
Sparsification Upper and Lower
Bounds for Graph Problems

and Not-All-Equal SAT

Astrid Pieterse (0743073)
Supervisor: dr. Bart. M. P. Jansen

Master Thesis

August 31, 2015
EINDHOVEN UNIVERSITY OF TECHNOLOGY

Committee: Bart. M. P. Jansen, Jesper Nederlof,
and Michel. A. Westenberg

Abstract

Many problems we care for are known to be NP-complete. Therefore, we do not
think they can be solved in polynomial time, so only an exponential time algorithm
is known. To speed up the search for a solution, we want to start by preprocessing
an input instance. You can try to make the input instance smaller in polynomial
time, without changing the answer. After doing so, we can run the slow algorithm
on a smaller input. This thesis investigated whether there exist such algorithms
that reduce the number of edges in graph problems, and the number of clauses for
logical formulas. Such an algorithm is called a sparsification.

We will show that for a number of decision problems on graphs, polynomial-time
algorithms cannot compress instances of such problems to equivalent instances, of a
possibly different problem, whose encoding size is sub-quadratic in the number of
vertices. Here we only want to maintain the solution (YES/NO), therefore P = NP
would imply that any NP-complete problem can be compressed in polynomial time
to a single bit, indicating whether it was a YES- or a NO-instance. For example look at
the 4-colorability problem, which asks if we can color all vertices in a graph in such a
way that the endpoints of any edge in the graph have distinct colors. Assuming that
NP is not contained in coNP/poly, we show that instances of 4-COLORING cannot
be compressed to a sub-quadratic encoding in polynomial time. We obtain similar
results for a number of other graph problems.

Finally we consider NOT-ALL-EQUAL SAT (NAE-SAT). This is a variant of the
well-known satisfiability problem, that plays a central role in the theory of NP-
completeness. We show that an instance of NAE-SAT with n variables and d literals
per clause can not be compressed to an equivalent instance of size O(nd−1−ε) for
any ε > 0, unless NP ⊆ coNP/poly. Furthermore we present a generalized kernel
that matches this lower bound.

2

Contents

Page

1 Introduction 4

2 Preliminaries 9

3 Feedback Arc Set 14

4 4-Coloring 16

5 Planar List Coloring 24

6 Hamiltonian Cycle 26

7 Dominating Set 33

8 d-Hypergraph 2-Colorability and d-NAE-Sat 40
8.1 Lower bound . 40
8.2 Kernel . 41

9 Conclusion 45

List of Figures

Page
1 General idea for a degree-2 cross-composition 12
2 Reduction from VERTEX COVER to FEEDBACK ARC SET. 14
3 Treegadgets with example colorings for Lemmas 4.2 and 4.3 16
4 Triangular gadget. 17
5 Gadgets constructed to prove Lemma 4.6 19
6 Colorings of the gadgets constructed to prove Lemma 4.6 20
7 Graph G′ constructed in Theorem 4.7 to prove a sparsification lower

bound for 4-COLORING. 21
8 Path gadget. 26
9 Instance G′ for DIRECTED HAMILTONIAN CYCLE, constructed to prove

Theorem 6.2. 28
10 Reduction from DIRECTED HAMILTONIAN CYCLE to HAMILTONIAN CYCLE. 32
11 Graph G constructed in the proof of Theorem 7.2 for (CONNECTED) DOM-

INATING SET. 34

3

1 Introduction

Background Preprocessing has proven to be useful in many applications, such as
when dealing with large scheduling problems with constraints. In this case we can seek
to reduce the number of constraints, by removing redundant ones. Furthermore we can
sharpen existing constraints such that we do not look into partial schedules that can
never lead to a good final scheduling.

In practice, algorithms that seem unfeasibly slow in theory can work surprisingly
well on large inputs, but this behavior can usually not be explained by the normal
worst-case running time analysis. In this type of analysis, we only consider the running
time depending on the total size of the input. There may however exist many large
inputs for which even an NP-hard problem can be solved much quicker than expected.
To analyze this behavior, the notion of a parameterized problem was introduced, where
apart from the total input size there is a parameter k ∈N that measures the complexity
of a given input instance ([13], [15]). We hope that if the parameter is small, the instance
should now be relatively easy to solve.We say that a parameterized decision problem
is fixed-parameter tractable if there is an algorithm that, given any input x of length
|x| with parameter value k, determines the YES/NO answer to the instance and whose
running time is bounded by a polynomial in |x|, multiplied by an arbitrary (usually
exponential) function in the parameter k. Therefore, we can make a distinction between
parameterized problems that are FPT, and parameterized problems that are not believed
to be FPT.

To classify problems, methods were designed to find FPT algorithms or prove a
parameterized problems is likely to not be FPT. For example, the method of iterative
compression (for example used in [22]) can be used to find FPT algorithms for mini-
mization problems. The main idea is to use a compression routine, that given the input
instance and a (too large) solution tries to find a smaller solution or output that this
is not possible. To make a distinction between FPT problems and problems that are
not believed to be FPT, a hierarchy of complexity classes was introduced in [11]. The
main distinction is between class FPT, containing problems that can be solved efficiently
when the parameter is small, and problems that are hard for W[1]. Classes FPT and
W[1] are the parameterized analogues of P and NP, respectively. By their definition, we
know FPT ⊆ W[1]. It is widely believed that FPT 6= W[1], similar to the statement that
P 6= NP. Under this assumption, problems that are hard for W[1] are not fixed parameter
tractable.

It was proven that INDEPENDENT SET parameterized by the solution size is W[1]-
hard, while VERTEX COVER with the same parameter is fixed parameter tractable. Note
that an independent set in a graph is a subset of the vertices, such that none are connected
by an edge. Vertex cover on the other hand asks for a subset of the vertices such that for
every edge at least one of its endpoints is in the set. It is thereby not hard to see that a
graph has a vertex cover of size k, if and only if it has an independent set of size n− k.

4

It turns out that the framework of parameterized complexity analysis makes it
possible to rigorously analyze the power of polynomial-time preprocessing algorithms,
using the concept of kernelization. A kernelization is a polynomial-time algorithm that
transforms a parameterized input x with parameter k for a decision problem, into a new
input x′ with parameter k′, such that the following two conditions hold: (1) the answer
to (x, k) is YES if and only if the answer to (x′, k′) is YES, and (2) there is a function
f : N→N such that the size of x′ and the new parameter value k′ are both bounded by
f (k). The function f is called the size of the kernelization: it gives a guarantee on the
amount of data reduction that is achieved in terms of the parameter k. 1 A kernel whose
size f is bounded by a polynomial, is called a polynomial kernel. It is known that every
problem in FPT has a (not necessarily polynomial) kernel [2]. To apply these kernels in
practice, it is desirable to find kernels that are as small as possible.

Methods were introduced to be able to find kernels, or prove that a problem does
not have a kernel of a certain size. First, the focus was on deciding whether certain
problems had polynomial kernels [3]. Under certain assumptions we can prove a kernel
of polynomial size does not exist by giving a cross-composition. This is a polynomial
time algorithm that transforms a large number of inputs into a single output of the
goal problem that acts as a logical OR of the given inputs. With the right bounds on the
parameter value of the output instance, kernel lower bounds can be proven.

