ) =

{L′, R′} there should exist a single color in {L′, R′} to properly color both
vertices. This is however impossible, since ri

e, f is connected to a vertex with

color L, while si
e, f is already connected to a vertex of color R. Coloring c(ri

e, f ) =

c(si
e, f ) = R′ would not properly color the edge {ri

e, f , qj
e1, f1
} since R′ and L are

not neighbors in Cα, while setting c(ri
e, f ) = c(si

e, f ) = L′ would not properly

color edge {si
e, f , pj

e2, f2
} since L′ and R are not neighbors in Cα (note that in the

case of α = 3, indeed L′ = R and R′ = L). This contradicts that c is a proper
Cα-coloring of G′. C

The structural properties derived so far, lead to the proof of the follow-
ing claim. Combined with Claim 5.11, it will show that the composed in-
stance (G′,L) acts as the logical OR of the CLIQUE inputs.

B Claim 5.10 If some input graph Gi∗ ,j∗ has a clique of size k, then G′ is Cα-list
colorable.

Proof. Take such i∗ and j∗, and let x1, . . . , xn be the vertices of Gi∗ ,j∗ . Pick
I = (i1, . . . , ik) ⊆ [n] such that {xi | i ∈ I} is a clique of size k in Gi∗ ,j∗ , thereby
all indices in I are distinct. We show how to define a proper Cα-list coloring c
of G′.

Let c(ai∗) := c(bj∗) := C. For all i ∈ [t′] with i 6= i∗, let c(ai) := L and for
all j ∈ [t′] with j 6= j∗ let c(bj) := L.
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For all m ∈ [k], let c(qj∗

im ,m) := L and let c(pj∗

im ,m) := R. Color all remaining
vertices in Q with color C.

For all e = (e1, e2) ∈ [n]2 and f = { f1, f2} ∈ ([k]2 ) with f1 < f2, let c(ri∗
e, f ) :=

c(si∗
e, f ) := L′ when vertex ri∗

e, f is connected to vertex qj∗

e1, f1
and c(qj∗

e1, f1
) = L

(note that the color of this vertex is already defined). Otherwise, let c(ri∗
e, f ) :=

c(si∗
e, f ) := R′. For all i ∈ [t′] such that i 6= i∗, let c(ri

e, f ) := L′ and define

c(si
e, f ) := R′.

Before showing how to extend c to properly color the blocking-gadgetsα and
ineq-gadgets, we first show that the coloring defined so far is proper. It is easy
to verify that the defined coloring respects the lists of the vertices. The only
edges to consider are those between a vertex in S and a vertex in Q. There are
two types of edges in the graph.

• Edges of the form {ri
e, f , qj

`,m} for e = (e1, e2) and f = { f1, f2} with f1 < f2.
For this edge to exist, it must hold that ` = e1 and m = f1. If j 6= j∗ this
edge is properly colored since c(qj

`,m) = C and c(ri
e, f ) ∈ {L′, R′}. If i 6= i∗,

this edge is properly colored since c(qj
`,m) ∈ {L, C} and c(ri

e, f ) = L′. So

suppose i = i∗ and j = j∗. By the definition of the coloring, if c(qj
`,m) = L

and this edge exists, it follows that c(ri
e, f ) was defined as L′ and the edge is

properly colored. Otherwise, c(qj
`,m) = C (or the edge does not exist), and

since c(ri
e, f ) ∈ {R

′, L′} the edge is again properly colored.

• Edges of the form {si
e, f , pj

`,m} for e = (e1, e2) and f = { f1, f2} with f1 < f2.
For this edge to exist, it must hold that ` = e2 and m = f2. Suppose j 6= j∗,
then since c(si

e, f ) ∈ {L′, R′} and c(pj
e2, f2

) = C this edge is properly colored.

Similarly, if i 6= i∗ then c(si
e, f ) = R′. Since c(pj

e2, f2
) ∈ {R, C} the edge is

properly colored.

So suppose i = i∗ and j = j∗. If c(pj∗

e2, f2
) = C or c(si∗

e, f ) = R′ it is easy to verify

that this coloring is always proper. So suppose c(pj∗

e2, f2
) = R and c(si∗

e, f ) = L′.

The choice of c(si∗
e, f ) = L′ implies that ri∗

e, f is connected to qj∗

e1, f1
and that

c(qj∗

e1, f1
) = L. The fact that c(pj∗

e2, f2
) = R implies that we defined c(qj∗

e2, f2
) = L.

Note that by definition, f1 6= f2. But c(qj∗

e2, f2
) = c(qj∗

e1, f1
) = L implies that

e1, e2 ∈ I and e1 6= e2 since f1 6= f2. However, the existence of the edges
{ri∗

e, f , qj∗

e1, f1
} and {si∗

e, f , pj∗

e2, f2
} in G′ implies that {xe1 , xe2} /∈ E(Gi∗ ,j∗), which

contradicts that {xi | i ∈ I} is a clique in Gi∗ ,j∗ . Thus we conclude that the
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edge {si
e, f , pj

`,m} is properly colored.

It remains to extend the given coloring to properly color all gadgets. We
will use that whenever vertices π1, . . . , πm of some blocking-gadgetα(c) are
connected only to vertices v1, . . . , vm with ineq-gadgets, it follows that the
coloring of v1, . . . , vm can be extended to color blocking-gadgetα(c) and the
ineq-gadgets connecting them whenever there exists i ∈ [m] such that c(vi) 6= ci.
This follows immediately from Lemmas 5.1 and 5.3. We will show how to color
the gadgets created in each step of the construction.

Consider a blocking-gadgetα(c) added in Step 2, note that in this case
c = (c1, c2) = (L, C). For every j ∈ [t′], ` ∈ [n], and m ∈ [k] we defined that
either c(qj

`,m) = C 6= c1 or c(qj
`,m) = L and c(pj

`,m) = R 6= c2. In both cases, it
is easy to see that this coloring can be extended to the blocking-gadgetα and all
added ineq-gadgets.

It is easy to see that c can be extended to color the two blocking-gadgetsα
and the ineq-gadgets added in Step 7, since we defined c(ai∗) = C 6= L and
c(bj∗) = C 6= L.

Consider a blocking-gadgetα((c1, c2, c3)) added in Step 8, let it be added for
some i ∈ [t′], f ∈ ([k]2 ) and e ∈ [n]2. Note that c1 = C and c2 6= c3. If i 6= i∗,
we defined ai = L 6= c1 and we can extend the coloring to this gadget and the
connecting ineq-gadgets. If i = i∗, we defined c(ri∗

e, f ) = c(si∗
e, f ) and this coloring

can again be extended to all gadgets.
Consider a blocking-gadgetα(c) added in Step 9. Note that c = (C, . . . , C).

If j 6= j∗ we defined c(bj) = L 6= C and the coloring can be extended to the
gadgets. If j = j∗, let this gadget be added for some m ∈ [k]. Then we defined
c(qj∗

im ,m) = L 6= C and again c can be extended to the gadgets.
Thereby, we have shown that c can be extended to a valid Cα-list coloring of

G′, and thus G′ is Cα-list colorable. C

B Claim 5.11 If G′ has a proper Cα-list coloring, then there exist i∗, j∗ ∈ [t′] such
that Gi∗ ,j∗ has a clique of size k.

Proof. Let c be a proper Cα-list coloring of G′. Pick j∗ such that for all m ∈ [k],
the set {qj∗

`,m | ` ∈ [n]} contains at least one vertex of color L, using Claim 5.6.

Choose i∗ such that for all e ∈ [n]2, f ∈ ([k]2 ) it holds that c(ri∗
e, f ) = c(si∗

e, f ), by
Claim 5.7.

For each m ∈ [k], choose exactly one index im such that c(qj∗

im ,m) = L. Note
that such an im exists by the choice of j∗. We define a clique Z in Gi∗ ,j∗ as
follows. Remember V(Gi∗ ,j∗) = x1, . . . , xn.

Z := {xim | m ∈ [k]}.
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We start by verifying that |Z| ≥ k. It is sufficient to show that all im are distinct,
which we prove by showing that there are no ` ∈ [n] and m, m′ ∈ [k] such that
m 6= m′ and c(qj∗

`,m) = c(qj∗

`,m′) = L. This follows immediately from the choice
of i∗ and Claim 5.9, since {x`, x`} /∈ E(Gi∗ ,j∗) because the input graphs have no
self-loops. It follows that |Z| = k. It remains to verify that Z is a clique in Gi∗ ,j∗ .

Suppose for contradiction that there exist distinct vertices x`, x`′ ∈ Z such
that {x`, x`′} /∈ E(Gi∗ ,j∗). Since x`, x`′ ∈ Z, it follows that there exist m, m′ ∈ [k]

with m 6= m′ such that c(qj∗

`,m) = c(qj∗

`′ ,m′) = L.

However, it follows from the choice of i∗ and Claim 5.9 that c(qj∗

`,m) 6= L or

c(qj∗

`′ ,m′) 6= L. This is a contradiction with the definition of Z. It follows that Z
is a clique of size k in Gi∗ ,j∗ and thus Xi∗ ,j∗ is a yes-instance. C

It is easy to see that the construction of G′ can be done in polynomial time.
It follows from Claims 5.10 and 5.11 that G′ is Cα-list colorable if and only if
there exist i, j ∈ [t′] such that Xi,j is a yes-instance. It remains to bound the size
of G′.
B Claim 5.12 The number of vertices of G′ is bounded by O(

√
t · n2k2α).

Proof. We bound the number of vertices of G′. The step of the construction in
which the vertices were added to G′ is indicated.

|V(G′)| ≤ nk
√

t · 2︸ ︷︷ ︸
Step 1

+ nk
√

t · O(α)︸ ︷︷ ︸
Step 2

+ n2k2
√

t · 2︸ ︷︷ ︸
Step 3

+ 2 ·
√

t︸ ︷︷ ︸
Step 5,6

+ 2 · O(α
√

t)︸ ︷︷ ︸
Step 7

+ n2k2
√

t · O(α)︸ ︷︷ ︸
Step 8

+ k
√

t · O(nα)︸ ︷︷ ︸
Step 9

= O(
√

t · n2k2α). C

It follows that we have given a degree-2 cross-composition from CLIQUE to
Cα-LIST COLORING and the sparsification lower bound for Cα-LIST COLORING

follows from Theorem 2.14. To show the bound for Cα-COLORING, we modify G′

to a Cα-COLORING instance, such that we obtain a degree-2 cross-composition
from CLIQUE to Cα-COLORING.

Start from Cα-LIST COLORING instance G′. We show how to construct an
equivalent Cα-COLORING instance G′′. Add a cycle on α vertices to G′. We now
do a case distinction on the value of α.

If α > 3, choose distinguished vertices {L, L′, C, R′, R} from the newly added
cycle such that (L, L′, C, R′, R) is a (not necessarily induced) path in this cycle.
For any v ∈ V(G′), for any c /∈ L(v), connect c (the vertex from the newly
added cycle) to v with an ineq-gadget.

If α = 3, let the three vertices of the newly added cycle be {L, C, R}. For
any v ∈ V(G′), if color C /∈ L(v) connect v to C. If both L′ and R are not
contained in L(v), connect v to vertex R. Finally, if R′ and L are not contained
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(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1)

(3, 1)

(4, 1)

(5, 1)
(5, 2) (5, 3) (5, 4)

Figure 5.3 This figure depicts C2
5 (see Definition 5.13), where C5 is the five-cycle with

vertex set {1, 2, 3, 4, 5}.

in L(v), connect v to L. As such, for C3-coloring, the we have that colors L′ and
R coincide, and that colors R′ and L coincide.

It is easy to see that G′′ is Cα-colorable if and only if G′ is Cα-list colorable.
Furthermore, |V(G′′)| ≤ O(α) · |V(G′)|+ α = O(

√
t · n2k2α2).

We have given a degree-2 cross-composition from CLIQUE to Cα-COLORING.
It now follows from Theorem 2.14 that for odd α ≥ 3, Cα-COLORING parame-
terized by the number of vertices n does not have a generalized kernel of size
O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. J

5.2 Additional preliminaries
In the remainder of this chapter, we will heavily rely on the information given in
Section 2.8. In this section, we provide some additional preliminaries. We will
regularly use the graph Cα, which is defined as the cycle on α vertices. When
doing so, we will label the vertices of Cα with the numbers 1 up to α, such that
V(Cα) := {1, . . . , α} and E(Cα) := {{α, 1}} ∪ {{i, i + 1} | i ∈ [α− 1]}.

We continue by two additional definitions for graphs.

Definition 5.13 (Gk) If G is a graph and k ∈ N+, then Gk is the graph on
vertex set V(G)k where vertices (x1, . . . , xk) and (y1, . . . , yk) are adjacent if
{xi, yi} ∈ E(G) for all i ∈ [k]. Refer to Figure 5.3 for an example.

For k ≥ 1, graph Gk is G-colorable by the mapping f : (x1, . . . , xk) 7→ x1.
Hence Gk ↔ G (recall Definition 2.45).

For an equivalence relation R on a set D, we denote by [u]R the equivalence
class of u ∈ D. We omit the subscript if it is clear from the context.

Definition 5.14 (G/R) Let G be a graph (potentially with self-loops) and let R
be an equivalence relation on the vertices of G. Then G/R is the graph on vertex
set {[v]R | v ∈ V(G)} and edge set {{[u], [v]} | ∃u′ ∈ [u], ∃v′ ∈ [v] : {u′, v′} ∈
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E(G)}.
Observe that even when G is assumed to be simple, G/R may contain

self-loops.
We give a special name for pp-definable relations (Def. 2.40) of arity 1,

which will be of particular interest.

Definition 5.15 Let Γ be a constraint language over domain D. A definable
subdomain of Γ is a subset S of D that is pp-definable over Γ. It is strict if S ( D.

The following corollary is immediate from Theorem 2.42.

I Corollary 5.16 Let Γ be a constraint language over domain D, and let B be
a non-empty subset of D. If B is not a definable subdomain of Γ, then there
is a polymorphism of Γ that is not a polymorphism of B; that is, there exists a
polymorphism f : Dn → D of Γ such that f (b1, . . . , bn) /∈ B for some b1, . . . , bn ∈
B. J

When presenting pp-definitions of relations, for notational convenience
we often take the equivalent viewpoint via positive-primitive formulas in-
volving the relations of Γ and the equality relation (cf. [21, Definition 1]).
Hence R ⊆ Dk is pp-definable over Γ if and only if there is a Boolean for-
mula ψ(x1, . . . , xk) with free variables x1, . . . , xk, built using existential quanti-
fiers, conjunctions, the binary equality relation, and applications of relations
of Γ, such that (x1, . . . , xk) ∈ R if and only if ψ(x1, . . . , xk) holds.

The following two propositions are known and relatively straightforward to
verify; we provide brief explanations for the sake of completeness. Recall that
G∗ is defined as the constraint language that contains the relation F = {(u, v) |
{u, v} ∈ E(G)} and, for each v ∈ V(G) , the arity-1 relation {(v)} (see also
Definition 2.47).

I Proposition 5.17 Let G be a graph, B ⊆ V(G) a definable subdomain of G∗,
and G′ := G[B]. If B′ ⊆ B is a definable subdomain of (G′)∗, then B′ is a definable
subdomain of G∗. J

Proposition 5.17 can be argued in the following way: consider a pp-formula
ψ′B′(x) defining B′ over (G′)∗. Let V be the set of all variables occurring in
ψ′B′(x) (including x). We can define B′ over G∗ by the formula

ψB′(x) := ψ′B′(x) ∧
∧

v∈V
ψB(v),

where ψB(v) is the formula defining B over G∗. It is easy to verify that ψB′(x) is
a pp-formula defining B′ over G∗.

I Proposition 5.18 Let G be a graph, let R be an equivalence relation on V(G)
that is pp-definable in G∗, and let G′ := G/R. If B′ ⊆ V(G′) is a definable
subdomain of (G′)∗, then the pre-image B′′ := {v ∈ V(G) | [v] ∈ B′} is a
definable subdomain of G∗. J
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The key ingredient for the proof of Proposition 5.18 is that for u, v ∈ V(G)
one can pp-define the condition {[u], [v]} ∈ E(G′) over G∗ via ∃u′, ∃v′ : uRu′ ∧
vRv′ ∧ EG(u′, v′). Similarly, for u, v ∈ V(G) one can pp-define [u] = [v] by
∃u′, ∃v′ : u′Ru ∧ v′Rv ∧ u′ = v′. As such, given a pp-definition of B′ over G′,
one may obtain a pp-definition of B′′ over G by applying the above substitutions
to the formula.

5.3 Sparsification lower bounds for H-Coloring
In this section we will prove that several classes of H-COLORING problems do
not have a non-trivial sparsification unless NP ⊆ coNP/poly.

We will start this section by showing that when H is a core (recall Defini-
tion 2.48) and has a definable subdomain B such that H[B] is homomorphically
equivalent to Cα, we can transfer the lower bounds for Cα-COLORING that we
have proven in the previous section, to H-COLORING.

Note that for a graph H that is a core, the only unary operations on V(H)
that preserve the edge relation of H are bijections. Otherwise, such an operation
would provide a homomorphism from H to a proper induced subgraph of H,
contradicting that H is a core. Hence Theorem 2.44 implies the following.

I Lemma 5.19 Let H be a graph that is a core. Then there is a linear-parameter
transformation from CSP(H∗) parameterized by the number of variables, to
CSP(H) (corresponding to H-COLORING) parameterized by the number of vari-
ables. J

The transformation of Lemma 5.19 has a simple graph-theoretic interpre-
tation: an instance of CSP(H∗), which asks whether a given graph G can be
H-colored while respecting fixed colors pre-assigned to a subset of the vertices
of G, is equivalent to the instance of H-COLORING that is obtained from the dis-
joint union G′ of G and H by identifying all vertices precolored with x ∈ V(H)
with the copy of x in G′. Hence the number of variables (vertices) increases by
at most an additive term |V(H)|.

When Γ is a constraint language over domain D and B ⊆ D, we use Γ|B to
denote the constraint language {R|B | R ∈ Γ}, where, for a relation R of arity k,
we define R|B as R ∩ Bk.

I Theorem 5.20 Let Γ be a constraint language over domain D, and let B be a
definable subdomain of Γ. Then there is a linear-parameter transformation from
CSP(Γ|B) to CSP(Γ).

Proof. Fix a set of constraints I over Γ, using variable set V = {v, x1, . . . , xm},
such that ∃x1, . . . , xm : I witnesses the pp-definability (Def. 2.40) of B over Γ.
In other words, I is chosen such that for all d ∈ D, it holds that d ∈ B if and
only if the mapping sending v to d can be extended to a satisfying assignment
of I .
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Given an instance (C, {v1, . . . , vn}) of CSP(Γ|B), the transformation pro-
duces the instance described as follows. For each i ∈ [n], let I(vi, x1

i , . . . , xm
i )

denote the set of constraints in I but with the variables renamed accordingly.
Then, the produced instance has variable set

⋃
i∈[n]{vi, x1

i , . . . , xm
i }, and its con-

straints are the constraints in C along with all of the constraints in the sets
I(vi, x1

i , . . . , xm
i ), over i ∈ [n]. Observe that the new instance’s variable set has

size n(m + 1). The transformation is correct, as a satisfying assignment for
the original instance of CSP(Γ|B) can be extended to a satisfying assignment
for the produced instance due to choice of the instance (I(v, x1, . . . , xm), V)
of CSP(Γ); in the other direction, a satisfying assignment for the produced
instance must map each variable vi to a value in B, due to the same choice,
and hence restricting such an assignment to {v1, . . . , vn} yields a satisfying
assignment for the original instance of CSP(Γ|B). J

Using the results obtained above, we can now show how the lower bound
for Cα-COLORING transfers to H-COLORING, under the right conditions on H.

I Lemma 5.21 Let H be a graph that is a core such that H∗ has a definable
subdomain B ⊆ V(H) satisfying H[B] ↔ Cα for some odd α ≥ 3. Then H-
COLORING parameterized by the number of vertices n does not admit a generalized
kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. By the lower bound for Cα-COLORING of Theorem 5.4, together with
the known fact that linear-parameter transformations transfer generalized ker-
nelization lower bounds (Theorem 2.8), it suffices to give a linear-parameter
transformation from Cα-COLORING to H-COLORING, both parameterized by the
number of vertices. We build it by applying several sub-transformations in
sequence, using the relation to CSPs.

Recall (Definition 2.39) that H∗ is the constraint language over domain V(H)
consisting of the edge relation of H and unary singleton relations forcing a value
to a constant. Hence (H∗)|B (cf. Theorem 5.20) is the constraint language over
domain B consisting of the edge relation of H[B] and constants for b ∈ B, so it
is equivalent to (H[B])∗. Since H[B] ↔ Cα, there is a trivial linear-parameter
transformation from Cα-COLORING to CSP((H[B])∗). Then Theorem 5.20 gives
a linear-parameter transformation from CSP((H[B])∗) to CSP(H∗). Since H is
a core, by Lemma 5.19 there is a linear-parameter transformation from CSP(H∗)
parameterized by the number of variables, to CSP(H) parameterized by the
number of variables (i.e., H-COLORING). Since linear-parameter transformations
compose, this yields a linear-parameter transformation from Cα-COLORING

parameterized by the number of variables to H-COLORING, which concludes the
proof. J

Using Lemma 5.21, the proof of the sparsification lower bound we give
for H-COLORING (Theorem 5.44) essentially reduces to showing that H has
a definable subdomain that induces a subgraph homomorphically equivalent
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to an odd cycle. In Section 5.3.1, we show how this can be done for graphs
in which no edge is contained in two distinct minimum-length odd cycles. In
Section 5.3.2, we obtain such definable subdomains for all graphs that contain a
triangle. This leads to a proof of the main result of this chapter (Theorem 5.44)
in Section 5.3.3.

5.3.1 Defining a subdomain homomorphically equivalent to
an odd cycle

We say a nonbipartite graph G with odd girth α has the no-overlap property if
there is no edge in G that is contained in two distinct Cα subgraphs of G. Here
we consider two subgraphs distinct if their edge-sets are distinct. The main result
of this subsection will be that if a graph G satisfies the no-overlap property, then
G∗ has a definable subdomain B such that G[B] is homomorphically equivalent
to Cα. This will allow us to prove the sparsification lower bound for H-COLORING

when H satisfies the no-overlap property, at the end of this chapter.
The result is obtained by a careful analysis of the structure of graph powers of

odd cycles, resulting in a lemma about projectivity. It generalizes Bulatov’s [21]
results for homomorphisms of powers of triangles into graphs that have no edge
in two triangles, to statements about homomorphisms of powers of Cα into
graphs of odd girth α with the no-overlap property.

We use Ck
α as shorthand for (Cα)k (recall Definition 5.13). We will start by

proving that for all k ≥ 1 and α ≥ 3, adding any edge to Ck
α will reduce the

odd girth of Ck
α, or introduce an edge that lies on two distinct Cα-subgraphs. To

prove this, we start by showing a number of relevant properties of the graphs
Cα and Ck

α.
Given a walk X = (x0, . . . , xk), the walk Y is a subwalk of X there exist

i0 < i1 < . . . < i` ∈ {0, . . . , k} such that Y = (xi0 , xi1 , . . . , xi`). First of all, we
observe for any graph G, every odd closed walk in G, contains an odd closed
subwalk that is an odd cycle. Thus, to show that G has an cycle of odd length at
most m, it is sufficient to show that there is closed walk of odd length at most m.

Observation 5.22 Let G be a simple graph. If G contains a closed walk X of
length α for some odd α ≥ 3, then there exists a closed subwalk Y of X, such that
Y is an odd cycle in G of length at most α.

For a cycle of odd length, there are always two edge-disjoint paths between
any two points on the cycle. It is easy to observe that one of these paths must
have an even length. From this, we have the following observation.

Observation 5.23 Let α ≥ 3 be odd and let x, y ∈ V(Cα), not necessarily distinct.
There exists a walk from x to y in Cα of length exactly α− 1.

The following lemma is the key ingredient in the proof of Lemma 5.25.

I Lemma 5.24 Let α ≥ 3 be odd and k ≥ 1. Let x, y ∈ V(Ck
α), not necessarily

distinct, with {x, y} /∈ E(Ck
α). There are two distinct walks of length α− 1 from x
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y

x

y

x

x′
x′′ x′′

A B

x′

Figure 5.4 Example of two distinct walks of length α− 1 from x to y with k = 1 and
α = 7.

to y in Ck
α.

Proof. We will prove the result by induction on k. For k = 1, it is easy to verify
that there is a simple path P from x to y of even length m, with m < α− 1.
Observe that m = 0 is allowed. We use this path P to define the two desired
walks A and B of length α− 1. Let x′, x′′ ∈ V(Cα) be the two neighbors of x in
Cα, implying x′ 6= x′′. Define

A = (x, x′, x, x′, . . . , x, x′︸ ︷︷ ︸
α−1−m vertices

, P)

and define
B = (x, x′′, x, x′′, . . . , x, x′′︸ ︷︷ ︸

α−1−m vertices

, P).

See Figure 5.4 for an example of the paths defined above.
It can be verified that A and B are two walks from x to y of length α− 1.

They are distinct since P has length at most α− 3, and thus the second vertex
visited by A is x′ and the second vertex visited by B is x′′, and x′ 6= x′′. This
concludes the base case.

Let k > 1 and suppose the statement holds for all smaller values of k. For
i ∈ [k], let x(i) := (x1, . . . , xi−1, xi+1, . . . , xk) be the vector x with coordinate
i removed. Define y(i) accordingly. Choose i ∈ [k] such that {x(i), y(i)} /∈
E(Ck−1

α ), which exists since {x, y} /∈ E(Ck
α). For ease of notation, we from

now on assume i = k. By the induction hypothesis, there are two distinct
walks from x(k) to y(k) in Ck−1

α of length α− 1, let these be A′ and B′. Let
A′ = (a1

′, . . . , a′α) and let B′ = (b1
′, . . . , b′α), where x(k) = a1

′ = b1
′ and

y(k) = a′α = b′α. Furthermore, let S = (xk = s1, s2, . . . , sα−1, sα = yk) be
a walk from xk to yk in Cα of length exactly α − 1. Such a walk exists by
Observation 5.23.

We define walks A := (a1, . . . , aα) and B := (b1, . . . , bα) in Ck
α as follows;

see Figure 5.5 for a sketch. Let ai := (a′i,1, . . . , a′i,k−1, si), and define bi :=
(bi,1, . . . , bi,k−1, si) for i ∈ [α]. Since A′ and B′ are distinct walks, it is easy to
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xk = s1 = s3

yk = s7

s2 = s4

S
s5

s6

x = (a1, s1)

y = (a7, s7)

(b6, s6)(a6, s6)
(b5, s5)

(b4, s4)

(b3, s3)
(b2, s2)(a2, s2)

(a3, s3)

(a4, s4)

(a5, s5)

Figure 5.5 (left) Walk of even length from xk to yk in Cα. (right) Two distinct closed
walks of length α = 7 containing the edge {x, y}.

verify that A and B are distinct walks. Since A′ and B′ are walks in Ck−1
α from

x(k) to y(k) and S is a walk in Cα from xk to yk, it follows that A and B are
indeed walks from x to y in Ck

α of length α− 1. J

We can now show that adding an edge to Ck
α will decrease the odd girth of

Ck
α, or introduce an edge that lies in two distinct Cα subgraphs (such that the

no-overlap property no longer holds).

I Lemma 5.25 Let α ≥ 3 be odd and k ≥ 1. Let x, y ∈ V(Ck
α) be two distinct

vertices, such that {x, y} /∈ E(Ck
α). Let G be the graph obtained by adding edge

{x, y} to Ck
α. Then

• The odd girth of G is smaller than α, or

• G contains an edge that is contained in at least two cycles of length α.

Proof. It follows directly from Lemma 5.24 that the edge {x, y} lies on two
distinct closed walks A and B of length α in G. If one of A and B is not a cycle,
it follows from Observation 5.22 that the odd girth of G is smaller than α. If
both A and B are cycles, then it immediately follows that G contains an edge
that lies on two distinct cycles of length α. J

Using this result, we will prove that if G has the no-overlap property, then it
has a definable subdomain isomorphic to Ck

α. We need the following additional
lemmas and definitions, following Bulatov’s notation [21].

Definition 5.26 (ker) For a function f : S→ T, define

ker( f ) := {(s, s′) | s, s′ ∈ S ∧ f (s) = f (s′)}.

Hence ker( f ) is the equivalence relation pairing up all elements with the
same image under f , represented as a set of pairs.

Definition 5.27 (πI) For a domain D, integer k ≥ 1, and index set I =
{i1, . . . , i|I|} ⊆ [k] with i1 < . . . < i|I|, we use πI to denote the function
that projects any tuple x = (x1, . . . , xk) ∈ Dk onto index set I, so that πI(x) :=
(xi1 , . . . , xi|I|).
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Observe that by this definition, ker(πI) = {(x, y) | xi = yi for all i ∈ I}.
I Proposition 5.28 Let α ≥ 3 be odd. For all vertices b0, bα ∈ V(Cα) there exist
walks

(b0, b1, . . . , bα−1, bα) and (b0 = b′0, b′1, . . . , b′α−1, b′α = bα)

of length α in Cα such that b1 6= b′1, and if b0 6= bα then bα−1 = b′α−1.

Proof. Assume without loss of generality that b0 = 1. In case that b0 = bα, the
walks (1, 2, 3, . . . , α, 1) and (1, α, α− 1, . . . , 2, 1) suffice.

Assume b0 6= bα. Let P = (p1, . . . , pm) be a path of odd length from b0 to
bα. Observe that such a path exists and has length at most α− 2, as b0 6= bα.
Let b1 and b′1 be the neighbors of b0. Consider the walks given by (b0, b′1, P)
and (b0, b1, P), pad both paths with repetitions of (pm−1, pm) as needed such
that they have length exactly α. It is easy to see that these walks satisfy the
requirements. J

For x = (x1, . . . , xk−1) ∈ V(Ck−1
α ) and c ∈ V(Cα), let (x, c) denote the tuple

formed by (x1, . . . , xk−1, c); note that such a tuple represents a vertex in Ck
α. We

sometimes omit the brackets for readability.

I Lemma 5.29 Let G be a nonbipartite graph with odd girth α that has the
no-overlap property. Let ϕ : V(Ck

α)→ V(G) be a homomorphism for some k ≥ 2.
If there exist x, y ∈ V(Ck−1

α ) and c, d ∈ V(Cα) such that ϕ(x, c) = ϕ(y, d) and
c 6= d, then

ker(π[k]\{k}) ⊆ ker(ϕ),

that is, ϕ(x′) = ϕ(y′) for all x′, y′ ∈ V(Ck
α) that agree on the first k− 1 coordi-

nates.

Proof. Let ϕ : V(Ck
α)→ V(G) be a homomorphism. We start with the following

claim.

B Claim 5.30 Let ((x0, a0), . . . , (xα, aα)) be a walk in Ck
α such that a0 6= aα,

ϕ(x0, a0) = ϕ(xα, aα), and xi ∈ V(Ck−1
α ) for all 0 ≤ i ≤ α. Let b1, b′1 be the

neighbors of a0 in Cα. Then

ϕ(x1, b1) = ϕ(x1, b′1).

Proof. Use Proposition 5.28 to obtain walks (a0 = b0, b1, . . . , bα = aα) and
(a0 = b′0, b′1, . . . , b′α = aα) in Cα such that bα−1 = b′α−1. Consider the following
walks in Ck

α:

W := ((x0, b0), . . . , (xα, bα)), and W ′ = ((x0, b′0), . . . , (xα, b′α)).

The images of W and W ′ under ϕ form walks of length α in G. Let these images
be Y and Y′ respectively. Observe that Y and Y′ are closed walks in G, by the
assumption that ϕ(x0, a0) = ϕ(xα, aα). Since the odd girth of G is α, it follows
using Observation 5.22 that Y and Y′ must be cycles in G.



5

5.3 Sparsification lower bounds for H-Coloring 123

Since bα−1 = b′α−1, the last edge of walks W and W ′ is the same. Thereby,
the same holds for Y and Y′, such that Y and Y′ are cycles of length α in
G that share an edge. It follows from the fact that G has the no-overlap
property, that thereby Y = Y′. Hence ϕ(xi, bi) = ϕ(xi, b′i) for all 0 ≤ i ≤ α,
implying ϕ(x1, b1) = ϕ(x1, b′1). C

We will prove that there exists a (k− 1)-tuple y0 ∈ V(Ck−1
α ) such that for

all a, a′ ∈ V(Cα) it holds that ϕ(y0, a) = ϕ(y0, a′). Towards achieving this, we
prove the following claim.

B Claim 5.31 Suppose that x0 ∈ V(Ck−1
α ), that b, b′ ∈ V(Cα) are distinct vertices

that have a common neighbor a in Cα, and that ϕ(x0, b) = ϕ(x0, b′). Suppose
further that x1 ∈ V(Ck−1

α ) is such that there exists a walk (x0, x1, . . . , x0) of length
α in Ck−1

α . Let a and a′ be the two neighbors of b; then

ϕ(x1, a) = ϕ(x1, a′).

Proof. From Proposition 5.28, there is a walk W = (b, c, . . . , b′) of length α from
b to b′ in Cα. Consider the walk U = ((x0, b), (x1, c), . . . , (x0, b′)) in Ck

α obtained
from combining the walk in the hypothesis and the walk W. By Claim 5.30
applied to U, we obtain the conclusion. C

From the hypothesis of the lemma and from Proposition 5.28, there is a
length-α walk from a vertex (x, c) ∈ Ck

α to a vertex (y, d) ∈ Ck
α where both

vertices are mapped to the same value under ϕ and such that c 6= d. We can
apply Claim 5.30 to this walk to obtain y0 ∈ Ck−1

α , and vertices b0, b′0 ∈ Cα

sharing a neighbor (in Cα) such that ϕ(y0, b0) = ϕ(y0, b′0). We assume up
to symmetry that b0 = α and b′0 = 2, so we have ϕ(y0, α) = ϕ(y0, 2). Let
z0 be such that there exists a walk W0 = (y0, z0, . . . , y0) of length α in Ck−1

α .
By applying Claim 5.31, we may obtain that ϕ(z0, 1) = ϕ(z0, 3). By applying
this same claim to the vertices 3, 1 ∈ Cα and the length α walk (z0, y0, . . . , z0)
obtained by rotating W0, we obtain that ϕ(y0, 2) = ϕ(y0, 4). Repeatedly arguing
in this zipper-like fashion, we obtain that ϕ(y0, α) = ϕ(y0, 2) = ϕ(y0, 4) = · · · .
Since 2 generates the integers modulo any odd number, we obtain that for all
values b, b′ it holds that ϕ(y0, b) = ϕ(y0, b′).