It is easy to see some assumptions are needed in order to prove that a problem
does not have a kernel of small size. Since many of the problems that we consider
are NP-complete, P = NP would imply every problem in NP has a trivial polynomial
kernel. The preprocessing procedure can in this case decide whether it is given a YES-
or a NO instance. Depending on the result, it can then output a trivial, constant size,
YES/NO-instance of the same problem. To actually achieve kernelization lower bounds
we currently need an even stronger assumption than P 6= NP, which is NP 6⊆ coNP/poly.
As the reader may know, a problem is in coNP if it can be solved by a co-nondeterministic
Turing machine. coNP/poly is a complexity class containing some more problems,
namely the ones that can be solved be a co-nondeterministic Turing machine that is
allowed to use a polynomial size advice. This polynomial advice is an additional input
string, given on an extra tape, that may only depend on the input length n. Its length
should be polynomial in n. There are multiple reasons why we believe NP 6⊆ coNP/poly.
Intuitively, coNP and NP are somehow incomparable. For problems in NP we can give a
certificate to validate a YES-instance, such as a satisfying truth assignment for a Boolean
formula. For problems in coNP on the other hand, validating NO-instances is easy with
the right certificate. For example, if we ask if a certain Boolean formula is a tautology, a
truth assignment for which the formula is false would be a certificate for a NO-instance.
It seems like allowing a polynomial amount of advice is not enough to change the
situation.

1As is customary in the literature, we will sometimes abbreviate kernelization by kernel.

5

The framework for proving lower bounds can be further refined ([17], [5]), to be
able to also prove bounds on the size of polynomial kernels, such as proving a kernel of
bitsize O(nd−ε) is unlikely to exist for ε > 0. For example, it was proven that VERTEX

COVER, parameterized by the solution size k, does not have a kernel of size O(k2−ε),
unless NP ⊆ coNP/poly [8].

Most instances for classical graph problems can trivially be stored in O(n2) bits by
using an adjacency matrix, when the input is a graph on n vertices. One may wonder if
it is possible to reduce the number of edges in the graph in polynomial time, without
changing the answer, such that it can be stored in a sub-quadratic number of bits. This
process is often referred to as the sparsification of a graph. Let us for example consider
the vertex cover problem again. Suppose we want to find a vertex cover of size at most
k, and the graph contains a vertex of degree strictly larger than k. If we do not choose
this vertex, we would be forced to pick all its neighbors. However, that would exceed
the size limit of our vertex cover. As such, we could pick the vertex in the cover, delete
the vertex from the graph and decrease k by one. The original graph has a vertex cover
of size k if and only if the smaller graph has a vertex cover of size k− 1. In this way, we
have removed at least k + 1 edges and one vertex. We would like to know whether a
combination of such clever reductions can lead to a significant decrease of the size of
our instance.

The goal of this thesis is to analyze whether sparsification is possible for a number
of classic NP-complete problems in graph theory and logic. We can use the concept
of kernelization to answer this question, by choosing the number of vertices to be the
parameter. The question whether an instance can be compressed to an equivalent one of
sub-quadratic size, therefore turns into the question of whether the parameterization
by the number of vertices n in the graph has a kernel with bitsize O(n2−ε) for some
ε > 0. In this way, we obtain lower bounds stating that no kernel of size at most O(n2−ε)

exists, unless NP ⊆ coNP/poly, where n is the number of vertices in the graph. For logic
problems we will use the number of variables as the parameter to obtain sparsification
lower bounds.

Results We prove that for several graph-theoretical problems, there is no preprocessing
algorithm that transforms an n-vertex instance into an equivalent sparse instance, i.e.,
one with O(n2−ε) edges. This is established by considering a more general type of
preprocessing algorithm called a generalized kernel (see Section 2, Definition 2.2), and
proving that even this more general type of reduction algorithm cannot exist unless
NP ⊆ coNP/poly. Furthermore we study a variant of satisfiability which is NOT-ALL-
EQUAL SAT and give a sparsification lower bound and a generalized kernel that matches
the lower bound.

First of all we consider FEEDBACK ARC SET. Given a directed graph, this problem
asks if it is possible to find k arcs, whose removal results in an acyclic graph. In the
next section we use a linear parameter transformation from VERTEX COVER to obtain a

6

sparsification lower bound for the problem, which shows that there is no polynomial
time algorithm that reduces an instance with n vertices to an equivalent one of bitsize
O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

In Section 4 we consider the 4-COLORING problem. The problem asks if it is possible
to color the vertices of a graph with 4 colors, such that the endpoints of any edge receive
distinct colors. We prove that, under the same complexity assumption, no polynomial-
time reduction to an equivalent instance of sub-quadratic size is possible. The proof
is related to a construction by Jansen and Kratsch, who proved that an instance of the
related Chromatic Number problem (can the given graph be properly colored with q
colors?) that is large, but whose graph is simple because it has a small vertex cover,
cannot be reduced to an equivalent instance whose size is polynomial in that of the
vertex cover [18]. For our sparsification lower bound, we use some of the ideas of Jansen
and Kratsch, but we introduce several new gadgets.

We then consider LIST COLORING, in list coloring every vertex has a list of allowed
colors and we want to find a proper coloring such that each vertex gets a color from its
list. In general, LIST COLORING is a more general problem than 4-COLORING, which
is just a special case where each list contains colors {1,2,3,4}. By the previous result,
a sub-quadratic sparsification for LIST COLORING is unlikely to exist. Therefore, we
consider what happens when restricting the input graphs to be planar. Since the number
of edges in a planar graph is always linear in the number of vertices [9], it may not seem
surprising that we obtain a kernel of sub-quadratic size. However, since every vertex
contains a (arbitrarily long) list of possible colors, we need to bound the size of these
lists in our kernel.

To obtain a sparsification lower bound for HAMILTONIAN CYCLE, which asks if there
is a cycle in the graph that visits every vertex exactly once, we first consider the directed
version of this problem. In Section 6 we use DIRECTED HAMILTONIAN CYCLE, which
makes it easier to obtain a cross-composition, where we start from HAMILTONIAN PATH

on a restricted graph class. The kernelization lower bound for HAMILTONIAN CYCLE is
now obtained by showing how to transform an instance of DIRECTED HAMILTONIAN

CYCLE to one of HAMILTONIAN CYCLE, in such a way that the lower bound carries over.
In Section 7 we obtain a lower bound for DOMINATING SET. An input to the problem

consists of a graph G and integer k. The problem asks if there exists a subset of the
vertices S of size at most k, such that every vertex in V(G) \ S has a neighbor in S. We
use a combination of gadgets that were used to obtain lower bounds for a different
parameterization of DOMINATING SET [10]. The same cross-composition can be used to
obtain lower bounds for CONNECTED DOMINATING SET, which as the name suggests
asks for a dominating set that is connected. We show that these problems do not have
a generalized kernel of size O(n2−ε), unless NP ⊆ coNP/poly. These results carry over
to the dual problems, which has interesting implications, since both problems have a
kernel with a linear number of vertices, when parameterized by the solution size ([7],

7

[14]). Our results imply that it is very unlikely that we can further reduce the number of
edges in these kernels to a sub-quadratic amount.