We use this to argue that in fact for an arbitrary x0 ∈ V(Ck−1
α ) it holds that

ϕ(x0, a) = ϕ(x0, a′) for all a, a′ ∈ V(Cα). To show this, we will show that if
the statement holds for x0 and x1 is a neighbor of x0, then the statement holds
for x1.

B Claim 5.32 Let x0 ∈ V(Ck−1
α ) and let x1 be a neighbor of x0 in Ck−1

α . If
ϕ(x0, b) = ϕ(x0, b′) for all b, b′ ∈ V(Cα), then for all b, b′ ∈ V(Cα):

ϕ(x1, b) = ϕ(x1, b′).

Proof. It is sufficient to prove that ϕ(x1, b) = ϕ(x1, b′) for all b, b′ that have
a common neighbor in Cα. After all, by using this repeatedly we then obtain
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ϕ(x1, 1) = ϕ(x1, 3) = . . . = (x1, α) = ϕ(x1, 2) = . . . and obtain the result for
all b, b′ ∈ V(Cα).

Let such b, b′ be given with common neighbor a and let x0 and x1 be given.
Let a′ be the other neighbor of b. It is easy to verify that there exists a walk
(x0, x1, x2, . . . , xα−1, x0) in Ck−1

α for some x2, . . . , xα−1 and furthermore there
exists a walk (a, a1, a2, . . . , aα−1, a′) in Cα. Consider the walk

W = ((x0, a), (x1, a1), (x2, a2), . . . , (xα−1, aα−1), (x0, a′)).

Given that b and b′ are the neighbors of a, we obtain from Claim 5.30 that
ϕ(x1, b) = ϕ(x1, b′), as desired. C

The fact that ϕ(x0, b) = ϕ(x0, b′) for arbitrary x0, b, b′ now follows from the
existence of y0 such that ϕ(y0, b) = ϕ(y0, b′) for all b, b′ ∈ Cα, the fact that
Ck−1

α is connected, and Claim 5.32.
To see that this indeed implies that ker(π[k]\{k}) ⊆ ker(ϕ), suppose (x′, y′) ∈

ker(π[k]\{k}). Let x′′ = π[k]\{k}(x′) and similarly let y′′ = π[k]\{k}(x′), such that
x′′ = y′′. It now follows from the claim above that ϕ(x′) = ϕ(x′′, xk) =
ϕ(y′′, xk) = ϕ(y′′, yk) = ϕ(y′) and thus (x′, y′) ∈ ker(ϕ), as desired. J

Definition 5.33 Let H be a graph and k ≥ 1. A homomorphism ϕ from Hk

to a graph G is projective, if there exists a nonempty index set I ⊆ [k] such
that ϕ(x) = ϕ(y) if and only if πI(x) = πI(y).

Hence in a projective homomorphism, the image of x ∈ V(Hk) is determined
uniquely by the coordinates in I, and distinct values for those coordinates lead
to distinct images. The lemma above allows us to prove the following.

I Lemma 5.34 Let G be a nonbipartite graph with odd girth α that has the
no-overlap property. Let k > 0 and let ϕ : V(Ck

α) → V(G) be a homomorphism
from Ck

α to G. Then ϕ is projective.

Proof. By symmetry of the graph Ck
α, Lemma 5.29 implies that for any coor-

dinate i ∈ [k], if there are vertices x, y ∈ V(Ck
α) that disagree on coordinate i

but have the same image under ϕ, then any x′, y′ ∈ V(Ck
α) that agree on all

coordinates except i satisfy ϕ(x′) = ϕ(y′).
Let I′ ⊆ [k] consist of those indices i for which there exist x, y ∈ V(Ck

α)
that differ on coordinate i but have the same image under ϕ. We can show
that any two vectors that differ only in coordinates of I′ have the same image
under ϕ. Suppose x, y ∈ V(Ck

α) only differ on coordinates in I′. Then there
exist x1, . . . , xm ∈ V(Ck

α) such that x = x1, y = xm, and for all j ∈ [m− 1] we
have that xj and xj+1 only differ on a single coordinate, and this coordinate
is in I′. We then obtain that ϕ(xj) = ϕ(xj+1) for all j by the reasoning above,
and thus ϕ(x) = ϕ(y).

By definition of I′, for any index i ∈ [k] \ I′, vectors that differ on coordinate i
map to distinct images. Hence for I := [k] \ I′ we have ϕ(x) = ϕ(y) if and only
if πI(x) = πI(y), which proves that ϕ is projective. J
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Using this result, we can prove the following lemma.

I Lemma 5.35 Let G be a nonbipartite graph with odd girth α that has the
no-overlap property, and let k > 0 be an integer. Let ϕ : V(Ck

α) → V(G) be a
homomorphism from Ck

α to G. Let B := {ϕ(v) | v ∈ V(Ck
α)} ⊆ V(G). Then the

induced subgraph G[B] is isomorphic to Cm
α for some m ∈ [k].

Proof. Note first that if Cm
α is a spanning subgraph of G[B], then Cm

α must in
fact be isomorphic to G[B]: by Lemma 5.25, if Cm

α is a spanning strict subgraph
of G[B], then G[B] can be obtained from Cm

α by adding one or more edges and
therefore G has odd girth less than α, or the no-overlap property is violated.
Hence to complete the proof, it suffices to show that Cm

α is a spanning subgraph
of G[B] for some m.

By Lemma 5.34 there is a nonempty I ⊆ [k] such that ϕ(x) = ϕ(y) if and
only if πI(x) = πI(y). Let m := |I|. Hence the image B := {ϕ(x) | x ∈ V(Ck

α)}
consists of exactly αm points. For y ∈ V(Cm

α ), let g(y) ∈ V(Ck
α) denote the

vector that agrees with y on the coordinates indexed by I, and has value 1 at
all other coordinates. By the projectivity of ϕ, the function ϕ′(y) := ϕ(g(y))
is a bijection from V(Cm

α ) to B. To show that Cm
α is isomorphic to a spanning

subgraph of G[B], it remains to show that for all edges {x, y} ∈ E(Cm
α ) we

have {ϕ′(x), ϕ′(y)} ∈ E(G). Consider such a pair {x, y} ∈ E(Cm
α ). There

exist x′, y′ ∈ V(Ck
α) such that {x′, y′} ∈ E(Ck

α) while πI(x′) = x and πI(y′) = y.
For example, such a pair can be obtained by padding x with the value 1 and
padding y with the value 2 on all positions not included in I. Projectivity
of ϕ ensures ϕ(x′) = ϕ′(x) and ϕ(y′) = ϕ′(y). Since ϕ is a homomorphism
and {x′, y′} is an edge of Ck

α, it follows that {ϕ(x′), ϕ(y′)} is an edge of G.
Hence Cm

α is isomorphic to a spanning subgraph of G[B], which completes the
proof. J

Lemma 5.35 is the key ingredient in the proof of the main result of this
subsection, given below. The statement of the next lemma is a generalization
of [21, Claim 4] to general values of α; our proof strategy is similar now that
we have obtained the necessary lemmata.

I Lemma 5.36 Let G be a graph with odd girth α that has the no-overlap property.
Then G∗ has a definable subdomain B such that G[B]↔ Cα.

Proof. We will construct a sequence of subsets B1, B2, . . . of V(G) such that
Bi ⊆ Bi+1 for all i, and furthermore each G[Bi] is isomorphic to Cki

α for some
ki ≥ 1. Since Cα ↔ Ck

α for all k ≥ 1 (projecting onto any fixed coordinate gives
a valid Cα-coloring), this yields the desired result. Let B1 be the vertex set of
an arbitrary cycle of length α in G, and start from i = 1. If Bi is a definable
subdomain of G∗, we are done.

Now suppose Bi has been constructed, but Bi is not a definable subdomain
of G∗. We show how to construct Bi+1. Since Bi is not a definable subdomain
of G∗, it follows from Corollary 5.16 that there exists a polymorphism f of G∗
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of some arity n, and vertices u1, . . . , un ∈ Bi, such that f (u1, . . . , un) /∈ Bi. Note
that, since f is a polymorphism of G∗, which includes singleton relations forcing
a variable to a constant value v ∈ V(G) for all v ∈ V(G), it must hold that f is
idempotent (i.e., f (v, . . . , v) = v).

We can consider f as a homomorphism from Gn to G, mapping vertex
(v1, . . . , vn) ∈ V(Gn) to f (v1, . . . , vn) ∈ V(G). Verify that f is indeed a
homomorphism: if {(u1, . . . , un), (v1, . . . , vn)} ∈ E(Gn), then it follows that
{ui, vi} ∈ E(G) for all i ∈ [n] by the definition of Gn. Since f is a polymorphism
for G, it thus follows that { f (u1, . . . , un), f (v1, . . . , vn)} ∈ E(G), as desired.

Let f ′ := f |Bi be defined as f restricted to Bi, such that f ′ is a homomorphism

from G[Bi]
n to G. Since G[Bi] is isomorphic to Cki

α , it follows that f ′ is a
homomorphism from G[Bi]

n = Cn·ki
α to G.

Define Bi+1 as the image of f ′ in G. Since f ′ is idempotent, we obtain that
Bi is a subset of Bi+1. Furthermore it is easy to see from the definition that
Bi ( Bi+1. It follows from Lemma 5.35 that G[Bi+1] is isomorphic to Cm

α for
some m.

Since G is finite and Bi is a strict subset of Bi+1 for every i, there exists
an i such that Bi is a definable subdomain of G∗. Since by definition, G[Bi] is
isomorphic to Cm

α for some m, this concludes the proof. J

5.3.2 Obtaining a definable subdomain when an edge is in
two α-cycles

The results of Section 5.3.1 can only be applied if G has the no-overlap property,
so that no edge of G is contained in two distinct minimum-length odd cycles.
In this section we develop constructions that can be used to define strict sub-
domains that induce nonbipartite graphs, if G does not have the no-overlap
property. We start by defining a relevant binary relation on the vertex set of a
graph, using E(u, v) as the edge predicate of the graph.

Definition 5.37 (Rα) Let Rα be defined as follows:

Rα(u, v) =

∃x1, . . . , xα, y1, . . . , yα :
( ∧

i∈[α−1]

E(xi, xi+1)

)
∧
( ∧

i∈[α−1]

E(yi, yi+1)

)
∧ E(xα, x1) ∧ E(yα, y1) ∧ (y1 = x1) ∧ (yα = xα) ∧ (x2 = u) ∧ (y2 = v).

Intuitively, Rα relates vertices u and v that lie on closed walks of length α
sharing a common edge {x1, xα}, when u and v lie at distance one from vertex x1
of this shared edge along the closed walk. Note that such vertices must receive
the same color in any Cα-coloring of G. Using this relation, we can generalize
Bulatov’s [21] analysis of chains of rhombuses to graphs of odd girth larger
than 3. See Figure 5.6 for an illustration. Note that Rα is symmetric and that
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x1

xα

Cα

y2 = vu = x2

Cα

xα−1 yα−1

x1

x3

u v

Figure 5.6 A general depiction of uRαv (left) and a depiction of the uR3v (right).

any vertex that lies on a cycle of length α is related to itself. The following
property of Rα, Rn

α, and R+
α (recall Definition 2.31) will be essential in a number

of proofs in this section.

I Lemma 5.38 Let G have odd girth α, such that each vertex of G is contained in
a cycle of length α. For any n ≥ 0, the relations Rα, Rn

α, and R+
α are pp-definable

over G∗.

Proof. The definition of Rα straightforwardly translates into a pp-definition by
using the constant relations of G∗ to enforce x2 = u and y2 = v, and identifying
variables that the formula requires to be equal.

Using this definition, we can define Rn
α using the same process on the

expression

Rn
α(u, v) := ∃x1, . . . , xn+1 :

 ∧
i∈[n]

xiRαxi+1

 ∧ (x1 = u) ∧ (xn+1 = v).

Here applications of Rα can obviously be replaced by the pp-definition of Rα to
obtain a pp-definition for Rn

α. Now observe that Rα is reflexive since each
vertex of G lies on a cycle of length α. Hence for n := |V(G)| we have
that Rn

α = R+
α , showing that the transitive closure can also be pp-defined

by a finite expression. J

Before presenting further lemmata, let us discuss the overall approach and
the relevance of the relation Rα. To obtain a lower bound via Lemma 5.21, we
want to show that for any (core) graph H with a triangle, H∗ has a definable
subdomain B such that H[B]↔ Cα for some odd α ≥ 3. If H has the no-overlap
property, then we can obtain such a subdomain using Lemma 5.36. If H has
an edge contained in two distinct triangles, then the private vertices of these
overlapping triangles are related under R3. Hence in the quotient graph H′ :=
H/R+

3
, these two private vertices are identified into the same equivalence

class, effectively reducing the number of overlapping triangles. Repeating this
process, we eventually arrive at a graph with the no-overlap property to which
Lemma 5.36 can be applied. The challenge that then arises is the following:
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[x]

G

G/R G/R[N([x])]

a

b

c

[a]
[a]

u

v

[u]

[v]

x
G a

b

c

u

v

x

BB̂

B′

Figure 5.7 Illustration of the potential difficulties in lifting definable subdomains from
quotient graphs, attacked in Lemma 5.40. Here R = R+

3 . Graph G on the top has
overlapping triangles through the edge {u, v}. In the quotient graph G/R (bottom-left),
the definable subdomain B′ consisting of all neighbors of vertex [x] induces a graph
(homomorphically) equivalent to C3, highlighted on the bottom-right. However, the
pre-image B of B′ in graph G (highlighted in blue on the top-right) induces a bipartite
subgraph of G, not equivalent to C3. Using the pp-definability of the set B we can
define a subdomain B̂ (highlighted in red on the top-left) of G∗ for which G[B̂] ↔ C3
via B̂(y) := ∃x1, ∃x2 : x1 ∈ B ∧ x2 ∈ B ∧ EG(c, x1) ∧ EG(x1, x2) ∧ EG(x2, y).

if B′ is a definable subdomain of (H′)∗ such that H′[B′]↔ Cα′ where α′ is the
odd girth of H′, then we want to lift B′ to a definable subdomain B of H∗ such
that H[B]↔ Cα′ . This can fail in two significant ways:

• It is possible that while H′[B′] has a triangle, the vertices B that form the
pre-image of B′ induce a bipartite subgraph of H. This behavior is illustrated
in Figure 5.7. In this case, we show that the subdomain B′ can be exploited
in a novel way to provide a definable subdomain of H equivalent to an odd
cycle.

• The quotient graph H′ may have strictly smaller odd girth than the odd girth α
of H, which happens when H′ has a self-loop while H does not. Since Cα′

for odd α′ < α does not admit a homomorphism into a graph of odd girth α,
there exists no induced subgraph of H homomorphically equivalent to Cα′ .
This issue is resolved by showing that, rather than lifting B′ to a definable
subdomain of B, we directly define a strict nonbipartite subdomain of H
using the fact that the odd girth decreases when taking the quotient graph.
Therefore we get closer to the no-overlap case in a different manner.

Note that, by using induction, it is sufficient if our constructions yield a strict
subdomain that induces a graph of the same odd girth, rather than one that
induces a graph equivalent to an odd cycle. We therefore start by recalling
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a simple condition under which a nonbipartite subdomain can be defined
(cf. [21, §3.1]).

I Lemma 5.39 Let G have odd girth α > 1. If some v ∈ V(G) is not on any
cycle of length α, then G∗ has a strict definable subdomain B such that G[B] has
odd girth α.

Proof. Let B be the set of vertices that lie on at least one cycle of length α.
Clearly, if G has a vertex v that does not lie on a cycle of length α, it holds that
B ( V(G). Furthermore from this definition it follows G[B] has odd girth α.
It remains to show that B is indeed a definable subdomain of G∗. Define B as
follows

B(x) := ∃x0, . . . , xα :

 ∧
i∈[α]

E(xi−1, xi)

 ∧ (x0 = xα = x).

Observe that B(x) holds exactly if x lies on a closed walk of length α in G. Since
G has odd girth α, it follows from Observation 5.22 that thereby x lies on a
cycle of length α. J

Using the property that every vertex lies on a minimum-length odd cycle,
we now deal with the first type of lifting issue described above.

I Lemma 5.40 Let G be a graph of odd girth 3, such that every vertex of G is
contained in a triangle. Let G′ := G/R+

3
. Assume G′ has odd girth 3. If (G′)∗ has

a strict definable subdomain B′ such that G′[B′] has odd girth 3, then G∗ has a
strict definable subdomain B such that G[B] has odd girth 3.

Proof. Let B′′ ⊆ V(G) denote the pre-image of B′. Proposition 5.18 shows
that B′′ is a definable subdomain of G∗, since R+

3 is pp-definable by Lemma 5.38.
Since B′ ( V(G′) we also have B′′ ( V(G). If furthermore G[B′′] contains
a triangle, the lemma statement follows. For the remainder of the proof, we
therefore assume G[B′′] does not contain a triangle.

Choose n1, n2, n3 satisfying the following, such that n1 + n2 + n3 is mini-
mized:

1. n1 ≥ n2 ≥ 0, and n1 ≥ n3 ≥ 0.

2. There exist v1, v′1, v2, v′2, v3, v′3 ∈ B′′ such that viR
ni
3 v′i for all i ∈ [3], edge

{v′i, vi+1} ∈ E(G) for i ∈ [2], and {v′3, v1} ∈ E(G).

To see that such values exist, consider a triangle {b′1, b′2, b′3} in G′[B′]. By Defini-
tion 5.14, the fact that G′[B′] contains an edge {b′i , b′j} for (i, j) ∈ {(1, 2), (2, 3),
(3, 1)} implies that in G there is an edge between a vertex v′i ∈ [b′i ] and a
vertex vj ∈ [b′j]. For the vertices defined in this way, appropriate values of ni
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n1 = 3 n2 = 1 n3 = 2

v′1
v2 v′2 v3 v′3v1 sC

x′2 x3 x′3
n3 + n1 − 1 = 4

x2

v′1 ∈ B

Figure 5.8 This figure describes the situation in the proof of Lemma 5.40, it depicts a
subgraph of G. Vertices in B′′ are marked in white. The triangle C that is part of B is
indicated in bold green. Be aware that not all depicted vertices and edges are necessarily
distinct.

exist since R+
3 is the transitive closure of R3: any two elements vi, v′i ∈ [b′i ]

related under R+
3 are related by a finite number of applications of R3.

Now take vertices v1, v′1, v2, v′2, v3, v′3 witnessing the minimal value of n1 +
n2 + n3 in the statement above. Observe that n1 > 0, as otherwise the above
statement shows that vertices v1, v2, v3 ∈ B′′ form a triangle in G, contradicting
our assumption on G[B′′].

We now give a definable subdomain B of G∗ that contains a triangle.
Since B′′ is a definable subdomain of G∗, we can write statements like x ∈ B′′

in this definition. We can also use R3 and powers of this relation in our pp-
expression, by Lemma 5.38.

B(y) := ∃x2, x3, x′1, x′2, x′3 ∈ B′′ : x′1 = v′1 ∧ EG(x′1, x2) ∧ x2Rn2
3 x′2 ∧

EG(x′2, x3) ∧ x3Rn1+n3−1
3 x′3 ∧ EG(x′3, y).

Observe that, by the above definition, a vertex y ∈ B may or may not lie in B′′

but all vertices that are quantified over do lie in B′′. Refer to Figure 5.8 for a
sketch of the situation. It remains to show that G[B] contains a triangle and
that B ( V(G). Let s ∈ V(G) such that v1R3s and sRn1−1

3 v′1. Note that such a
vertex exists by the assumption that v1Rn1

3 v′1.
We start by showing that G[B] has a triangle containing v1. Since v1R3s,

there exist vertices a1, a2 such that the edge {a1, a2} lies on a triangle with s
and on a triangle with v1. By letting xi := vi and x′i := v′i for i ∈ [3], it is easy
to verify that v1 ∈ B. Furthermore, letting x′1 := v′1, x2 := x′2 := v2, x3 := v′1
and x′3 := s shows that any vertex at distance one from s is in B, implying a1
and a2 are in B. Thereby, G[B] contains a triangle.

It remains to show that B ( V(G). To this end we will prove that v′1 /∈ B. As-
sume for a contradiction that v′1 ∈ B. Thus, there exist witnesses x2, x3, x′1, x′2, x′3
for this containment. Let x1 := x′1 = v′1. Observe that hereby, x1R0

3x′1, x2Rn2
3 x′2,
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Cα

u

xα−1xα−2

x3
x4

x1

Cα

v

yα−1

W2

W1

yα−2

y3
y4

xα

Figure 5.9 Depiction of the situation in the proof of Lemma 5.41. The figure shows
vertices u and v such that uRαv and a sketch of the proof that all vertices in the figure
other than u and v can be reached by a walk of length exactly α− 2 from u. Note that
not all vertices are necessarily distinct, even if they are shown as such.

x3Rn1+n3−1
3 x′3, and {x′1, x2}, {x′2, x3}, {x′3, x1} ∈ E(G). As such, substituting the

values n′1 = 0, n′2 := n2, n′3 := n1 + n3− 1 for n1, n2, n3 satisfies statement 2 and
n′1 + n′2 + n′3 < n1 + n2 + n3. Renaming the variables to ensure that n′1 ≥ n′2
and n′1 ≥ n′3 (note that this can be done; the definition is entirely symmetric)
ensures that also statement 1 is satisfied, which contradicts the minimality of
our choice for n1, n2 and n3. J

The next lemma gives a relevant property of the set of vertices that witnesses
uRαv in a graph G, that will be useful when proving the inclusion of these
vertices in a definable subdomain.

I Lemma 5.41 Let G be a graph with odd girth α, let u, v ∈ V(G) such that
uRαv (recall Definition 5.37) and let S = {x1, . . . , xα, y1, . . . , yα} with x2 = u
and y2 = v be vertices witnessing that uRαv. If x ∈ S \ {u, v}, then there is a
walk in G of length α− 2 from u to x.

Proof. For a sketch of the situation and the proof, refer to Figure 5.9.
Consider any other vertex xi for i ∈ [α] \ {2}. Consider the walks P :=

(u, x3, x4, . . . , xi−1, xi) and P′ := (u, x1, xα, xα−1, . . . , xi+1, xi), which both have
length at most α− 2. Since the combined length of these walks is α, one of
these two walks is odd and has length less than α. Thereby, there is a walk of
length α− 2 from u to xi.

It remains to show that there is a walk of length α− 2 from u to yi for all
i 6= 2. For i = 1 and i = α the result was shown above. We do a case distinction
on the value of i. If 1 < i < α is odd, consider the walk

W1 := (x2, x1, y2, y3, . . . , yi−1, yi),

observe that it has length exactly i < α. Since i is odd and α is odd, it follows
that there is a walk of length exactly α− 2 from u = x2 to yi by padding W1 as
needed.
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If 1 < i < α is even, implying i ≥ 4 as i 6= 2, consider the walk

W2 := (x2, x1, xα, yα−1, . . . , yi+1, yi),

which has length 2 + α− i ≤ α− 2. Observe that since α is odd, while 2 and
i are even, the walk has odd length and thus there is a walk of length exactly
α− 2 from u to yi. J

The next lemma will be used to solve the second type of lifting issue we
described, by giving the subdomain construction used when taking the quotient
graph reduces the odd girth. Observe that the lemma statement supports graphs
of any odd girth α ≥ 3, meaning that the first type of lifting issue truly is the
obstacle to proving a more general lower bound for H-COLORING.

I Lemma 5.42 Let G be a graph of odd girth α > 1 such that each vertex of G
lies on a cycle of length α. If G/R+

α
has smaller odd girth than G, then there is a

strict definable subdomain B of G∗ such that G[B] contains a cycle of length α.

Proof. Suppose G/R+
α

has smaller odd girth than G. Take minimal n1, . . . , nα−2 ∈
N with n1 ≥ ni for all i such that there exist v1, v′1, . . . , vα−2, v′α−2 with viR

ni
α v′i

for all i ∈ [α− 2] and {v′i, vi+1} ∈ E(G) for all i ∈ [α− 3] and {v′α−2, v1} ∈
E(G). Note that some of the ni may be zero. We say a choice for n1, . . . , nα−2 is
minimal simply if their sum is minimized along all possible valid choices.

Similarly as in the proof of Lemma 5.40, such values always exist. They
are obtained by considering a closed walk of length α − 2 in G/R+

α
, which

exists since G/R+
α

has odd girth at most α− 2. We now show how to define a
subdomain for G, using a case distinction on n1.

(n1 is zero) Since n1 ≥ ni for all i ∈ [α− 2] it follows that all ni are zero. One
may verify that in this case, there is a closed walk of length α− 2 in the graph,
contradicting that the odd girth is α by Observation 5.22.

(n1 > 0 is odd) Refer to Figure 5.10 for an illustration of this case. Let n′1 :=

bn1/2c and pick a vertex u such that uRn′1
α v′1 and v1Rn′1+1

α u. Note that such a
vertex exists by definition since n′1 + (n′1 + 1) = n1. Using Lemma 5.38, define
B as

B(y) := ∃x2, . . . , xα−2, x′1, . . . , x′α−2 : uRn′1
α x′1 ∧

∧
1≤i≤α−3

EG(x′i , xi+1) ∧∧
2≤i≤α−2

xiR
ni
α x′i ∧ EG(x′α−2, y).

We show that G[B] has a cycle of length α, and that some vertex of V(G) is not
included in B. We start by showing that v′1 /∈ B. Suppose towards a contradic-
tion that B(v′1). Then by definition, there exist vertices x2, . . . , xα−2, x′1, . . . , x′α−2
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uv1 v′1

n1 = 3

s
C

n2 = 2 n3 = 1

v2 v3 v′3
v′2

x′1 x2

x′2

x3 x′3

v′1 ∈ B

Figure 5.10 Illustration of the proof of Lemma 5.42, where α = 5, n1 = 3, n2 = 2, and
n3 = 1. The gray part depicts the situation when v′1 ∈ B, which leads to a contradiction.
Be aware that not all depicted vertices and edges are necessarily distinct.

witnessing B(v′1). As such, uRn′1
α x′1 and by symmetry of the relation it follows

that x′1Rn′1
α u. Furthermore u was defined such that uRn′1

α v′1. Thereby, x′1R2n′1
α v′1

with 2n′1 = n1 − 1. Defining x1 := v′1 for convenience, it follows that xiR
ni
α x′i

for all i ≥ 2, x1Rn1−1
α x′1, {x′i , xi+1} ∈ E(G) for all i, and {x′α−2, x1} ∈ E(G)

(as x1 = v′1 and v′1 ∈ B). But this contradicts the minimality of the choice for
n1, . . . , nα−2, since it follows that the sequence n1− 1, n2, . . . , nα−2 (potentially
re-ordered to put the largest value at the front) satisfies all requirements while
it has a strictly smaller sum.

It remains to show that G[B] has a cycle of length α. Let s be a vertex such

that v1Rαs and sRn′1
α u (note that if n1 = 1 then s = v′1). Thereby, there exist

vertices c1, . . . , cα and c′1, . . . , c′α witnessing v1Rαs , such that v1 = c2. Let C be
the closed walk given by (c1, . . . , cα, c1) and observe that since the odd girth of
G is α, C is a cycle in G by Observation 5.22. We will show that V(C) ⊆ B.

One may verify that B includes all vertices that can be reached via a walk of
length α− 2 from s by choosing x′1 = s and xi = x′i for all i ≥ 2 in the definition
of B, using that Rα is reflexive. It follows from Lemma 5.41 that all vertices
of C except v1 are in B. It remains to show v1 ∈ B, which is straightforward
from the definition of B and the choice of n1, . . . , nα−2. Thus, G[B] contains
all α vertices of cycle C.

(n1 > 0 is even) Note that n1 > 1. Refer to Figure 5.11 for a sketch of the

situation. Let n′1 := n1/2. Pick v, v′ such that v1Rn′1
α v, vRαv′, and v′Rn′1−1

α v′1.
Since v′Rαv, there are vertices a1, . . . , aα and a′1, . . . , a′α with v = a2 and v′ = a′2
witnessing this. We define u := a1 = a′1 and u′ := aα = a′α, such that {u, u′}
is the edge in which the cycles through v and v′ overlap. Given u and u′, we
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vv1 s
C

x′1 x2

x′2

x3 x′3

v′1 ∈ B

v′1

u

u′

n2 = 2 n3 = 1

v2 v3 v′3
v′2

n1 = 4

x′

v′

Figure 5.11 Illustration of the proof of Lemma 5.42 for α = 5, where n1 = 4, n2 = 2,
and n3 = 1. Depicted vertices need not always be distinct. Indicated in gray is the
situation when v′1 ∈ B, which leads to a contradiction.

now define B as

B(y) := ∃x′, x2, . . . , xα−2, x′1, . . . , x′α−2 : x′Rn′1−1
α x′1 ∧∧

1≤i≤α−3

EG(x′i , xi+1) ∧
∧

2≤i≤α−2

xiR
ni
α x′i ∧ EG(x′α−2, y) ∧

(∃y1, . . . , yα : y1 = u ∧ yα = u′ ∧ y2 = x′ ∧ EG(yα, y1)∧∧
1≤i<α

EG(yi, yi+1)).

We start by showing that v′1 /∈ B, such that indeed B ( V(G). Suppose for
contradiction that v′1 ∈ B and let x′, x2, . . . , xα−2, x′1, . . . , x′α−2 and y1, . . . , yα be

the vertices witnessing this. By definition, v′Rn′1−1
α v′1. Furthermore, x′Rn′1−1

α x′1
by definition. We start by showing x′Rαv′ to obtain that x′1R2n′1−1

α v′1. By
definition, we have that y1 = u, yα = u′ and y2 = x′, furthermore a′1 = u,
a′α = u′ and a′2 = v′. It follows from the definitions that hereby x′Rαv′ and

thus x′1R2n′1−1
α v′1 with 2n′1 − 1 = n1 − 1. Similar to the argument given in the

case for n1 is odd, we observe that introducing x1 := v′1 gives x1, . . . , xα−2
and x′1, . . . , x′α−2 satisfying xiR

ni
α x′i for all i ≥ 2, {x′i , xi+1} ∈ E(G) for all i,

and {x′α−2, x1} ∈ E(G). This contradicts the minimality of the choice for
n1, . . . , nα−2, since the sequence n1− 1, n2, . . . , nα−2 (possibly after reordering)
has a smaller total sum and satisfies all requirements.

It remains to show that G[B] has a cycle of length α. The proof will follow
from similar arguments as in the case where n was odd. Observe that B(v1)
follows from substituting x′ with v′, xi with vi, and x′i with v′i. Choose s such

that v1Rαs and sRn′1−1
α v. Thus, there exist vertices c1, . . . , cα and c′1, . . . , c′α

witnessing v1Rαs, such that v1 = c2. Let C be the closed walk given by
(c1, . . . , cα, c1) and observe that since the odd girth of G is α, C is a cycle in G
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by Observation 5.22. We will show that V(C) ⊆ B. Letting x′ := v, x′1 := s,
and x′i = xi for i = 2, . . . , α− 2 shows that B contains all vertices reachable by
a walk of length α− 2 from vertex s. It now follows from Lemma 5.41 that all
vertices in C \ {v1} are in B and thus V(C) ⊆ B, concluding the proof. J

Using the two results above, we can not prove that when G contains a
triangle, then it has a definable subdomain B such that G[B] is homomorphically
equivalent to a triangle. This is the last ingredient we will need to prove the
main lower bound result of this chapter.

I Lemma 5.43 Let G be a graph with odd girth 3. Then G∗ has a definable
subdomain B ⊆ V(G) such that G[B] is homomorphically equivalent to C3, that
is, G[B]↔ C3.

Proof. Proof by induction on |V(G)|. If G has the no-overlap property, then by
applying Lemma 5.36 we obtain a definable subdomain B such that G[B]↔ C3.

In the remainder, we assume G has an edge that is contained in two distinct
triangles. We first deal with an easy case. If there is a vertex of G that is not
contained in any triangle, then Lemma 5.39 yields a strict definable subdomain B
of G∗ such that G′ := G[B] contains a triangle. Since B ( V(G), we may apply
induction to obtain a definable subdomain B′ of (G′)∗ such that G′[B′] ↔
C3. By Proposition 5.17 the set B′ is also a definable subdomain of G∗, and
since G[B′] = G′[B′]↔ C3, this concludes the proof for this case.

It remains to deal with graphs in which some edge belongs to distinct
triangles, in which every vertex lies on a triangle. Note that if some edge {u, v}
is in two triangles, say {u, v, x1} and {u, v, x2} for distinct x1, x2 ∈ V(G),
then x1R3x2. Additionally, since every vertex lies on a triangle we have vR3v
for all v ∈ V(G). It follows that R3 is reflexive on G and therefore that R+

3 is an
equivalence relation on V(G) that has strictly fewer than |V(G)| equivalence
classes. Consider G/R+

3
. Since any closed walk in G projects to a closed walk

in G/R+
3

, the odd girth of G/R+
3

is at most that of G, so 3. If G/R+
3

has a self-

loop, which occurs when some equivalence class of R+
3 is not an independent

set, then G/R+
3

has odd girth 1. We distinguish these two cases.

(G/R+
3

has odd girth 1) By Lemma 5.42, G∗ has a definable strict subdomain B

such that G′ := G[B] contains a triangle, and therefore has odd girth 3. By
induction, there is a definable subdomain B′ of (G′)∗ such that G′[B′] ↔ C3.
As before, Proposition 5.17 ensures B′ is also a definable subdomain of G∗,
and G[B′] = G′[B′]↔ C3.

(G/R+
3

has odd girth 3) Let G′ := G/R+
3

, so that |V(G′)| < |V(G)|. By induc-

tion on G′, we find a definable subdomain B′ of (G′)∗ such that G′[B′]↔ C3.
We distinguish two cases, depending on whether B′ is a strict subdomain
of (G′)∗ or not.
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1. If B′ is a strict subdomain of (G′)∗, then Lemma 5.40 guarantees that G∗ has
a strict definable subdomain B̂ such that G[B̂] has a triangle and therefore
has odd girth 3. As before, we may now apply induction to find a definable
subdomain B̃ of (G[B̂])∗ such that G[B̃] ↔ C3. By Proposition 5.17 we
know B̃ is also a definable subdomain of G, which concludes the proof.