Finally, in Section 8, we look at d-NOT-ALL-EQUAL SAT and the less well-known
problem d-HYPERGRAPH 2-COLORABILITY. Given a hypergraph where every edge con-
tains at most d vertices, the latter problem asks for a 2-coloring of the vertices such that
each edge contains at least one vertex of each color. It is known that NOT-ALL-EQUAL-
SAT does not have a generalized kernel of size O(nd−1−ε), unless NP ⊆ coNP/poly [18],
and using a linear parameter reduction we show that this also holds for d-HYPERGRAPH

2-COLORABILITY. Since every clause may contain d literals in d-NAE-Sat, it is not im-
mediately clear why this lower bound is tight. We present a kernel for d-HYPERGRAPH

2-COLORABILITY using 2 · nd−1 hyperedges, which matches the lower bound. This results
in a generalized kernel for d-NAE-SAT. This is surprising when we compare with the
“normal” satisfiability problem, since d-CNF-SAT is not believed to have a kernel of size
O(nd−ε) for any ε > 0 [8].

Related work A lot of work on proving kernelization lower bounds with different
parameterizations has already been done. FEEDBACK ARC SET is mostly studied when
given a tournament as an input, which is a directed graph T such that exactly one of the
arcs (u, v) or (v, u) is in T for every pair of vertices u and v. The problem is known to
have a kernel whose number of vertices is linear in the parameter k [1]. Note that, since
this problem asks for a subset of arcs, k is in this case bounded by the number of edges,
not by the number of vertices.

For q-Coloring, which asks if it is possible to properly color the vertices of a graph
with at most q colors, a study was done on the size of kernels for a number of different
parameterizations [18]. For example the parameterization by the size k of a vertex cover
in the graph is considered. It is shown that for q at least four, there is no kernel of size
O(kq−1−ε). Furthermore they obtain a kernel with O(kq) vertices that can be encoded in
O(kq) bits.

LONG PATH and LONG CYCLE asking for a simple path, respectively cycle, of length
at least k are also studied under various parameterizations [4]. Parameterized by the size
of a vertex cover both problems yield a kernel of quadratic size. When parameterized by
the solution size existence of a polynomial kernel would imply NP ⊆ coNP/poly.

The construction of a cross-composition does not always have to be deterministic in
order to prove lower bounds. This idea was first used in [20] to prove that a Ramsey-type
problem does not have a polynomial kernel, parameterized by k. This problem asks if a
given graph contains an independent set or a clique of size at least k. In this thesis, all
constructions will be deterministic.

It was already known that d-NAE-SAT does not have a kernel of size O(nd−1−ε)

unless NP ⊆ coNP/poly [18]. By our results it follows that this bound is in some way
tight, we can reduce the number of clauses to O(nd−1).

8

2 Preliminaries

For a (hyper)graph G let V(G) denote its set of vertices and E(G) its set of (hyper)edges.
Let a d-hypergraph be a hypergraph where every edge contains at most d vertices. We
call a hypergraph d-uniform if every edge contains exactly d vertices, by this definition
a normal graph is exactly the same as a 2-uniform hypergraph. For a set of vertices
S ⊆ V(G) we use G[S] to denote the graph induced by S, more formally G[S] has vertex
set S and set of edges {{u, v} ∈ S× S | {u, v} ∈ E(G)}. Graphs occurring in this thesis
are undirected, unless specified otherwise. They do not contain self-loops and there are
no duplicate edges. A graph G is bipartite if there exists a partitioning of its vertices into
sets S and T, such that G[S] and G[T] are edgeless. This means all edges in G have one
endpoint in S and one in T.

Let [r] be defined as [r] := {x ∈N | 1 ≤ x ≤ r}.
We now introduce the framework that will be used to prove our upper and lower

bounds.

I Definition 2.1 (Fixed parameter tractable). A parameterized problem is a language
Q ⊆ Σ∗ ×N. This means that such a problem has input instances (x, k), where the
second component is called the parameter. We say that such a problem is Fixed Parameter
Tractable (FPT) if there is a computable function f and an algorithm to determine if
(x, k) ∈ Q in O(f (k) · poly(|x|)) time. J

There are many possible parameters for a given problem. For example the size of
the required solution, or the size of a minimum vertex cover in the graph. Once the
parameterization is chosen, upper and lower bounds on kernel sizes (see Definition 2.2)
can be derived. Note that in the definition above f (k) can be any computable function,
resulting in an unfeasibly slow algorithm for even relatively small values of k.

In this thesis, the number of vertices in the graph will be used as the parameter.
It is obvious that the problem will then be FPT and have a polynomial kernel, but
this choice allows us to prove sparsification lower bounds using the framework of
cross-composition.

Let us start by giving the formal definition of a (generalized) kernel.

I Definition 2.2 ((Generalized) Kernelization [5]). LetQ,Q′ ⊆ Σ∗×N be parametrized
problems and let h : N→N be a computable function. A generalized kernelization for Q
into Q′ of size h(k) is an algorithm that on input (x, k) ∈ Σ∗ ×N takes time polynomial
in |x|+ k and outputs an instance (x′, k′) such that the following hold:
• The size of x′ and the parameter value k′ are bounded by h(k)
• The instance (x′, k′) is YES for Q′ is and only if (x, k) is YES for Q

The algorithm is a kernelization, or in short a kernel for Q if Q = Q′. J

It is known that every problem in FPT has a kernel (cf. [2]). Note that for generalized
kernels, there are no real restrictions on the output problem Q′. In particular, Q′ does

9

not have to be decidable. The preprocessing algorithms given in this thesis are actually
“useful”, they return an instance for the starting problem or some other NP-complete
problem. The lower bounds we present even hold against generalized kernels, which is
stronger than lower bounds for normal kernels.

To prove kernelization lower bounds, one possibility is to give a AND/OR-cross-
composition (Definition 2.4), where we are asked to combine instances of an NP-hard
problem into a single instance of the goal problem, that will act as a logical AND or
OR on the given inputs. When giving a AND/OR-cross-composition it is often easy to
assume that the given input instances are somehow similar. Therefore, the notion of a
polynomial equivalence relation is introduced.

I Definition 2.3 (Polynomial equivalence relation [5]). An equivalence relation R on
Σ∗ is called a polynomial equivalence relation if the following two conditions hold:
• There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y

belong to the same equivalence class in time polynomial in |x|+ |y|.
• For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S

into a number of classes that is polynomially bounded in the size of the largest
element of S. J

For graph problems, a polynomial equivalence relation can define input instances to
be equivalent if they share the same number of vertices. It can also be useful to require
that all instances in the same equivalence class ask for a solution of the same size, such
as for a dominating set of size k. For bipartite graphs a polynomial equivalence relation
can be used to ensure that the sizes of the two partite sets are the same.

Let us give an example equivalence relationR that ensures some of these properties
and verify that it a polynomial equivalence relation. Suppose our inputs are instances
for DOMINATING SET on bipartite graphs. This problems gets a bipartite graph G and
integer k as input and asks if there exists a set S ⊆ V(G) of size at most k, such that
every vertex in G has a neighbor in S or is contained in S. Given two instances (G, k)
and (G′, k′) where G is bipartite with V(G) = S ∪ T and similarly G′ is bipartite with
V(G′) = S′ ∪ T′ and these partitions are given on input. Let these instances be equivalent
under R if and only if |S′| = |S|, |T′| = |T| and k = k′. It is easy to see that R is an
equivalence relation and that we can decide in polynomial time whether two strings are
equivalent underR. It remains to show that the second condition is satisfied, to do this
we will first define how the inputs are stored. Inputs are given as the adjacency matrix
of the graph, followed by the indices of all vertices in one side of the partition, followed
by the parameter k (in unary). Suppose we are given a set S of input strings, and let
the largest element have length x, we need to show that the number of equivalence
classes in S is polynomial in x. We know that any instance in S has at most x vertices and
parameter k bounded by x. As such, the number of different parameter values occurring
in S is at most x. The number of combinations of the size of partition sets S and T is
bounded by x2. It follows that the number of equivalence classes underR is bounded
by x3, which is polynomial as desired.

10

I Definition 2.4 (AND/OR-cross-composition [5]). Let L ⊂ Σ∗ be a language, letR be a
polynomial equivalence relation on Σ∗, and letQ ⊆ Σ∗×N be a parameterized problem.
An OR-cross-composition of L into Q (with respect to R) of cost f (t) is an algorithm that,
given t instances x1, . . . , xt ∈ Σ∗ of L belonging to the same equivalence class of R,
takes time polynomial in ∑t

i=1 |xi| and outputs an instance (y, k) ∈ Σ∗ ×N such that the
following hold:

CB The parameter k is bounded by O(f (t) · (maxt
i=1 |xi|c)), where c is some constant

independent of t.
OR The instance (y, k) is YES for Q if and only if at least one instance xi is YES for L.

An AND-cross-composition of cost f (t) of L into Q (with respect toR) is an algorithm that
instead fulfills properties CB and AND.
AND The instance (y, k) is YES for Q if and only if all instances xi are YES for L. J

Depending on the cost of a given AND/OR-cross-composition, it is possible to derive
lower bounds for the size of generalized kernels of a parameterized problem. We will
use AND/OR-cross-compositions of the following cost to obtain our lower bounds.

I Definition 2.5 (Degree-d AND/OR-cross-composition). Let a degree-d AND/ OR-cross-
composition be an AND/OR-cross-composition of bounded cost where f (t) ∈ O(t1/d+o(1)).
We will also use degree-d cross-composition to refer to the OR variant. J

I Theorem 2.6 ([5]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗ ×N be a parameterized
problem and let d, ε be positive reals. If L has a degree-d OR-cross-composition into Q with
cost f (t) = t1/d+o(1), where t denotes the number of instances, and Q has a generalized kernel
with size bounded by O(kd−ε), then L ∈ coNP/poly. If, additionally, L is NP-hard, then
NP ⊆ coNP/poly. J

As such, a degree-2-OR-cross composition can be used to show that a parameterized
problem does not have a kernel of subquadratic size, unless NP ⊆ coNP/poly.

Suppose we want to give a degree-2 AND/OR cross-composition to a problem on
graphs, such as 4-COLORING. Let us for now use a simple equivalence relation that
defines all input graphs with the same number of vertices to be equivalent. Suppose we
are given input graphs G1, . . . , Gt, each consisting of n vertices.

Consider the most basic cross-composition, let the output graph G simply be the
union of all input graphs, meaning V(G) =

⋃
i∈[t] V(Gi) and E(G) =

⋃
i∈[t] E(Gi). It

is easy to see that we have now satisfied property AND in Definition 2.4, so this is an
AND-cross composition. However, it is not a degree-2 AND-cross composition, since
the constructed graph G has ∑i∈[t] V(Gi) = n · t vertices. The definition of a degree-2
AND-cross-composition only allows us to use O(nc ·

√
t) vertices for some constant c.

Thereby, we can not preserve all vertices of all input instances.
The constructions given in this paper, all rely on the same basic idea that allows us

to keep all edges of all input instances, while forgetting about most of the vertices. As a
starting problem, choose an appropriate NP-hard problem on a restricted class of graphs.

11

This graph class is chosen such that the vertices of all input instances can be partitioned
into two sets, such that we know the structure of the graph induced by either partite
set. For example, a bipartite graph, where each of the sets induces an edgeless graph.
Given t instances of your favorite NP-hard problem on bipartite graphs, we construct a
graph for our output problem by first creating 2

√
t independent sets of appropriate size.

We represent an input instance x by connecting two such independent sets such that the
graph they induce is exactly x. It then remains to construct additional gadgets to obtain
a logical OR of all inputs. See Figure 1 for an example of this construction using 9 input
graphs.

1 2 3

1 2 3

G1 G2 G3

G4 G5 G6

G7 G8 G9

√
t

√
t

Vertices in all inputs: 9 · 5 = 45 # Vertices in G:
√

9 · 5 = 15

Figure 1. The basic idea used to keep all edges in a degree-2 cross-composition, demonstrated
with nine small bipartite input graphs.

In order to use obtained lower bounds to prove lower bounds for other parameterized
problems, a linear parameter transformation is defined as follows.

I Definition 2.7 (Linear parameter transformation [17]). Let L1 and L2 be two parame-
terized problems. We say that L1 is linear parameter reducible into L2, written L1 ≤lpt L2,
if there exists a polynomial time computable function f mapping instances of L1 into
instances of L2, such that for all (x, k) ∈ Σ∗ ×N, if (x′, k′) = f (x, k) then:
• (x, k) ∈ L1 ⇔ (x′, k′) ∈ L2 and
• k′ = O(k). J

In some cases an existing NP-hardness reduction can be used as a linear param-
eter transformation. We give an example of this in Section 3, where we use the NP-
completeness proof of FEEDBACK ARC SET by Karp [19] to obtain a sparsification lower
bound for this problem.

I Theorem 2.8 ([17],[18]). Let L1 and L2 be two parameterized problems, and let d ∈ N be
some constant. If L1 ≤lpt L2 and L2 has a generalized kernel of size O(kd), then L1 also has a
generalized kernel of size O(kd). J

12

Theorem 2.8 will be used to show that if parameterized problem L1 does not have a
kernel of size O(kd), and L1 ≤lpt L2, then neither does L2.