2. If B′ is not strict, then B′ = V(G′) and hence G′ ↔ C3. Since the quotient
graph G′ has odd girth 3, it does not have a self-loop, and therefore all
equivalence classes of R+

3 in G are independent sets. It follows that G → G′

by mapping each vertex of G to the vertex representing its equivalence class
in G′, and therefore G → G′ → C3. Since G has a triangle by assumption,
we also have C3 → G, so that G ↔ C3. Hence the desired subdomain
is B := V(G), which is trivially definable.

This concludes the proof of Lemma 5.43. J

5.3.3 Sparsification lower bound for H-Coloring
The constructions for definable subdomains given by Lemmata 5.36 and 5.43
now allow us to prove the H-COLORING lower bound when H has the no-overlap
property or contains a triangle, via Lemma 5.21. The main step of the proof
is to show that graphs with a triangle have cores with a triangle, and that
nonbipartite graphs with the no-overlap property have nonbipartite cores with
the no-overlap property.

I Theorem 5.44 Let H be a simple nonbipartite graph whose shortest odd cycle
has length α. If α = 3, or no edge of H is contained in two distinct Cα-subgraphs,
then H-COLORING parameterized by the number of vertices n does not admit a
generalized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. Let H be a graph satisfying the preconditions. Let H′ be the core of H,
that is, the unique (up to isomorphism) minimal induced subgraph H′ of H for
which H → H′, so that in fact H ↔ H′. We claim that H′ is nonbipartite and
that the odd girth of H′ equals α. If C = (x0, x1, . . . , xα) with x0 = xα is a cycle
of length α in H, then the image of C under any homomorphism is a closed
walk of length α. Since H → H′, the graph H′ has a closed walk of length α,
and hence an odd cycle of length at most α by Observation 5.22. Since H′ is a
subgraph of H, this cycle cannot be shorter than α, which proves that H′ has
odd girth α.

We show that there is a definable subdomain B of (H′)∗ such that H′[B]↔
Cα. If H has the no-overlap property, then no edge is in two distinct minimum-
length odd cycles. Since the odd girth of H′ equals that of H, and H′ is an
induced subgraph of H, it follows that H′ also has the no-overlap property, so
that the existence of such a subdomain follows from Lemma 5.36. If H has odd
girth 3, then H′ also has odd girth 3 as shown above, and Lemma 5.43 implies
the existence of the desired subdomain.
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It follows from Lemma 5.21, that the definable subdomain B of (H′)∗

shows that H′-COLORING does not have a generalized kernel of size O(n2−ε)
for any ε > 0 unless NP ⊆ coNP/poly. Now, since H′ ↔ H it follows that
a graph G has an H-coloring if and only if it has an H′-coloring, so that the
decision problems H′-COLORING and H-COLORING are equivalent. Hence the
same lower bound applies to the latter problem. J

5.4 Conclusion
For a large class of nonbipartite graphs H, we proved that H-COLORING is
unlikely to admit a non-trivial polynomial-time sparsification algorithm. Our
results imply that for the more general H-LIST COLORING problem, where the
input graph G is given along with a list L(v) ⊆ V(H) for each v ∈ V(G) and the
question is whether G has a homomorphism to H mapping each vertex to a color
on its list, there is no simple nonbipartite graph for which H-LIST COLORING

has a non-trivial polynomial-time sparsification (unless NP ⊆ coNP/poly). This
follows from the fact that, by using the lists to force all vertices of G to be
mapped to the vertex set of an induced odd cycle in H, one obtains a linear-
parameter transformation from Cα-COLORING to H-LIST-COLORING. Hence the
sparsification lower bound for the former problem, given in Theorem 5.4, also
applies to the latter.

Our main open problem is to determine whether our sparsification lower
bound for the cases of H-COLORING described by Theorem 5.44, can be gen-
eralized to all nonbipartite graphs H. One route to such a proof would be to
show that if H is a simple nonbipartite core graph, then H∗ has a definable
subdomain that induces a subgraph homomorphically equivalent to an odd
cycle; this would imply the lower bound via Lemma 5.21.
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Chapter 6
An Optimal Kernel for H-Coloring

In this chapter, we will study the kernelization complexity of the q-COLORING

problem and its generalization H-COLORING. Since 3-COLORING is already
NP-hard, studying the problem parameterized by the number of colors does not
yield interesting results from a parameterized perspective. As such, coloring
problems are often studied under parameters that capture the complexity of
the input graph. For example, Fiala et al. [38] compared the parameterized
complexity of several coloring problems when parameterized by vertex cover,
to the complexity when parameterized by treewidth. Jansen and Kratsch [57]
studied the q-COLORING problem by a hierarchy of different parameters.

In this earlier work [57], Jansen and Kratsch provided a kernel for q-
COLORING parameterized by the size of a vertex cover with O(kq) vertices that
can be encoded in O(kq) bits. Furthermore they showed that for q ≥ 4, a kernel
of bitsize O(kq−1−ε) does not exist, unless NP ⊆ coNP/poly. In Chapter 5, it
was shown that also for q = 3 a kernel of bitsize O(kq−1−ε) is unlikely.

Unfortunately, there is a gap of a factor k between these bounds, and it
remained unclear whether the upper or the lower bound had to be strengthened.
In this chapter, we close this gap by improving the kernel. We show that q-
COLORING has a kernel of bitsize O(kq−1 log k) when parameterized by vertex
cover, completely settling the kernelization size for the q-COLORING problem.

We further generalize the kernelization result by using the parameter twin-
cover, which is smaller or equal to the size of a vertex cover. We obtain a kernel
for the H-COLORING problem parameterized by the size of a twin-cover of size
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O(k∆(H) log k). Since Kq-COLORING corresponds to the normal q-COLORING

problem, this indeed generalizes the size-O(kq−1 log k) kernel for q-COLORING.

Related work Ganian introduced twin-cover as a new parameter [44] and
gave relations to existing parameters. For example, a minimum twin-cover is
not larger than a minimum vertex cover, but twin-cover is incomparable to
treewidth. The paper also gives an FPT algorithm for PRECOLORING EXTENSION

parameterized by the size of a twin-cover, and studies a number of other
problems using this parameter.

Overview We start by providing the general idea towards obtaining a kernel of
size O(k2 log k) for the 3-COLORING problem parameterized by vertex cover in
Section 6.1. We then show how to use the ideas presented for the 3-COLORING

kernel, to obtain the kernel for H-COLORING parameterized by twin-cover in
Section 6.2.

6.1 Kernel for 3-Coloring parameterized by Vertex
Cover

To get a better feeling for the general idea behind the kernel for H-COLORING

presented in Section 6.2, we start by showing the kernel for 3-COLORING

parameterized by the size of a vertex cover. First, we will quickly recap the
existing kernel for 3-COLORING given by Jansen and Kratsch [57], which has
size O(k3). Then, we will show how using the results from Chapter 3 allows us
to improve the size of this kernel to O(k2 log k).

6.1.1 Existing kernel of cubic size
Let us start by looking at the kernel by Jansen and Kratsch [57]. While their
kernel works for general q-COLORING, we focus on the case of 3-COLORING here.

As an input for the kernelization algorithm, we assume we are given a graph
G with vertex cover S of size k. We can assume this without loss of generality,
since it is easy to obtain a 2-approximate vertex cover if no vertex cover is given.
Let us start by some general observations. First of all, once the vertices in S are
colored, it is easy to verify if this coloring can be extended to the entire graph.
This is the case since the vertices in V(G) \ S form an independent set. As such,
by coloring S, their entire neighborhood is colored. All that needs to be verified,
is that in each neighborhood there is at least one color that remains unused.

By looking at the problem this way, we see that each vertex v ∈ G \ S puts a
constraint on the coloring of the vertices in S: the vertices in the neighborhood
of v should not use all three available colors. The reverse also holds; any
coloring of S satisfying all such constraints can be extended to color the entire
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S S
a

b

c

d

G G′

Figure 6.1 The result of applying the simple O(k3)-size kernel for 3-COLORING to the
graph G depicted on the left, with the corresponding colorings. The fact that in this case
G′ is larger than G is caused by the choice of this (too small) example, observe that we
did in fact make some progress. In particular, vertex b has been removed. Furthermore,
vertex c is made redundant by the vertices added due to the existence of vertex d.

graph. In fact, when trying to extend the coloring of S to a vertex v in V(G) \ S,
one may verify that it suffices to check for each size-3 subset of N(v) that it
does not use all three available colors. After all, if all three colors are used by
N(v), then there is a size-3 subset of N(v) that witnesses this.

Kernel Given a 3-COLORING instance G with vertex cover S, we may obtain a
kernelized instance G′ as follows. Initialize G′ as G[S]. For every size-3 subset
S′ of S, check if there exists a vertex v ∈ V(G) \ S such that S′ ⊆ N(v). If so,
add a new vertex v′ to G′ and connect v′ to all vertices in S′. Refer to Figure 6.1
for an illustration of this procedure. We will not argue the correctness here in
full detail, it can be found in Lemma 1 in [57]. The general idea is to prove that
when G′ is 3-colorable, we can color G by taking the same 3-coloring on S and
extending this coloring to the remainder of the graph G.

Size The graph G′ has at most |S|+ |V(G′) \ S| ≤ k + (k
3) = O(k3) vertices.

The nice thing about this kernel is that it can even be stored in O(k3) bits,
by storing the graph structure of G′[S] in O(k2) bits, together with a Boolean
vector of size O(k3) that indicates for every size-3 subset of S, whether these
vertices have a common neighbor in V(G′) \ S.

6.1.2 Improved kernel
To improve the existing kernel, we use some similar ideas. Again, consider a
graph G with vertex cover S of size k. For each size-3 subset S′ ⊆ S that has
a common neighbor in V(G) \ S, we want to express that S′ does not use all
three colors. This can be seen as a constraint. In Section 6.1.1, we modeled this
constraint by adding a vertex that was connected to all vertices in S′. Doing this
for all size-3 subsets of S, resulted in a kernel with O(k3) vertices. To improve
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the size of the kernel, we will first try to reduce the number of constraints
from O(k3) to O(k2), and then remove vertices and edges that corresponded to
redundant constraints.

To reduce the number of constraints, we will use the method for sparsifying
constraint satisfaction problems where the constraints are given as equalities of
low-degree polynomials, that we described in Chapter 3. The first step is thus
to model the relevant constraints as an instance of 2-POLYNOMIAL ROOT CSP.
To do this, we start by introducing three Boolean variables for each vertex in S,
such that we have variable set

{yv,c | v ∈ S, c ∈ [3]}.

Let y be a vector containing all these variables in arbitrary order. A coloring of
the vertices corresponds to an assignment to the variables by letting yv,c = 1
if vertex v has color c, and yv,c = 0 otherwise. To formalize this, we will say
that y is given a choice assignment if for all v ∈ S, there is exactly one c ∈ [3]
such that yv,c = 1, meaning that each vertex in S is assigned exactly one color.

For distinct vertices S′ = {u, v, w} ⊆ S, consider the following polynomial
over the integers modulo two:

pS′(y) := yu,1 · yv,1 + yu,1 · yw,1 + yv,1 · yw,1+

yu,2 · yv,2 + yu,2 · yw,2 + yv,2 · yw,2+

yu,3 · yv,3 + yu,3 · yw,3 + yv,3 · yw,3.

We now observe the following. If y is given a choice assignment, corresponding
to a coloring where u, v, and w receive distinct colors, then pS′(y) ≡2 0. If
however y is given a choice assignment, corresponding to a coloring where u, v,
and w use at most two distinct colors, then pS′(y) ≡2 1. A generalization of this
result will be formally proven in Lemma 6.10. Informally, the idea is as follows.

• If u, v, and w each have a different color, then none of the terms of the
polynomial evaluate to 1. After all, each term corresponds to two vertices
receiving the same color. As such, we trivially obtain pS′(y) ≡2 0.

• If u, v, and w do not receive distinct colors, we consider two options. If all of
them have the same color, it is easily verified that there will be exactly three
terms of pS′(y) that evaluate to one. For example, if u, v, and w all receive
color 1, we see that yu,1 · yv,1 = yu,1 · yw,1 = yv,1 · yw,1 = 1. Thereby, we
obtain pS′(y) = 3 ≡2 1. In the remaining case, exactly two vertices receive
the same color, and the remaining vertex receives a different color. It is easy
to verify that hereby exactly one term of the polynomial evaluates to 1, and
again pS′(y) ≡2 1.

Kernel Given a graph G with vertex cover S, the kernel is now obtained as
follows. We create a 2-POLYNOMIAL ROOT CSP instance on the variable set
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{yv,c | v ∈ S, c ∈ [3]}. For each vertex v ∈ V(G) \ S, for each S′ ⊆ N(v) of size
three, we add the constraint pv,S′(y) ≡2 1, or equivalently pv,S′(y)− 1 ≡2 0,
to obtain a set L of polynomial equalities. The additional subscript v is only
used to keep track of which polynomial was added for which vertex. Using
Theorem 3.1, we obtain L′ ⊆ L with |L′| ≤ (3k)2 + 1, such that any assignment
satisfying all equations in L′, satisfies all equations in L.

We now obtain G′ from G by removing every vertex in V(G) \ S for which
all corresponding equalities are in L \ L′, implying they were redundant. Fur-
thermore, we remove an edge {u, v} with v ∈ V(G) \ S if there is no equality
pv,S′(y)− 1 ≡2 0 in L′ with u ∈ S′.

Correctness We will informally argue the correctness of the above procedure.
Since G′ is a subgraph of G, it is easy to verify that G′ is 3-colorable if G is 3-
colorable. The opposite direction is more interesting. Suppose G′ is 3-colorable,
we show that it is possible to 3-color G. For every vertex in S, use the same
coloring as in G′. Observe that for every vertex in V(G) \ S, its neighborhood is
now completely colored. We show that none of these neighborhoods uses all
three available colors, to conclude the proof. Suppose towards a contradiction
that there is a vertex v ∈ V(G) \ S to which the coloring of S cannot be extended.
As such, there are neighbors v1, v2, v3 ∈ N(v) such that vi has color i for i ∈ [3].
Let S′ := {v1, v2, v3}. Hereby, pv,S′(y) ≡2 0, as we have seen before. Observe
that pv,S′(y)− 1 ≡2 0 is one of the equations in the set L. We show that all
equalities in L′ are satisfied by the coloring of S. By choice of L′, this implies
that all equalities in L are satisfied, which is a contradiction with the fact that
this equality is not.

Let pv,S′(y)− 1 ≡2 0 be an arbitrary equality in L′. Since this equality exists,
v is a vertex of G′ and v is connected to all three vertices in S′. Since we started
from a valid 3-coloring of G′, this equality must be satisfied by the coloring,
as otherwise the neighborhood of v uses all three available colors. This would
contradict that there is a proper 3-coloring of G′, assigning the considered
coloring to the vertices in S.

We conclude that we can extend the coloring of S to color all vertices in G.

Size The graph G′[S] has k vertices by definition, and thereby has at most k2

edges. Additionally, G′ contains at most one vertex and at most three edges for
every equality in L′, leading to a total of O(k2) edges and vertices. By using an
adjacency-list representation, this kernel can be stored in O(k2 log k) bits.

Extensions Extending the idea described in this section to obtain a kernel for
q-COLORING parameterized by vertex cover of size O(kq−1 log k) is in principle
straightforward, the only necessary ingredient is to find a degree-(q− 1) poly-
nomial expressing the constraint that “these q vertices do not all receive distinct
colors”. We will see how this constraint can be formulated as a polynomial in
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Lemma 6.10. To further extend the results to H-COLORING, some additional
work is needed as not only the number of colors that is used in the neighborhood
of a vertex matters, but also which colors specifically. Due to these additional
constraints on the coloring, the kernel for H-COLORING will use two types of
polynomial equalities, as we will see in Section 6.2.3.

While in this section we assumed that a vertex cover of the input graph is
given, we show in the next section that this assumption is not needed. The
overall strategy is as follows. Instead of only adding the necessary polynomial
equalities corresponding to vertices not in the vertex cover to L, we simply con-
sider the relevant polynomial equalities for all vertices in the graph, meaning we
also introduce variables for all vertices in the input graph. Then, we iteratively
check if one of the edges of the graph is redundant, by verifying whether the
constraints in the graph obtained by removing this edge, imply the original set
of constraints. If this is the case, we update the graph accordingly and recom-
pute the set of constraints. Of course, now we can no longer straightforwardly
apply our results from Chapter 3 to obtain a size bound on our kernel, as we
have O(n) variables instead of O(k) variables. However, with some additional
effort we can show that as long as the set of constraints is still large, the above
reduction must be applicable. In this way, we obtain the same size bound.

Furthermore, we will extend the ideas described in this section to obtain a
kernel parameterized by twin-cover, instead of vertex cover, but this does not
add too many technical complications.

6.2 Kernel for H-Coloring parameterized by
Twin-Cover

In this section, we give a kernel for H-COLORING parameterized by the size of
a twin-cover. We start by giving some additional preliminaries and showing
how to partition the graph into vertex sets that are twins in Section 6.2.1. We
introduce some of the polynomial equalities that we use and their properties
in Section 6.2.2, and use them in Section 6.2.3 to define the set of equalities
that is constructed for a given input graph. In Section 6.2.4 we define the three
reduction rules our kernel will use and prove that they are safe. Finally, in
Section 6.2.5 we give the kernel.

6.2.1 Twin-Cover
To define the parameter twin-cover, we first need to define the notion of twins.
We say vertices u and v ∈ V(G) are (true) twins whenever NG[u] = NG[v].
Note that this relation is transitive.