13

3 Feedback Arc Set

In this section we will show a kernelization lower bound for FEEDBACK ARC SET (FAS).
In the FEEDBACK ARC SET problem we are given a directed graph G and an integer k.
We ask whether it is possible to remove at most k arcs from G, such that the result is
a directed acyclic graph. To prove a kernelization lower bound, we will use a linear
parameter transformation from VERTEX COVER. A vertex cover of a graph is a subset
S of its vertices, such that for every edge in the graph at least one of its endpoints is
contained in S, we also say that this edge is covered by (some vertex in) S. In the VERTEX

COVER problem we ask if there exists a vertex cover in the graph that has size at most k.
Dell et al. showed a stronger result of the following Lemma, in Theorem 2 in [8].

I Lemma 3.1. VERTEX COVER parameterized by the number of vertices n does not have a
generalized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. J

The reduction given below is equal to the NP-hardness proof of FAS given by Karp
in [19].

I Theorem 3.2. FEEDBACK ARC SET parameterized by the number of vertices n does not
have a generalized kernel of size O(n2−ε), unless NP ⊆ coNP/poly.

Proof. Suppose we are given an undirected graph G = (V, E) and ask if it has a vertex
cover of size at most k. We construct a directed graph G′ = (V ′, E′) for feedback arc
set in the following way. For every vertex in v, add vertices vin and vout to V ′ and arc
(vin, vout) to E′. For every edge {u, v} in E, we add arcs (uout, vin) and (vout, uin) to E′.
See Figure 2 for an example. It remains to show validity of this reduction.

u

v w

uout

vout
wout

uin

vin win

Figure 2. Reduction from VERTEX COVER (left) to FEEDBACK ARC SET (right) on a small graph.

B Claim 3.3. G has a vertex cover of size k if and only if G′ has a feedback arc set of size k.

Proof . (⇒) Let G have a vertex cover S of size at at most k. For every vertex v ∈ S,
add (vin, vout) to S′, which will be the feedback arc set for G′. Therefore it remains to
prove that G′[V ′ \ S′] is acyclic. Suppose for contradiction that G′ contains a cycle after
removing all arcs in S′ from E′. A cycle cannot consist of only arcs of type (uin, uout), so
it must contain an arc (uout, vin) for some u, v ∈ V ′. Since this implies that {u, v} was an

14

edge in E, either u or v must be in the vertex cover S of G. If u ∈ S, then (uin, uout) was
added to S′. Therefore, vertex uout has in-degree 0 in G′[V ′ \ S′] and can never be part
of a cycle. Similarly, if v ∈ S, then (vin, vout) /∈ G′[V ′ \ S′]. Consequently, vertex vin has
out-degree 0 and can not be part of a cycle. So, either vin or uout can not be contained
in a cycle, implying that the edge (uout, vin) is not in a cycle. This contradicts the initial
assumption, therefore, G′[V ′ \ S′] is acyclic.

(⇐) Now suppose we are given a feedback arc set S′ in G′ of size at most k. If
the FAS contains an arc (uout, vin), we can replace it by the arc (vin, vout) since any cycle
traversing the first arc, must also traverse (vin, vout). Therefore, we may assume that
is contains only arcs of type (vin, vout). Now we add vertex v to the vertex cover S of
G if (vin, vout) is in the feedback arc set of G′. Now suppose for contradiction that S
is not a proper vertex cover, so at least one edge {u, v} is not covered. This implies
that arcs (uin, uout) and (vin, vout) are not present in S′. Since {u, v} ∈ E, it follows that
arcs (uout, vin) and (vout, uin) are contained in E′ and these edges are not present in S′

by assumption. But then, G′[V ′ \ S′] contains the directed cycle (uin, uout, vin, vout, uin),
which contradicts that S′ is a Feedback Arc Set of G′. So, S must be a Vertex Cover of
G. C

The reduction given above satisfies all the properties of a linear-parameter transfor-
mation from VERTEX COVER parameterized by the number of vertices n, to FEEDBACK

ARC SET parameterized by the number of vertices n (Definition 2.7). Suppose FEEDBACK

ARC SET does have a sub-quadratic generalized kernel, by Theorem 2.8 this implies that
VERTEX COVER also has a sub-quadratic generalized kernel. But then, using Lemma 3.1
it follows that NP ⊆ coNP/poly. J

15

4 4-Coloring

In this section we will look at the 4-COLORING problem. A k-coloring of a graph G is a
function c : V(G)→ [k]. The 4-COLORING problem asks there exists a proper 4-coloring
of a given input graph. A graph coloring is proper if the two endpoints of any edge
in the graph are assigned distinct colors. We show that 4-COLORING does not have
a generalized kernel of size O(n2−ε), by giving a degree-2 cross-composition from an
NP-hard problem that will be introduced later. Before giving the construction, we first
present some of the gadgets that will be needed and their most important properties.

I Definition 4.1 (Treegadget). A treegadget is the graph obtained from a complete binary
tree by replacing each vertex v by a triangle on vertices rv, xv and yv. Let rv be connected
to the parent of v and let xv and yv be connected to the left and right subtree of v. An
example of a treegadget with 8 leaves is shown in Figure 3. If vertex v is the root of
the tree, then rv is named the root of the treegadget. If v does not have a left subtree,
then xv is a leaf of this gadget, similarly, if v does not have a right subtree then we refer
to yv as a leaf of the gadget. Let the height of a treegadget be equal to the height of its
corresponding binary tree. J

leaves

root

(a) Treegadget with no red leaf.

root

leaves

(b) Treegadget where one of the leaves is red.

Figure 3. Treegadgets with example colorings.

It is easy to see that a treegadget is 3-colorable. The important property of this gadget
is that if there is a color that does not appear on any leaf in a proper 3-coloring, then
this must be the color of the root. Consequently, if the root is not colored with a certain
color, then at least one of the leaves must be. See Figure 3a for an illustration. This
property will be used to prove that if the graph constructed for the cross-composition
has a 4-coloring, at least one input instance was a YES-instance.

I Lemma 4.2. Let T be a treegadget with root r and let c : V(T) → {1, 2, 3} be a proper
3-coloring of T. If k ∈ {1, 2, 3} such that c(v) 6= k for every leaf v of T, then c(r) = k.

Proof. This will be proven using induction on the structure of a treegadget. For a single
triangle, the result is obvious. Suppose we are given a treegadget of height h and that
the statement holds for all treegadgets of smaller height. Consider the top triangle r, x, y
where r is the root. For both subtrees of this triangle, it is clear that all leaves in the

16

subtree are colored using {1, 2, 3} \ k. Thus, it follows from the induction hypothesis
that the roots of the left and right subtree are colored using k. Hence x and y can not use
color k. Since x, y, r is a triangle, r has color k in the 3-coloring. J

The following lemma will be used to argue that if one of the input instances is a
YES-instance, we can extend the coloring of this input to a proper 4-coloring of the graph
constructed for the cross-composition.

I Lemma 4.3. Let T be a treegadget with leaves L ⊆ V(T) and root r. Any 3-coloring
c′ : L→ {1, 2, 3} that is proper on T[L] can be extended to a proper 3-coloring of T. If there is a
leaf v ∈ L such that c′(v) = i, then such an extension exists with c(r) 6= i.

Proof. We will prove this by induction on the height of the treegadget. For a single
triangle, the result is obvious. Suppose the lemma is true for all treegadgets up to
height h − 1 and we are given a treegadget of height h with root triangle r, x, y and
with coloring of the leaves c′. Let one of the leaves be colored using i. Without loss of
generality assume this leaf is in the left subtree, which is connected to x. By the induction
hypothesis, we can extend the coloring restricted to the leaves of the left subtree to a
proper 3-coloring of the left subtree such that c(r1) 6= i. We assign color i to x. Since c′

restricted to the leaves in the right subtree is a proper 3-coloring of the leaves in the
right subtree, by induction we can extend that coloring to a proper 3-coloring of the
right subtree. Suppose the root of this subtree gets color j ∈ {1, 2, 3}. We now color y
with a color k ∈ {1, 2, 3} \ {i, j}, which must exist. Finally, choose c(r) ∈ {1, 2, 3} \ {i, k}.
By definition, the vertices r, y, and x are now assigned a different color. Both x and y
have a different color than the root of their corresponding subtree, thereby c is a proper
coloring. We obtain that the defined coloring c is a proper coloring extending c′ with
c(r) = i. An example is shown in Figure 3b. J

I Definition 4.4 (Triangular gadget). A triangular gadget is the graph on 12 vertices
depicted in Figure 4. Vertices u, v, and w are the corners of the gadget, all other vertices
are referred to as inner vertices. J

u

wv

inner vertices

corner

Figure 4. Triangular gadget.

It is easy to see that a triangular gadget is always 3-colorable in such a way that every
corner gets a different color. Moreover, we can prove the following lemma.

17

I Lemma 4.5. Let G be a triangular gadget with corners u,v and w and let c : V(G)→ {1, 2, 3}
be a proper 3-coloring of G. Then c(v) 6= c(u) 6= c(w) 6= c(v). Furthermore, every partial
coloring that assigns distinct colors to the three corners of a triangular gadget can be extended to
a proper 3-coloring of the entire gadget.

Proof. Suppose there is a proper 3-coloring c of the entire gadget, such that c(u) =

c(v) = i for two distinct corners of the gadget and i ∈ {1, 2, 3}. Note that the inner
vertices of the gadget consist of three triangles. There is one such triangle for which
every of its vertices has either u or v as a neighbor. This implies that color i cannot be
used in this triangle, which means that c can never be a proper 3-coloring of the gadget.

Given a partial coloring that assigns distinct colors to the corners, it is easy to extend
this coloring to a coloring of the entire gadget, as shown in Figure 4. J

This concludes the description of the gadgets that will be used. We now define the
source problem for the cross-composition. It is a modification of 3-COLORING WITH

TRIANGLE SPLIT DECOMPOSITION, which is given as input a graph G with partition
of its vertex set into X ∪ Y such that G[X] is an edgeless graph and G[Y] is a disjoint
union of triangles. Such a graph is called a triangle split graph, the problem asks if this
graph has a proper 3-coloring. The problem we define furthermore requires that the
independent set is colored using only 2 colors, as defined below. 3-COLORING WITH

TRIANGLE SPLIT DECOMPOSITION was used by Bodlaender et al. to prove kernel lower
bounds for CHROMATIC NUMBER parameterized by the size of a vertex cover [5].

2-3-COLORING WITH TRIANGLE SPLIT DECOMPOSITION

Input: A graph G with a partition of its vertex set into X ∪ Y such that G[X] is an
edgeless graph and G[Y] is a disjoint union of triangles.

Question: Is there a proper 3-coloring c : V(G) → {1, 2, 3} of G, such that c(x) ∈
{1, 2} for all x ∈ X? We will refer to such a coloring as a 2-3-coloring of G.

I Lemma 4.6. 2-3-COLORING WITH TRIANGLE SPLIT DECOMPOSITION is NP-complete.

Proof. It is easy to verify the problem is in NP. We will show that it is NP-hard by giving
a reduction from 3-NOT-ALL-EQUAL-SATISFIABILITY (3-NAE-SAT), which is known
to be NP-complete [16]. For the 3-NAE-SAT problem we are given a Boolean formula
in conjunctive normal form (CNF). This means we are given a conjunction of clauses,
where each clause is a disjunction of exactly three literals. We ask if there exists a truth
assignment to the variables such that every clause contains at least one true and at least
one false literal.

Suppose we are given formula F = C1 ∧ C2 ∧ . . . ∧ Cm over set of variables U.
Construct graph G in the following way. For every variable x ∈ U, construct a variable
gadget as depicted in Figure 5a. For every clause Ci, construct a clause gadget as depicted
in Figure 5b. For Ci = (`1 ∨ `2 ∨ `3) with i ∈ [m], connect vertex `j for j ∈ {1, 2, 3} to
vertex vj in gadget Ci in G.

18

x

¬x

(a) Gadget for a variable

v2 v3

r1

r0

v1 u0 u1

u2

b2b1

(b) Gadget for a clause

Figure 5. The gadgets constructed for the clauses and variables of F.

It is easy to verify that G has a triangle split decomposition. In Figure 5, triangles are
shown with white vertices and the independent set is shown in black.

Suppose G is 2-3-colorable with color function c : V(G) → {1, 2, 3} and let c(v) ∈
{1, 2} for all v in the independent set. Note that in each of the pairs {x,¬x}, {b1, b2},
and {u1, u2} the two vertices have distinct colors in any proper 2-3-coloring of G. To
satisfy F, let x = true if and only if c(x) = 2. To show that this results in a satisfying
assignment, consider any clause Ci for i ∈ [m]. Note that c(x) = 2⇔ c(¬x) = 1. Since
c(b1) 6= c(b2) and c(b1), c(b2) ∈ {1, 2} we obtain c(r0) = 3. Therefore, v1 and u0 are
colored using colors 1 and 2.

Suppose c(v1) = 1. In the construction we added an edge from v1 to `1 and thereby
c(`1) = 2. This implies that the first literal of Ci is set to true. By c(u0) = 2, we know
c(u1) = 1 and c(u2) = 2. Thereby, c(r1) 6= 2, so either c(v2) = 2 or c(v3) = 2. If
c(v2) = 2, then c(`2) = 1 which implies that literal `2 is false in Ci. Similarly, if c(v3) = 2,
then c(`3) = 1 which implies that literal `3 is false in Ci. In both cases it follows that
clause Ci is NAE-satisfied.

When c(v1) = 2, we can use the same argument with the colors 1 and 2 swapped, to
show that `1 is false in Ci and `2 or `3 is true, which again implies that Ci is NAE-satisfied.

Suppose F is a YES-instance, with satisfying truth assignment S. Define color function
c : V(G) → {1, 2, 3} as c(x) := 1 and c(¬x) := 2 if x is set to false in S, define c(x) := 2
and c(¬x) := 1 otherwise. Color the remainder of the variable gadgets consistently.
We now need to show how to color the clause gadgets. Consider any clause Ci =

(`1 ∨ `2 ∨ `3). At least one of the literals is true and one is set to false, by symmetry we
only consider four cases. The corresponding colorings are depicted in Figure 6, where
red corresponds to 1, green corresponds to 2 and blue corresponds to color 3. It is easy
to verify that this leads to a proper 3-coloring that only uses colors 1 and 2 on vertices in
the independent set. J

19

`2 `3`1 `2 `3`1 `2 `3`1 `2 `3`1

Figure 6. Colorings of a clause gadget, depending on the coloring of the literals `1, . . . , `3. Note
that if the roles of `2 and `3 are exactly reversed, you can just exchange colors between their
parents to get a proper coloring for that situation.