Definition 6.1 We say X ⊆ V(G) is a twin-cover [44] of G, if for every edge
{u, v} ∈ E(G), vertex u ∈ X, or v ∈ X, or u and v are twins.
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We will regularly use the following two observations about H-colorings of a
graph. Both follow straightforwardly from the definition of H-coloring.

Observation 6.2 Let S ⊆ V(G) such that G[S] is a clique and let f be an H-
coloring of G. Define X := { f (v) | v ∈ S}. Then H[X] is a clique in H and all
vertices in S receive a different color, so that |S| = |X|.

Observation 6.3 Let v ∈ V(G) and let f be an H-coloring of G. Then the number
of colors used to color NG(v) is bounded by ∆(H).

Computing a minimum TWIN-COVER is NP-hard, since VERTEX COVER is NP-
hard on graphs where no two vertices are twins7. We will therefore construct
the kernel for H-COLORING without knowing a twin-cover of the input graph.
In order to do this, we decompose the graph into vertex sets consisting of twins.
Recall that throughout this chapter, twins are vertices with the same closed
neighborhood.

Definition 6.4 A partial twin decomposition of a graph G is a partition Π =
{P1, . . . , Pm} of V(G), such that any two vertices in the same partite set are
twins. Partition Π is a twin decomposition if furthermore any two vertices in
different partite sets are not twins.

To be able to use the twin decomposition for the kernelization procedure,
we show how it can efficiently be computed.

I Lemma 6.5 A twin decomposition of a graph G can be computed inO(|V(G)|+
|E(G)|) time.

Proof. This is for example stated in [86, Exercise 2.17] for the case of finding
false twins, which are vertices such that NG(u) = NG(v). Finding (true) twins
is similar. An example solution uses the adjacency-list representation, and adds
each vertex to its own adjacency list. Then we efficiently sort the adjacency
lists by bucket sort. We partition these sorted lists into sets of duplicates by a
recursive process, which splits the sets into groups based on the first element
of each adjacency list, which is removed from the recursively partitioned lists.
The running time is linear since the sum of the lengths of all adjacency lists is
O(|E(G)|), while the work done in each iteration is proportional to the decrease
in total volume of the lists. J

The next lemma shows how the twin decomposition and a minimal twin-
cover may intersect.

I Lemma 6.6 Let G be a graph with twin decomposition Π and a minimal
twin-cover S. Then for any partite set P ∈ Π it holds that either P ⊆ S or
P ∩ S = ∅.

7In a graph where no two vertices are twins, vertex covers and twin-covers are the same.
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Proof. Let P ∈ Π. Suppose P ∩ S 6= ∅ and P \ S 6= ∅. Let u ∈ S ∩ P and
v ∈ P \ S. We show that S \ {u} is a twin-cover of G, which contradicts the
assumption that S is minimal.

Let {u, w} be any edge in G. If w = v, then since u, v ∈ P, this is an
edge between twins. If w 6= v, then since u and v are twins, it follows that
{v, w} ∈ E(G). Thereby, either w ∈ S and thus edge {u, w} is covered by w,
or w and v are twins. In this case, by transitivity of being twins, u and w are
also twins. This proves that S \ {u} is indeed a twin-cover of G, which is a
contradiction. J

6.2.2 Modeling constraints as polynomial equalities
As explained in Section 6.1.2, the kernelization is based on a connection to
constraint satisfaction problems. To find the kernel, we represent the constraints
that a vertex set puts on the coloring of its neighborhood, as polynomial equali-
ties. We then use this representation to find redundant vertices and edges in the
graph. Recall that a monomial of degree d is the product of d variables, with the
unique monomial of degree zero being the constant 1. For example, x1 · x3 · x3
is a monomial of degree three. A monomial is multilinear if each variable occurs
at most once (refer to Section 2.6 for more details).

To find redundant vertices and edges, we will need to find which polynomial
equalities are redundant. To be able to do this, we relate polynomials and
polynomial equalities to the vectors that we will use to represent them.

Definition 6.7 (vect) Let p(x1, . . . , xn) be a multivariate polynomial in (a subset
of) the variables x1, . . . , xn, evaluated over the integers modulo 2, of degree at
most d for some fixed d. Hence p is a weighted sum of monomials of degree at
most d over x1, . . . , xn. For some fixed ordering of the monomials of degree d
over x1, . . . , xn, let vect(p) denote the vector containing the coefficients of the
corresponding monomials in p. We may use this notation as well for polyno-
mial equalities where the right-hand side is zero; for a polynomial equality
p(x1, . . . , xn) ≡2 0 over the integers modulo 2, such that p has degree at most d,
we let vect(p(x1, . . . , xn) ≡2 0) be defined as vect(p).

Let P be a set of multivariate polynomials in variables x1, . . . , xn, we use
vect(P) to denote {vect(p) | p ∈ P}. Similarly, if L is a set of polynomial
equalities in variables x1, . . . , xn for which the right-hand sides are zero, we let
vect(L) be defined as {vect(p) | (p(x1, . . . , xn) ≡2 0) ∈ L}.

The following lemma follows from the definition above.

I Lemma 6.8 Let P be a set of polynomials of degree at most d over a tuple of
variables y, and let q be a polynomial of degree at most d over y. If vect(q) ∈
span2(vect(P)), then any assignment to y that satisfies p(y) ≡2 0 for all p ∈ P,
satisfies q(y) ≡2 0.

Proof. Choose αp ∈ {0, 1} for all p ∈ P such that vect(q) ≡2 ∑p∈P αp vect(p).
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Consider an assignment to the variables y with p(y) ≡2 0 for all p ∈ P. Let y′

be the vector containing the evaluation of the monomials of degree at most d
over y, for the values assigned to y. List them in the same order in which the
coefficients for these monomials are listed in vect(·). Since a polynomial is a
weighted sum of monomials, the value of a polynomial p of degree most d in y
for the assigned values, equals the inner product of vect(p) and y′. So:

q(y) = vect(q) · y′ ≡2 ∑
p∈P

αp vect(p) · y′ ≡2 ∑
p∈P

αp · p(y) ≡2 0. J

To utilize polynomials over Boolean variables to represent solutions of graph
H-coloring problems, we represent the color of a vertex v in a graph G by
|V(H)| Boolean variables, indicating whether v has the corresponding color. We
now define a partial choice assignment, which reflects that any vertex receives
at most one color.

Definition 6.9 Let yi,k ∈ {0, 1} for i ∈ [n], k ∈ [q] be a set of Boolean variables
and let y be the vector containing all these variables. We say y is given a partial
choice assignment if for all i ∈ [n]:

q

∑
k=1

yi,k ≤ 1.

Note that a partial choice assignment sets at most n variables to true. By
this definition, a partial choice assignment can be seen as a partial coloring in
the following way: yi,k = 1 means vertex i has color k. Note that the coloring of
some vertices may remain undefined.

The following lemma gives a polynomial that can be used to express the
constraint that out of exactly q neighbors of a given vertex u, there are at least
two that have the same color. By combining multiple such constraints, we can
ensure that at most q− 1 different colors are used in the neighborhood of vertex
u, leaving one color free for u itself in the q-coloring problem. When evaluating
the polynomial for y that is given a partial choice assignment, the polynomial
has the following two essential properties. (1) It equals 1 modulo 2 when the q
vertices all receive a distinct color, and (2) it equals 0 modulo 2 whenever two
vertices have the same color, or when two vertices have no color defined8.

I Lemma 6.10 Let q > 0 be an integer and let yi,k for i ∈ [q], k ∈ [q] be Boolean
variables. Then there exists a polynomial p of degree q− 1 over the integers modulo
2, such that whenever the variables in y are given a partial choice assignment, it
holds that p(y) ≡2 1 if and only if

8One may note that the polynomial described in Section 6.1.2 does not satisfy this. It evaluated
to 0 when all vertices receive distinct colors, or when two colors where not defined. It evaluated
to 1 whenever two vertices receive the same color. The fact that the role of 1 and 0 is swapped is
easy to resolve, but the fact that it evaluates to 0 both for desirable and undesirable partial choice
assignments, is problematic in our new setting.
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• there exist no i, j, k ∈ [q] with i 6= j such that yi,k = yj,k = 1, and

• for all k ∈ [q− 1] there exists i ∈ [q] such that yi,k = 1.

We have seen an example of a polynomial used for the case where q = 3, in
Section 6.1.2. However, the ideas behind this particular polynomial appear
difficult to extend to larger values of q. Furthermore, while it has all desirable
properties with respect to choice assignments, when considering partial choice
assignments, problems arise. Considering partial choice assignments is however
necessary to deal with H-COLORING, instead of q-COLORING.

Therefore, the proof of Lemma 6.10 will use an entirely different polynomial,
that is based on different ideas. Before proving Lemma 6.10, let us therefore
give the polynomial p corresponding to q = 3 that we will use in this proof.

p(y) := ∑
i1 6=i2∈[3]

2

∏
k=1

yik ,k

= y1,1 · y2,2 + y1,1 · y3,2 + y2,1 · y1,2 + y2,1 · y3,2 + y3,1 · y1,2 + y3,1 · y2,2.

One may verify for this example that letting y1,1 = y2,2 = y3,3 = 1 and all other
variables be zero, gives p(y) = 1 ≡2 1, as desired. Setting y1,1 = y2,2 = y3,2 = 1
and all other variables to zero, gives p(y) = 2 ≡2 0, which explains why the
modulus is used. Letting y1,1 = y2,3 = y3,3 = 1 and all other variables zero,
results in p(y) = 0 ≡2 0. Furthermore, letting y1,1 = y2,2 = 1 and all other
variables be zero, also results in p(y) ≡2 1. We now proceed with the general
construction.

Proof of Lemma 6.10. Define the multivariate polynomial p as

p(y) := ∑
i1,...,iq−1∈[q]

distinct

q−1

∏
k=1

yik ,k.

We prove that p has the desired properties. It is easy to see that the degree of
p is q− 1. It remains to prove the claim on the values of p(y) for partial choice
assignments. So let y be given a partial choice assignment, and for each i ∈ [q]
let xi := k exactly when yi,k = 1. Let xi := 0 when there is no such yi,k.

We now show that p(y) ≡2 1 if there exist no i, j, k ∈ [q] with i 6= j
such that yi,k = yj,k = 1, and for all k ∈ [q − 1] there exists i ∈ [q] such
that yi,k = 1. In terms of the values for xi, this implies that they are all
distinct, and that [q− 1] ⊆ {x1, . . . , xq}. Thereby, we have {x1, . . . , xq} = [q] or
{x1, . . . , xq} = [q− 1] ∪ {0}.

For k ∈ [q − 1], let jk be the unique index such that xjk = k, implying
that yjk ,k = 1. Note that this is well defined, since all values from [q− 1] are

used exactly once. Then, ∏
q−1
k=1 yjk ,k = 1. For any other choice of distinct indices
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i1, . . . , iq−1 ∈ [q], there exists m ∈ [q− 1] such that im 6= jm. This implies that

yim ,m = 0 and thereby ∏
q−1
k=1 yik ,k = 0. Thus, p(y) = 1 ≡2 1.

Now suppose there exist i, j ∈ [q], such that xi = xj 6= 0, or there exists
k ∈ [q− 1] such that yi,k = 0 for all i ∈ [q]. We show that p(y) ≡2 0 by a case
distinction.

• Suppose there exists k ∈ [q− 1] such that ∑
q
i=1 yi,k = 0, or equivalently there

is no i ∈ [q] such that xi = k. Thereby, for any choice of i1, . . . , iq−1 ∈ [q], we

have that ∏
q−1
`=1 yi`,` = 0, since yik ,k = 0. Thus, p(y) ≡2 0.

• Suppose there exists no k ∈ [q− 1] such that ∑
q
i=1 yi,k = 0. Thereby, for each

k ∈ [q− 1] there exists i ∈ [q] such that xi = k. It follows from our earlier
assumption that there must exist i, j, k ∈ [q] with i 6= j such that xi = xj = k,
which implies k < q. For all c ∈ [q− 1] with c 6= k, let ic be the unique index
such that xic = c and thus yic ,c = 1. Then

yi,k ·
q−1

∏
c=1
c 6=k

yic ,c = yj,k ·
q−1

∏
c=1
c 6=k

yic ,c = 1.

However, ∏
q−1
c=1 yic ,c = 0 for any other choice of i1, . . . , iq−1. Thereby, p(y) =

2 ≡2 0. J

There is another way to look at the proof of Lemma 6.10, which may
give some intuition. Consider the q × q matrix A given by ai,j = yi,j for all
i ∈ [q], j ∈ [q − 1], and ai,q = 1 for all i ∈ [q]. Then p(y) is equal to the
determinant of the matrix A over the integers modulo 2. It follows from this
that p(y) ≡2 1 if and only if the columns of A are linearly independent. One
may verify that if y is given a partial choice assignment, the columns of A are
linearly independent if and only if the two conditions of the lemma statement
hold for y.

6.2.3 Construction of polynomial equalities
We continue to define the polynomial equalities that will be constructed for a
subset P of the vertices of G. These are necessary constraints on the coloring
of NG(P), such this coloring can be extended to H-color P. In this construction,
P will be a partite set of the twin decomposition of G, and hence a clique.

Let G be a graph with P ⊆ V(G). We create variables cv,i for each v ∈
V(G) and i ∈ V(H), denoting whether vertex v has color i. Let C be the
set containing all constructed variables. Let L(P, G) be the set of polynomial
equalities produced by the following procedure, which results in two types of
constraints. The first type will ensure that the neighborhood of P uses at most
∆(H) colors. The second type of constraints will ensure that the coloring of the
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neighborhood of P can indeed be extended to color P: we ensure that there
is a clique in H of size at least |P|, such that the colors used for NG(P) are in
the neighborhood of this clique in H. The reason for having these two types of
constraints is to obtain a good bound on the degree of the relevant polynomials.

Consider each set S ⊆ NG(P) with |S| = ∆(H) + 1 and each set X ⊆ V(H)
with |X| = |S|. Pick an arbitrary ordering on X such that X = {x1, . . . , x|S|}
and use Lemma 6.10 to find a polynomial pP,S,X such that pP,S,X(C) ≡2 1 if and
only if the following two statements hold:

1. there exist no u 6= v ∈ S, k ∈ X such that cu,k = cv,k = 1, and

2. for all k ∈ [|S| − 1] there exists u ∈ S such that cu,xk = 1.

When considering a partial choice assignment that corresponds to a mapping
from V(G) to V(H), the above two statements together imply that S is colored
with |S| = ∆(H) + 1 distinct colors (which is what we want to avoid). More
precisely, when pP,S,X(C) ≡2 1, the coloring of S would use colors x1, . . . , x|S|−1
and one other color. Add the following constraint to L(P, G):

pP,S,X(C) ≡2 0.

For the second type of constraints, consider each set S ⊆ NG(P) of ` ∈
[∆(H)] elements. Pick an arbitrary ordering of S, such that S = {s1, . . . , s`}.
Consider each sequence x = (x1, . . . , x`) ∈ V(H)` (of not necessarily distinct
elements). Let Y :=

⋂`
i=1 NH(xi) be the common neighborhood of all vertices

from x in H. If H[Y] does not contain a clique of size at least |P| (i.e., if
ω(H[Y]) < |P|), add the following polynomial equality to L(P, G):

qP,S,x(C) :=
`

∏
i=1

csi ,xi ≡2 0.

The computation of ω(H[Y]) for some Y ⊆ V(H) can be done in constant time,
since H is considered constant. This concludes the construction of L(P, G).
Note that the constraints L(P, G) are defined solely in terms of the variables
that describe the coloring of the open neighborhood of P.

Next, we define a complete list of equations for G.

Definition 6.11 (LΠ(G)) Let G be a graph and let Π be a partition of its vertex
set. Let LΠ(G) be defined as follows.

LΠ(G) :=
⋃

P∈Π
L(P, G).

Since the polynomials for the first type of constraints have degree at most
|S| − 1 = ∆(H) by Lemma 6.10, while the polynomials for the second type of
constraints are the product of ` ≤ ∆(H) variables, we observe the following.
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Observation 6.12 Let G be a graph with Π a partition of its vertex set. The
polynomials in LΠ(G) have degree at most ∆(H).

We now prove two useful properties for this choice of constraints.

I Lemma 6.13 Let G be a graph with some partial twin decomposition Π. Let
f : V(G) → V(H) be a mapping. If f is an H-coloring of G, then the Boolean
assignment to C := {cv,i | v ∈ V(G), i ∈ V(H)} given by cv,i = 1 ⇔ f (v) = i
satisfies all constraints in LΠ(G).

Proof. Let f be given and the value of any cv,i ∈ C be defined by cv,i = 1 ⇔
f (v) = i. We show that this assignment satisfies all constraints in LΠ(G), by
showing that it satisfies both types of constraints in L(P, G) for all P ∈ Π.
Consider some P ∈ Π. Since it consists of twins, it is a clique in G. As H has no
self-loops, the vertices in P all receive distinct colors by Observation 6.2, and
the colors used on P form a clique in H. The fact that P consists of twins also
implies that {u, v} ∈ E(G) for all u ∈ P, v ∈ NG(P). Thereby, any color used in
P is not used in the coloring of NG(P).