I Theorem 4.7. 4-COLORING parameterized by the number of vertices n does not have a
generalized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. By Theorem 2.6 and Lemma 4.6 it suffices to give a degree-2 cross-composition
from the 2-3-coloring problem defined above into 4-COLORING parameterized by the
number of vertices. For ease of presentation, we will actually give a cross-composition
into the 4-LIST COLORING problem, whose input consists of a graph G and a list function
that assigns every vertex v ∈ V(G) a list L(v) ⊆ [4] of allowed colors. The question is
whether there is a proper coloring of the graph in which every vertex is assigned a color
from its list. The 4-LIST COLORING problem reduces to the ordinary 4-COLORING by a
simple transformation that adds a 4-clique to enforce the color lists, which will prove
the theorem. For now, we focus on giving a cross-composition into 4-LIST COLORING.

We start by defining a polynomial equivalence relation on inputs of 2-3-COLORING

WITH TRIANGLE SPLIT DECOMPOSITION. Let two instances of 2-3-COLORING WITH

TRIANGLE SPLIT DECOMPOSITION be equivalent under equivalence relationR when
they have the same number of triangles and the independent sets have the same size.
It is easy to see thatR is a polynomial equivalence relation. By duplicating one of the
inputs, we can ensure that the number of inputs to the cross-composition is an even
power of two; this does not change the value of OR, and increases the total input size
by at most a factor four. We will therefore assume that the input consists of t instances
of 2-3-COLORING WITH TRIANGLE SPLIT DECOMPOSITION such that t = 22i for some
integer i, implying that

√
t and log

√
t are integers. Let t′ :=

√
t. Enumerate the instances

as Xi,j for 1 ≤ i, j ≤ t′. Each input Xi,j consists of a graph Gi,j and a partition of its vertex
set into sets U and V, such that U is an independent set of size m and Gi,j[V] consists of n
vertex-disjoint triangles. Enumerate the vertices in U and V as u1, . . . , um and v1, . . . , v3n,
such that vertices v3`−2, v3`−1 and v3` form a triangle, for ` ∈ [n]. We will create an
instance G′ of the 4-LIST-COLORING problem, which consists of a graph G′ and a list

20

{x, y}

S T

{x, y, a} {x, y, z, a}

{x, y, a}

{y, z}

{y, z, a}

{y, z}

S1

S2

S3

S4

rS rTGS GT

{x, y, z}

Figure 7. Skeleton of the construction that is used when combining t = 16 instances of 2-4-
COLORING ON TRIANGLE SPLIT GRAPHS into one instance of 4-LIST COLORING, implying
t′ =
√

16 = 4. Each input is partitioned into an independent set of size m = 3 and a set of n = 2
triangles. The lists of allowed colors for different vertices in the graph are visualized by arrows.
Edges between vertices in S and T are left out for simplicity.

function L that assigns each vertex a subset of the color palette. For ease of presentation
we use the letters {x, y, z, a} to indicate the four colors, instead on the numbers one to
four. Refer to Figure 7 for a sketch of G′.

We start the construction by creating the basic graph that keeps all input edges as
described in the preliminaries, where we get triangle-split graphs instead of bipartite
graphs as inputs.

1. Initialize G′ as the graph containing t′ sets of m vertices each, called Si for i ∈ [t′].
Label the vertices in each of these sets as si

` for i ∈ [t′], ` ∈ [m] and let L(si
`) :=

{x, y, a}.

2. Add t′ sets of n triangular gadgets each, labeled Tj for j ∈ [t′]. Label the corner

vertices in Tj as tj
` for ` ∈ [3n], such that vertices tj

3`−2, tj
3`−1 and tj

3` are the corner

vertices of one of the gadgets for ` ∈ [n]. Let L(tj
`) := {x, y, z} and for any inner

vertex v of a triangular gadget, let L(v) := {x, y, z, a}.

3. Connect vertex si
k to vertex tj

` if in graph Gi,j vertex uk is connected to v`, for
k ∈ [m] and ` ∈ [3n]. By this construction, the subgraph of G′ induced by Si ∪ Tj

21

is isomorphic to the graph obtained from Gi,j by replacing each triangle with a
triangular gadget.

We will now create the additional structure, that allows us to select one instance that
should be 4-colorable. First, we add one treegadget that will ensure that at least one of
the groups in S is colored using only the colors x and y.

4. Add a treegadget GS with t′ leaves to G′ and enumerate these leaves as 1, . . . , t′;
recall that t′ is a power of two. Connect the i’th leaf of GS to every vertex in Si. Let
the root of GS be rS and define L(rS) := {x, y}. For every other vertex v in GS let
L(v) := {x, y, a}.

For T we create a treegadget that ensures that for one group of T, the entire group
(including the inner vertices of gadgets) is colored using {x, y, z}. In other groups, the
idea is to color the inner vertices using {x, y, a} and the corner vertices using color z.

5. Add a treegadget GT with 2t′ leaves to G′ and enumerate these leaves as 1, . . . , 2t′.
For j ∈ [t′], connect every inner vertex of a triangular gadget in group Tj to leaf
number 2j− 1 of GT. For every leaf v with an even index let L(v) := {y, z} and
let the root rT have list L(rT) := {y, z}. For every other vertex v of gadget GT let
L(v) := {y, z, a}.

By construction, GT has twice as many leaves as GS. It is important to notice that
using a similar construction as for GS –having one leaf per group– is not desirable here.
A leaf in GT is connected to all inner vertices of the triangular gadgets in some group.
Consider a group in T that will not be part of our solvable input instance, we want to
color its inner vertices using {x, y, a}. This implies the leaf connected to this group is
always colored using z. However, we have many such groups and two neighboring
leaves cannot both get color z. Therefore, we use twice as many leaves where the odd
leaves connect to the groups, while the even leaves are just there to fill the tree and keep
the nice property of a treegadget we proved in Lemma 4.2.

We can now verify that the created graph G′ acts as a logical OR of the given input
instances.

B Claim 4.8. The graph G′ is 4-list colorable⇔ some input instance Xi∗,j∗ is 2-3-colorable.