Consider a constraint pP,S,X(C) ≡2 0 ∈ L(P, G) for S ⊆ NG(P) of size
|∆(H)|+ 1 and X ⊆ V(H) of the same size. By Observation 6.3, the vertices
in S use at most ∆(H) = |S| − 1 colors. Hence at least one color d ∈ V(H)
appears twice on a vertex of S. If d ∈ X then some color of X is used twice on S,
violating the first condition of Lemma 6.10. If d /∈ X then at least two vertices
u, v ∈ S do not receive a color from X and hence ∑i∈X cu,i = ∑i∈X cv,i = 0.
Since |S| = |X| = q, there are at most q− 2 vertices w ∈ S for which there
exists i ∈ X with cw,i = 1. As such, there exist distinct colors d1, d2 ∈ X such
that ∑s∈S cs,d1 = ∑s∈S cs,d2 = 0, so that the lowest-indexed of d1 and d2 violates
the second condition of Lemma 6.10. It then follows from Lemma 6.10 that
pP,S,X(C) ≡2 0 as required.

Consider a constraint qP,S,x(C) ≡2 0 ∈ L(P, G) for S ⊆ N(P) and x =

(x1, . . . , x|S|) ∈ V(H)|S|. Suppose this constraint is not satisfied. Then the

coloring of S is given by x and furthermore, H[Y] where Y :=
⋂|S|

i=1 NH(xi)
does not contain a clique on |P| vertices. But any H-coloring (for H without
self-loops) colors any clique in G with an equally-sized clique in H, and the
colors used on the clique P must be adjacent in H to all the colors used on the
neighbors S of P in G. Since H[Y] contains no clique on |P| vertices, f cannot
be an H-coloring of G. It follows that for any H-coloring, all constraints are
satisfied. J

Let S ⊆ V(G) and let f : S→ V(H) be an H-coloring of G[S]. We say that f
can be extended to color G, if there exists f ′ : V(G)→ V(H) such that f ′ is an
H-coloring of G and furthermore f ′(v) = f (v) for all v ∈ S. The next lemma
shows that an H-coloring of a part of the graph can be extended to color the
entire graph, if it satisfies certain constraints.
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I Lemma 6.14 Let G be a graph with P′ ⊆ V(G). Let f : V(G) \ P′ → V(H)
be an H-coloring of G− P′, such that the Boolean assignment to C := {cv,i | v ∈
V(G), i ∈ V(H)} given by cv,i = 1⇔ (v /∈ P′ ∧ f (v) = i) satisfies all constraints
in L(P′, G). Then f can be extended to H-color G.

Proof. Let f be given and C be defined by cv,i = 1⇔ (v /∈ P′ ∧ f (v) = i). We
start by showing that NG(P′) uses at most ∆(H) different colors. Suppose not,
then there is a set S ⊆ NG(P′) of size ∆(H) + 1 using ∆(H) + 1 distinct colors.
Let X be the set of colors used in S. It follows from Lemma 6.10, that regardless
of which ordering of X was chosen when constructing pP′ ,S,X(C), we have
pP′ ,S,X(C) ≡2 1. By definition, L(P′, G) contains the equation pP′ ,S,X(C) ≡2 0.
This contradicts the assumption that all constraints in L(P′, G) are satisfied.

Let X be the set of colors used by NG(P′), suppose |X| = `. We have
shown above that ` ≤ ∆(H). Let S be a size-` subset of NG(P′) such that for
every color x ∈ X, there exists exactly one s ∈ S such that f (s) = x. Let
Y :=

⋂
x∈X NH(x). Suppose towards a contradiction that H[Y] contains no

clique of size |P′|. As such, for some ordering of S as S = {s1, . . . , s`} and for
x = (x1, . . . , x`) such that f (si) = xi for all i, the constraint qP′ ,S,x(C) ≡2 0 was
added to L(P′, G). However, by definition, qP′ ,S,x(C) ≡2 1, contradicting the
fact that all constraints in L(P′, G) are satisfied. Thereby, H[Y] contains a clique
K of size |P′|, where Y :=

⋂|X|
i=1 NH(xi). To extend f to color P′, assign each

vertex in P′ a distinct color from K.
It remains to verify that f is indeed a valid H-coloring of G. Any edge

between two vertices in V(G) \ P′ remains properly colored. Any edge in P′

is properly colored, because its endpoints have a different color and K is a
clique in H. Any edge between P′ and V(G) \ P′ is properly colored, because
all vertices in K are common neighbors of the vertices in X, and K ∩ X = ∅. J

6.2.4 Reduction rules
We now present the three reduction rules that will be used to obtain the kernel,
and prove that they are safe. The first checks whether the graph is trivially not
H-colorable, the second removes sets of edges from the graph, and the third
removes sets of vertices from the graph.

Reduction rule 6.1 Let G be a graph with twin decomposition Π. If there exists
P ∈ Π with |P| > ω(H), return a trivial no-instance.

It is easy to see that Reduction rule 6.1 preserves the answer to the problem,
since in this case G cannot have an H-coloring by Observation 6.2.

Reduction rule 6.2 Let G be a graph with twin decomposition Π. Let P′ 6=
P′′ ∈ Π such that EG(P′, P′′) 6= ∅. If

vect
(

L(P′, G)
)
⊆ span2

(
vect

(
LΠ(G \ EG(P′, P′′))

))
,
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remove all edges in EG(P′, P′′) from graph G.

Reduction rule 6.2 is the key rule for our kernelization. It simplifies the
graph by removing all edges between two distinct sets of twins P′ and P′′,
if the constraints L(P′, G) are implied by the constraints generated by the
remaining graph G \ EG(P′, P′′). Observe that it is essential for the effectiveness
of Reduction rule 6.2 that Π is a twin decomposition, since applying the rule
to partial twin decompositions that are not twin decompositions may increase
the size of an optimal twin-cover in the considered graph. The following lemma
proves that the reduction rule is safe.

I Lemma 6.15 If G′ is obtained from G by applying Reduction rule 6.2, then G
is H-colorable if and only if G′ is H-colorable.

Proof. Let G′ be G \ EG(P′, P′′). Clearly, if G is H-colorable, then G′ is also
H-colorable, since G′ is a subgraph of G.

In the other direction, let f ′ be an H-coloring of G′. It follows from
Lemma 6.13 and the fact that Π is a partial twin decomposition of G \ EG(P′, P′′)
that the derived setting of the Boolean variables C satisfies the constraints in
LΠ(G \ EG(P′, P′′)). Since vect(L(P′, G)) ⊆ span2(vect(LΠ(G \ EG(P′, P′′))))
it follows from Lemma 6.8 that this setting of C also satisfies all constraints
in L(P′, G). Let f be defined as f ′ restricted to the vertices in G′ − P′. Note
that G′ − P′ equals G − P′ by definition. It is easy to see that f is indeed an
H-coloring of G− P′ since G− P′ is a subgraph of G′ and f ′ is an H-coloring
of G′. Furthermore, f satisfies the constraints in L(P′, G) since it colors the
relevant vertices the same as f ′. It now follows from Lemma 6.14 that we can
extend f to color all vertices in G. Thereby, G is H-colorable. J

The final rule effectively removes isolated cliques from the graph, when H
has a sufficiently large clique to allow them to be colored properly.

Reduction rule 6.3 Let G be a graph with twin decomposition Π. If there exists
P′ ∈ Π with NG(P′) = ∅ and |P′| ≤ ω(H), then remove P′ from G.

I Lemma 6.16 If G′ is obtained from G by applying Reduction rule 6.3, then G
is H-colorable if and only if G′ is H-colorable.

Proof. Let P′ be such that G′ = G− P′. Clearly, if G is H-colorable, G′ remains
H-colorable. In the other direction, suppose G′ is H-colorable. We show how
to extend this coloring to G. Since we assumed that |P′| ≤ ω(H), graph H has
a clique X of size |P′|. Use the colors of X to assign a different color to each
vertex in P′. Since NG(P′) = ∅, this gives an H-coloring of G. J

I Lemma 6.17 Let G′ be the graph resulting from applying Reduction rule 6.2
or 6.3 to a graph G. Then the size of a minimum twin-cover in G′ is at most the
size of a minimum twin-cover in G.
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Proof. Let P ⊆ V(G). It is easy to see that if S is a twin-cover of G, then it is
also a twin-cover of G′ = G− P. Thereby, the statement holds for Reduction
rule 6.3.

Let Π be the twin decomposition of G and let P′ 6= P′′ ∈ Π. Let F :=
EG(P′, P′′) be the set of edges between P′ and P′′. Let S be a twin-cover of
G. We show that S is a twin-cover of G′ = G \ F. Clearly, any edges that
were previously covered, are still covered. We show that all vertices that
were twins in G, are also twins in G \ F to conclude the proof. Let u, v be
twins in G, and let P ∈ Π such that u, v ∈ P. If P 6= P′ and P 6= P′′, it is
obvious that u and v remain twins in G \ F. Suppose u, v lie in P′ or in P′′;
without loss of generality, suppose u, v ∈ P′. Note that the edge {u, v} belongs
to E(G) \ F. Then NG\F[u] = NG[u] \ P′′. Since u and v are twins in G, we
have NG[u] \ P′′ = NG[v] \ P′′ = NG\F[v]. Thereby, u and v are twins in G \ F.
It follows that the lemma statement also holds for Reduction rule 6.2. J

6.2.5 Analysis of the kernelization
Having described all reduction rules, we can now formally prove the kerneliza-
tion result for H-COLORING.

I Theorem 6.18 For any fixed non-bipartite graph H (without self-loops), H-
COLORING parameterized by the size k of a twin-cover has a kernel with O(k∆(H))

vertices and edges, which can be encoded in O(k∆(H) log k) bits. Furthermore, the
kernelized instance is a subgraph of the original input graph.

Proof. Let G be a graph. Apply Reduction rules 6.1, 6.2, and 6.3 exhaustively.
Let the resulting graph be G′. We show that this is a correct kernelization.

B Claim 6.19 Reduction rules 6.1–6.3 can exhaustively be applied in time
|V(G)|O(∆(H)).

Proof. We can compute a twin decomposition of G in linear time by Lemma 6.5.
Computing ω(H) can be done in O(1) time for fixed H. Hence Reduction
rule 6.1 can be applied in polynomial time.

The set LΠ(G) contains at most m := 2|V(G)| · |V(G)|∆(H)+1 · |V(H)|∆(H)+1

polynomial equalities (the number of ways to pick S, X, and P as for the
definition of pP,S,X and qP,S,X), over |V(G)| · |V(H)| variables. All polynomials
we employ are multilinear. This can be verified directly from their construction,
and explained by noting that squaring a number does not change it, when
working modulo 2. By Lemma 2.27, we therefore only have to consider (|V(G)| ·
|V(H)|)∆(H) + 1 coefficients for the polynomials. Constructing the required
polynomial equalities can be done in time |V(G)|O(∆(H)) for fixed H. We
can test if one vector lies in the span of a set of other vectors by comparing
the ranks of matrices of dimensions at most m× ((|V(G)| · |V(H)|)∆(H) + 1).
Thereby, Reduction rule 6.2 can be applied in polynomial time. Note that the
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twin decomposition has to be recomputed after each application of Rule 6.2.
Reduction rule 6.3 can trivially be applied in polynomial time. Since |Π| ≤
|V(G)|, checking for all P ∈ Π whether any of the reduction rules can be
applied takes polynomial time.

Each rule can be applied at most |V(G)|2 times, as it always removes at least
one edge or vertex. The claim follows. C

Let G′ be the result of applying Reduction rules 6.1, 6.2, and 6.3 exhaustively.
We use the following claim to prove a bound on the size of G′.

B Claim 6.20 The resulting graph G′ has O
(
|V(H)|∆(H) · ∆(H)2 · k∆(H)

)
ver-

tices and O
(
|V(H)|∆(H) · ∆(H)3 · k∆(H)

)
edges.

Proof. When Reduction rule 6.1 has been applied at any point, G′ trivially has
constant size. Otherwise, since G has a twin-cover of size k, it follows from
Lemma 6.17 that G′ has a twin-cover of size at most k. Let Y be a minimum
twin-cover of G′, such that |Y| ≤ k. Let Π be the twin decomposition of G′.
By Lemma 6.6, every P in Π is either fully contained in Y, or disjoint from Y.
Let Π′ := {P ∈ Π | P ∩ Y = ∅}. Define Ltc :=

⋃
P∈Π′ L(P, G′), and note that

NG′(P) ⊆ Y for all P ∈ Π′. This implies the polynomial equalities in Ltc only
involve the variables controlling the coloring of Y. By Observation 6.12, the
polynomials in Ltc have degree at most ∆(H) and they use at most |V(H)|
variables for each of the k vertices in Y. Define

α := (k · |V(H)|)∆(H) + 1.

Let Vtc := vect(Ltc) be the vectors of coefficients corresponding to the
polynomials in Ltc. Compute a basis V′tc ⊆ Vtc of Vtc over the integers modulo 2.
Let L′tc ⊆ Ltc contain all polynomial equalities whose corresponding vector is
contained in V′tc. Since all employed polynomials are multilinear, it follows
that the vectors in Vtc only have nonzero entries in positions corresponding to
multilinear monomials over |Y||V(H)| distinct variables, of which there are
at most α by Lemma 2.27. As the size of the basis V′tc equals the rank of the
matrix containing the (row)vectors Vtc, which is upper-bounded by the number
of columns that contain a nonzero entry, it follows that |L′tc| = |V′tc| ≤ α.

We define a set of meta-edges F ⊆ (Π′ × (Π \Π′)) based on the constraints
in L′tc. For each constraint Z in L′tc, do the following.

• Suppose Z = (pP′ ,S,X(C) ≡2 0) for some P′ ∈ Π′, S ⊆ NG(P′), and
X ⊆ V(H). Since P′ is a partite set of twins that is disjoint from Y, we
have NG(P′) ⊆ Y since Y is a twin-cover. So each v ∈ S belongs to a partite
set Pv of twins with Pv ∈ Π \Π′. For each v ∈ S, add (P′, Pv) to F.

• Otherwise, Z = (qP′ ,S,x(C) ≡2 0) for some P′ ∈ Π′, S ⊆ NG(P′), and
sequence x = (x1, . . . , x|S|) ∈ V(H)|S|. Similarly as above, for each v ∈ S
take Pv ∈ Π \Π′ such that v ∈ Pv and add (P′, Pv) to F.
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The above procedure adds at most ∆(H) + 1 meta-edges for each constraint in
L′tc. Thereby,

|F| ≤ α(∆(H) + 1). (6.1)

We now argue that for any (P′, P′′) /∈ F with P′ ∈ Π′ and P′′ ∈ Π \Π′, the
following holds:

L′tc ⊆ LΠ(G′ \ EG′(P′, P′′)). (6.2)

To see this, consider a constraint in L′tc. It is of one of two possible types, and
it was added to Ltc =

⋃
P∈Π′ L(P, G′) ⊇ L′tc because it satisfied the criteria

described in Section 6.2.3. Effectively, the constraint was created because some
set P ∈ Π′ contains a certain vertex set S of size at most ∆(H) + 1 in its open
neighborhood in G′. But by our choice of meta-edges F, the set P still has S
in its neighborhood in G′ \ EG′(P′, P′′), so that all constraints of L′tc are also
contained in LΠ(G′ \ EG′(P′, P′′)).

Using this, we show that for all P′ ∈ Π′ and P′′ ∈ Π \Π′:

EG′(P′, P′′) 6= ∅⇒ (P′, P′′) ∈ F. (6.3)

Suppose there exist P′ ∈ Π′, P′′ ∈ Π \ Π′ such that EG′(P′, P′′) 6= ∅ but
(P′, P′′) /∈ F. It follows from Equation 6.2 that L′tc ⊆ LΠ(G′ \ EG′(P′, P′′)).
Thereby,

span2(vect(LΠ(G′ \ EG′(P′, P′′)))) ⊇ span2(vect(L′tc))

= span2(V
′
tc) ⊇ Vtc = vect(Ltc) ⊇ vect(L(P′, G′)).

Thereby, Reduction rule 6.2 could be applied to G′, which is a contradiction. It
follows that P′ ∈ Π′ and P′′ ∈ Π \Π′ can only be connected in G′ if there is a
corresponding meta-edge in F. We can now use Equations 6.1 and 6.3 to bound
the number of vertices and edges in G′.

First of all, for all P′ ∈ Π′ there must exist some P′′ ∈ Π \Π′ such that
(P′, P′′) ∈ F, otherwise it follows from Equation 6.3 that NG′(P′) = ∅ and P′

would have been removed by Reduction rule 6.3. Thereby |Π′| ≤ |F|. Since
|P| ≤ ω(H) ≤ ∆(H) + 1 for all P ∈ Π by Reduction rule 6.1, the number of
vertices of G′ can be bounded as follows.

|V(G′)| ≤ |F| · (∆(H) + 1) + |Y| ≤
(
(k|V(H)|)∆(H) + 1

)
· (∆(H) + 1)2 + k

= O
(
|V(H)|∆(H) · ∆(H)2 · k∆(H)

)
.

If edge {u, v} ∈ G′ with u ∈ Y and v /∈ Y, then there exist (P′, P′′) ∈ F such
that u ∈ P′, v ∈ P′′. Since |P| ≤ ∆(H) + 1 for any P ∈ Π, there are at most
|F| · (∆(H) + 1)2 such edges. Furthermore, there are at most (|Y|2 ) ≤ k2 edges
between vertices in Y, and at most |F| · (∆(H) + 1)2 edges between vertices in
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V(G) \Y. Thereby, the total number of edges can be bounded by:

|E(G′)| ≤ |F| · (∆(H) + 1)2 + |Y|2 + |F| · (∆(H) + 1)2

≤ 2α(∆(H) + 1)3 + k2

= 2
(
(k · |V(H)|)∆(H) + 1

)
· (∆(H) + 1)3 + k2

(note that ∆(H) ≥ 2 for non-bipartite H)

= O
(
|V(H)|∆(H) · ∆(H)3 · k∆(H)

)
.

This concludes the proof of Claim 6.20. C

It follows from the correctness of Reduction rules 6.1, 6.2, and 6.3 that G′ is
H-colorable if and only if G is H-colorable. It follows from Claims 6.19 and 6.20
that we have given a kernel for H-coloring with O(k∆(H)) vertices and edges
for constant-size H that can be computed in polynomial time. By encoding the
graph using adjacency lists, it can be encoded in O(k∆(H) · log k) bits. J

The following corollary shows that Theorem 6.18 generalizes the result
obtained for q-COLORING parameterized by vertex cover in the extended abstract
of this work.

I Corollary 6.21 For any constant q ≥ 3, q-COLORING parameterized by the
size of a twin-cover has a kernel with O(kq−1) vertices, which can be encoded
in O(kq−1 log k) bits. Furthermore, the resulting instance is a subgraph of the
original input graph.

Proof. Since q-COLORING is equivalent to Kq-COLORING, and ∆(Kq) = q − 1
and Kq has q vertices, the result now follows directly from Theorem 6.18. J

6.3 Conclusion
We have given a kernel for H-COLORING parameterized by twin-cover with
O(k∆(H)) vertices and bitsize O(k∆(H) log k). This kernel can be obtained
without using information about (an approximation of) the minimum twin-
cover of the input graph. It follows that q-COLORING parameterized by vertex
cover has a kernel of bitsize O(kq−1 log k), improving on the previously known
kernel by almost a factor k. Furthermore, this kernel is optimal up-to ko(1)

factors, as Jansen and Kratsch showed for q ≥ 4, there is no kernel of size
O(kq−1−ε) for the problem, unless NP ⊆ coNP/poly [57]. For q = 3, the bound
follows from Theorem 5.44 and the fact that the size of a minimum vertex cover
is at most the number of vertices.

It is easy to see that the kernel lower bounds also hold for q-LIST COLORING,
where every vertex v in the graph has a list L(v) ⊆ [q] of allowed colors.
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Furthermore, we can apply our kernel by first reducing an instance of q-LIST

COLORING to an instance of q-COLORING using q additional vertices, and adding
these to the twin-cover of the graph. This only changes the size of the obtained
kernel by a constant factor. We cannot apply the same method to extend the
kernel to the general H-LIST COLORING problem, since the gadget to simulate
the list constraints only works if H is a clique.

In this chapter we have seen a first example where finding redundant ver-
tices and edges is done using appropriate polynomial equalities. It would be
interesting to see if this technique can be applied to obtain smaller kernels
for other graph problems as well [17]. To apply this idea, one needs to first
identify which constraints should be modeled. When the constraints are found,
they need to be written as equalities of low-degree polynomials over a suitably
chosen field. This requires the clever construction of polynomials that have a
sufficiently low degree, in order to obtain a good bound on the kernel size.

Acknowledgements We thank Tim Hartmann for suggesting the use of twin-
cover as a parameter.
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Chapter 7
Concluding Remarks

In this thesis we studied kernelization, and more specifically sparsification, and
obtained tight bounds for several graph and logic problems. As the title of
the thesis suggests, one of the main sparsification techniques was based on
representing constraints by low-degree polynomials. We will next discuss the
use of this technique and related techniques in the area of kernelization. We
then consider the work on polynomial-time sparsification done in this thesis,
and the broader area of sparsification research. We conclude this thesis by
discussing potential directions for further research and by listing a few specific
open problems.

7.1 Linear-algebraic techniques in kernelization
Using techniques based on linear algebra is relatively new in the area of kernel-
ization. Earlier kernels for (for example) graph problems were more often based
on sets of reduction rules, based on high- or low-degree rules (as in the well-
known O(k2)-vertex kernel for VERTEX COVER), crown structures [1,28,37,74],
and packing arguments [19,80]. More recently, a number of other techniques
are appearing.

One such technique is the matroid-based method that can be used to obtain
randomized kernels [40, Chapter 10]. A matroid is a mathematical structure
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that can be defined as a pair (E, I) where E is a set and I is a family of sub-
sets of E representing the independent sets. The set I is required to satisfy
various additional conditions. In a linear matroid, there is a matrix represent-
ing the matroid such that there is a one-to-one correspondence between E
and the columns of the matrix, and the independent sets in I correspond to
sets of linearly-independent columns. To obtain kernels using matroids, the
idea is to reduce the problem to a (linear) matroid and then obtain a (small)
representation of this matroid.

While matroids were already well-studied in various settings (being intro-
duced in the 1930’s [89]), they were only studied in parameterized complexity
much more recently (cf. [78]).

Matroid-based methods were used in the area of kernelization to obtain a
first (randomized) polynomial kernel for ODD CYCLE TRANSVERSAL [69]. An
input to the ODD CYCLE TRANSVERSAL problem is a graph G and an integer k,
and the goal is to decide whether G can be made bipartite by removing at
most k vertices. Whether or not the problem admits a polynomial kernel when
parameterized by solution size, was a long-standing open question that has now
been positively resolved using a matroid-based method. These methods since
turned out to be a helpful tool in more settings [66,67].

In this thesis, we developed another algebraic tool for sparsification, which
applies when we can model a problem using low-degree polynomial inequalities.
We then observed that when there are many such equalities over a small number
of variables, some of them can be shown to be redundant. In particular, given
a set of degree-d polynomial equalities over at most n variables, we provided
a method to reduce the number of equalities to O(nd), without changing the
answer. We further applied this method to obtain an improved kernel for the
q-COLORING problem, when parameterized by the size of a vertex cover in
the input graph. The method has also been shown to be useful to obtain a
polynomial kernel for another graph coloring problem [17].

The method of sparsifying instances by representing them as low-degree
polynomial equalities as such has been useful in various contexts, and adds to
the available methods to obtain kernelization algorithms. Just like the matroid-
based method, it is a data-reduction step based on linear-algebraic dependence.

Recently, the INTERVAL VERTEX DELETION problem was shown to have a
polynomial kernel [4]. Given a graph G and integer k, the problem asks whether
it is possible to remove at most k vertices from G, such that the resulting graph
is an interval graph. Part of this kernelization algorithm relies on representing
(part of) the structure of the graph by vectors, such that a basis can be computed.
The underlying observation that, when given a large number of short vectors,
one can find a relatively small basis is the same as the observation we use when
finding redundant polynomial equalities. The challenge in both cases lies in
actually finding a suitable representation of (part of) the problem.
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To conclude, the use of linear-algebraic techniques in kernelization research
is increasing and this thesis contributes another useful technique.

7.2 Sparsification
The idea of making a graph or logic problem less dense by reducing the number
of edges or clauses compared to the number of vertices or variables, has been
widely studied in several settings.

A celebrated result considering sparsification for logic problems is the well-
known sparsification lemma by Impagliazzo et al. [53], which shows how a
d-CNF formula can be rewritten in subexponential time as a subexponential-size
disjunction of sparse d-CNF formulas. The lemma has important applications in
the study of subexponential-time algorithms [52,90].

Another research direction is the efficient sparsification of graphs, such that
the sparsified graph is close to the original graph by some metric. This generally
involves reducing the original (possibly unweighted) graph to a weighted graph.
The goal is now that the new (weighted) graph has similar properties to the
original one, and can for example be used to obtain approximation results.
A well-known example is the sparsification that approximately preserves all
cuts in the graph, and for which the reduced instance has only O(n log n)
edges [10]. Later work improved running times in case the input graph is
weighted, and helped to better understand which sparsification procedures
maintain the desired cut weights [42]. This type of graph sparsification has been
further generalized to preserve even more properties of the original graph [85].

This way of sparsifying graphs can usually be done efficiently; the one given
above for preserving cuts even runs in linear time. However, the guarantee is
not as strong as for the type of sparsification we considered in this thesis, as
solutions to the original problem are only approximately preserved. The bound
on the sparsification size depends on the quality of the approximation one wants
to achieve.

Polynomial-time sparsification where the sparsified instance is required to
have exactly the same yes/no-answer as the original one, was not widely studied
before this thesis. One of the earliest results is by Dell and Van Melkebeek [33],
showing that d-CNF-SAT and VERTEX COVER do not allow for a non-trivial spar-
sification. This was followed-up by several impossibility results regarding the
sparsification of several classic graph problems [59]. Surprisingly, unlike d-CNF-
SAT, the d-NAE-SAT problem did turn out to have a non-trivial sparsification [59].

In this thesis, we further studied this polynomial-time sparsification and
showed that H-COLORING is unlikely to have a non-trivial sparsification for a
large number of possible choices for H. This adds another problem to the list of
graph problems that do not admit non-trivial sparsification [56,59].
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Finally, we studied the sparsification of a large number of logic problems,
using the framework of constraint satisfaction problems. We gave a sufficient
condition under which CSP(Γ) has a sparsification with O(nd) constraints, and
showed that this unified known kernelization results for d-NAE-SAT, d-EXACT

SAT, and d-CNF-SAT. Furthermore, we fully classified which Boolean CSPs admit
non-trivial sparsification.

7.3 Future work
In this thesis we studied the sparsification of constraint satisfaction problems.
While we obtained many provably tight sparsification results, numerous open
questions remain. The ultimate goal of this line of research would be to fully
classify the sparsifiability of (Boolean) CSP(Γ), depending on Γ.

Open problem Given a finite (Boolean) constraint language Γ, what is the small-
est possible kernel for CSP(Γ) parameterized by the number of variables n?

A first step in this direction could be to further study the sparsifiability of
symmetric Boolean CSPs. In this thesis, we have seen a full classification of
those symmetric Boolean CSPs that have a sparsification with a linear number
of constraints. We also already know for which Boolean CSPs non-trivial sparsi-
fication is impossible. Studying the symmetric CSPs whose sparsifiability falls in
between these two extremes, could be a next step in obtaining a fine-grained
view on the complexity of CSP(Γ) for different Γ. A natural first question would
be to classify which symmetric Boolean CSPs allow for a sparsification with
quadratically many constraints. Further generalizing this, we would like to
know which CSP(Γ) have a sparsification with O(nd) constraints for any given
value for d.

Open problem Classify all symmetric Boolean CSPs having a kernel with O(nd)
constraints, but no generalized kernel of size O(nd−ε) for any ε > 0, unless
NP ⊆ coNP/poly.

We fully classified all Boolean constraint languages for which CSP(Γ) has
a non-trivial sparsification. However, this result strongly depends on Γ being
Boolean. Suppose d is the arity of the largest-arity relation in Γ and CSP(Γ) is
NP-hard. If Γ is Boolean, verifying whether CSP(Γ) has a non-trivial sparsifica-
tion is as simple as checking whether there is a relation in Γ that contains exactly
2d − 1 tuples: if not, then non-trivial sparsification is possible (Theorem 4.14).
This simple idea is not effective when Γ it not guaranteed to be Boolean. In
this case, a relation with exactly 2d − 1 tuples can sometimes be used to give a
lower bound (as in the case where Γ is Boolean), but not always: Consider the
arity-2 relation R = {(0, 0), (1, 2), (2, 1)} over D = {0, 1, 2}. Then (x1, x2) ∈ R
if and only if x1 + x2 ≡3 0, allowing for a sparsification with only linearly many
constraints (assuming the same holds for the remaining relations in Γ). We thus
ask the following question.
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Open problem For which (non-Boolean) finite constraint languages Γ where each
relation in Γ has arity at most d, does CSP(Γ) admit a kernel with O(nd−δ)
constraints for some δ > 0?

Finally, we restate the open question that remains from Chapter 5. While
it has been partially resolved, in particular in the cases where H contains a
triangle, and where H has odd girth α and no edge lies in two Cα-subgraphs,
other cases remain open.

Open problem Prove or disprove that for all simple nonbipartite graphs H, the
H-COLORING problem does not have a generalized kernel of size O(n2−ε) for any
ε > 0, unless NP ⊆ coNP/poly.

If it turns out that the H-COLORING problem does not allow for a non-trivial
sparsification in all NP-hard cases, this raises the question whether there are
natural graph problems, defined on general graphs, that do have a sparsification
with a subquadratic number of edges.
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Summary

Tight Parameterized Preprocessing Bounds:
Sparsification via Low-Degree Polynomials
Many of the problems we are interested in solving algorithmically are known
to be NP-hard. As such, we do not expect to find efficient (polynomial-time)
algorithms to solve these problems. However, we are still interested in finding
effective ways to (at least) be able to solve certain input instances for such
problems. One of the ways to do this, is to first try and preprocess the input
instance, without changing the solution. Then, a more expensive algorithm to
actually solve the problem can be applied to the (now hopefully easier) prepro-
cessed instance. In this thesis, we will study the power of such preprocessing
algorithms. In particular, we will be interested in polynomial-time preprocessing,
where the preprocessing algorithm is required to run in polynomial time.

As the problems we consider are NP-hard, we cannot hope that such a
preprocessing algorithm will always be guaranteed to decrease the actual size
of the input instance. After all, such a preprocessing algorithm could then be
used repeatedly to obtain a polynomial-time algorithm that solves the problem,
which is unlikely to exist. For this reason, we measure the effectiveness of our
preprocessing algorithms by some additional parameter, other than the input
size, that measures the complexity of the input. As such, input instances are
often denoted as (x, k) where k is the additional parameter.

The type of preprocessing algorithms we study in this thesis are called
kernelization algorithms (or kernels). A kernelization algorithm is a polynomial-
time algorithm that, given an instance (x, k), outputs an instance (x′, k′) of the
same problem such that both |x′| and k′ are bounded by f (k) for some function
that may only depend on k. This function is also called the size of the kernel.
Naturally, smaller kernels are better. As such, we are interested in what the
smallest kernel is that can be obtained for a certain parameterized problem.

In this thesis we obtain several tight upper and lower bound results for such
kernelization algorithms. First of all, we study the (very general) CONSTRAINT
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SATISFACTION PROBLEM (CSP). Broadly speaking, an input instance for this prob-
lem consists of a number of constraints over a set of variables, and the question
is whether we can assign values to the variables, such that all constraints are
satisfied. We will be particularly interested in Boolean CSPs, where the question
is to assign 0 or 1 to each variable such that all constraints are satisfied.

This thesis investigates how the type of constraints that are used, influences
the kernelizability of the problem. We give a general method, based on rep-
resenting constraints by low-degree polynomials, to obtain kernels for CSPs.
Furthermore, we show that this method is best-possible in some cases: there
are CSPs for which no better kernelization is possible (under commonly used
complexity-theoretic assumptions).

As part of our investigation into the kernelization of CSPs, we use universal
algebra to describe CSPs for which any n-variable input can be reduced to an
input that only has O(n) constraints. In fact, we show that for these CSPs there
is always a subset of the original constraints of size at most O(n) that directly
implies all other constraints. Using this method, we fully classify the symmetric
Boolean CSPs that have a kernel with O(n) constraints.

Furthermore, when considering CSPs over the Boolean domain in which
every constraint considers at most d variables, we obtain a dichotomy result.
When the constraints can express a size-d logical OR in a certain sense, the
best-possible kernel has size Θ(nd) (assuming NP * coNP/poly) where n is the
number of variables. In all other cases, there is a kernel with at most O(nd−1)
constraints and size O(nd−1 log n).

In addition to the above, we completely classify the kernelizability of Boolean
CSPs when every constraint concerns at most three variables. Under standard
complexity-theoretic assumptions, it turns out that there is a fairly simple
classification into four cases. Either the CSP is in P, or the best-possible kernel
has O(n) constraints, or the best-possible kernel has O(n2) constraints, or no
better kernel than the trivial one with O(n3) constraints exists.

The second problem we study is the H-COLORING problem, which is defined
for any fixed graph H. Given a graph G, the problem asks whether there exists
a mapping f : V(G) → V(H), such that for any edge {u, v} ∈ E(G), we have
{ f (u), f (v)} ∈ E(H). Since this is a graph problem, and any n-vertex graph
can be stored in O(n2) bits, it is easy to see that H-COLORING parameterized by
the number of vertices has a kernel of size O(n2). In this thesis we show that
under some additional restrictions on H, there is no kernel of size O(n2−ε) for
any ε > 0, unless NP ⊆ coNP/poly.

Finally, we study the q-COLORING problem on structurally simple graphs.
Given a graph G, the question is whether it is possible to color its vertices with at
most q colors, such that any two vertices connected by an edge receive different
colors. We obtain a kernel of size O(kq−1 log k) for the q-COLORING problem
when parameterized by the size of a vertex cover. This gives a kernel whose size
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is optimal up to polylogarithmic factors under complexity-theoretic assumptions.
It improves upon the previously best-known kernel that had size O(kq). To
obtain this kernel, we apply the methods developed for the kernelization of CSPs
in this different setting. We further generalize this result to the H-COLORING

problem, parameterized by twin-cover, which is a smaller parameter than vertex
cover. We obtain a kernel of size O(k∆(H) log k), where ∆(H) is the maximum
degree of any vertex in H.
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