Proof . (⇒) Suppose we are given a 4-list coloring c for G′. Since no vertex in GS contains
color z in its list, the restriction of c to GS is a 3-coloring with colors {x, y, a} where the
root is not colored using a by the definition of its list. From Lemma 4.2 it follows that
there is a leaf v of GS such that c(v) = a. This leaf is connected to all vertices in some Si∗

in Step 4, which implies that none of the vertices in Si∗ are colored using a. Therefore all
vertices in Si∗ are colored using x and y. Similarly the gadget GT has at least one leaf
v such that c(v) = a, note that this must be a leaf with an odd index by the definition
of the lists in Step 5. Therefore there exists Tj∗ where all vertices are colored using x,y

22

or z. Thereby in Si∗ ∪ Tj∗ only three colors are used, such that Si∗ is colored using only
two colors. Using Lemma 4.5 and the fact that G′[Si∗ ∪ Tj∗] is isomorphic to the graph
obtained from Gi∗,j∗ by replacing triangles by triangular gadgets, we conclude that Xi∗,j∗

has a proper 2-3-coloring.
(⇐) Suppose c : V(Gi∗,j∗) → {x, y, z} is a proper 2-3-coloring for Xi∗,j∗ . We will

construct a 4-list coloring c′ : V(G′)→ {x, y, z, a} for G′. For uk with k ∈ [m] in instance
Xi∗,j∗ let c′(si∗

k) := c(uk) and for v` for ` ∈ [3n] let c′(tj∗

`) := c(v`). Let c′(si
`) := a for

i 6= i∗ and ` ∈ [n], furthermore let c′(tj
`) := z for j 6= j∗ and ` ∈ [3m]. For triangular

gadgets in Tj∗ the coloring c′ defines all corners to have distinct colors; by Lemma 4.5
we can color the inner vertices consistently using {x, y, z}. For Tj with j ∈ [t′] and j 6= j∗,
the corners of triangular gadgets have color z and we can now consistently color the
inner vertices using colors x, y, and a.

The leaf of gadget GS that is connected to Si∗ can be colored using a. Every other leaf
can use both x and y, so we can properly 3-color the leaves such that one leaf has color
a. From Lemma 4.3 it follows that we can consistently 3-color GS such that the root rS
does not receive color a, as required by L(rS). Similarly, in triangular gadgets in Tj∗ the
inner vertices do not have color a. As such, leaf 2j∗ − 1 of GT can be colored using a and
we color leaf 2j∗ with y. For j ∈ [t′] with j 6= j∗ color leaf 2j− 1 with z and leaf 2j using
y. Now the leaves of GT are properly 3-colored and one is colored a. It follows from
Lemma 4.5 that we can color GT such that the root is not colored a. This completes the
4-list coloring of G′. C

It remains to bound the number of vertices of the constructed graph G′. Observe that
a treegadget has at least as many leaves as its corresponding binary tree, therefore the
graph G′ has at most

mt′︸︷︷︸
|S|

+ 12nt′︸ ︷︷ ︸
|T|

+ 6t′︸︷︷︸
|GS|

+ 12t′︸︷︷︸
|GT |

= O(t′ · (m + n)) = O(
√

t max |Xi,j|)

vertices. Claim 4.8 shows that we have given a degree-2 cross-composition into 4-LIST

COLORING. By Theorem 2.6, and Lemma 4.6 it follows that 4-LIST COLORING does
not have a generalized kernel of size O(n2−ε), unless NP ⊆ coNP/poly. To prove the
theorem about 4-COLORING, we give a linear parameter transformation from 4-LIST

COLORING. Given an instance (G, L) for 4-LIST COLORING where every list is a subset
of {c1, c2, c3, c4} we construct graph G′ for 4-COLORING. Initialize G′ as G. We now
add new vertices to G′ to simulate the lists. Add a clique on 4 vertices {c1, c2, c3, c4}.
If for any vertex v in G′, some color is not contained in L(v), connect v to the vertex
corresponding to this color. As proper colorings of the resulting graph correspond to
proper list colorings of G′, the resulting graph is 4-colorable if and only if there is a
YES-instance among the inputs. Theorem 4.7 now follows from Theorem 2.8. J

23

5 Planar List Coloring

Since most of the results obtained for 4-COLORING will also carry over to LIST COL-
ORING, we now consider a slightly different problem, which is list coloring on planar
graphs:

PLANAR LIST COLORING Parameter: The number of vertices n
Input: A pair (G, L) where G is an undirected planar graph and color function
L : V(G)→ P(N) that maps each vertex v to a list of colors L(v).

Question: Is there a proper coloring c : V(G) → N such that c(v) ∈ L(v) for all
v ∈ V(G) and furthermore such that c(u) 6= c(v) for every edge {u, v} ∈ E(V)?

Storing the graph does not take a quadratic amount of space here, since planar
graphs have a linear number of edges. However, we need to store a list of colors for
each vertex, that may have an arbitrary length.

I Theorem 5.1. PLANAR LIST COLORING parameterized by the number of vertices n has a
kernel of size O(n log n).

Proof. We present the following simple reduction rule, to reduce the length of the list of
a vertex, depending on its degree.

RM Let v be a vertex of the graph with a list of colors with length k and degree dv. If
k > dv + 1, remove vertex v from the graph.

The following lemma shows that this reduction rule is valid.

B Lemma 5.2. If instance (G, L) is transformed into (G′, L) by applying rule RM on vertex v∗,
then G has a coloring respecting the lists L if and only if G′ has a coloring respecting the lists L.

Proof . Suppose instance G has a proper coloring respecting the lists L. Since G′ is a
subgraph of G we can simply use the same coloring for G′.

Suppose G′ has a proper coloring c respecting the lists in L. For all vertices except v∗,
we use this same coloring in G to obtain a partial coloring respecting the lists. It remains
to color vertex v∗. Since L(v∗) has more colors than v∗ has neighbors, there is at least
one color in L(v∗) that is not used by any of its neighbors, pick such a color to complete
the proper list coloring of G. C

We repeatedly apply rule RM for all vertices in the graph, until it can no longer be
applied. Note that this can be done in polynomial time, since checking if the rule can
be applied takes polynomial time and each time it is applied the number of vertices
decreases by one. After this process the remaining colors are relabeled from 1 to m,
where m is the number of remaining colors. It is clear that relabeling does not influence
the answer.

The graph is planar, which implies that the number of edges is linear in the number
of vertices. Therefore, O(n log n) storage is sufficient for the structure of the graph using

24

an adjacency list encoding. However, we also need to take the lists of colors into account.
In a planar graph, the total number of edges is bounded by 3n, as proven in Corollary
4.2.10 in [9]. Hereby, the total degree of all vertices is bounded by 6n. After applying
reduction rule RM for every vertex, the length of the list of any remaining vertex v is
bounded by dv + 1, such that

Total length of all lists ≤ ∑
v∈V

dv + 1 ≤ 7 · n.

Each element of the list also needs a small amount of storage, but since there are at most
7n records in total, there are at most 7n different colors, implying that only O(log n) bits
are sufficient to store a single color. Therefore, the total size of all lists is bounded by
O(n log n) bits. J

25

6 Hamiltonian Cycle

In this section we will show that HAMILTONIAN CYCLE does not have a generalized
kernel of size O(n2−ε), unless NP ⊆ coNP/poly, by giving a degree-2 cross-composition.
It is easy to give a linear parameter reduction from DIRECTED HAMILTONIAN CYCLE to
HAMILTONIAN CYCLE. Therefore, we will first prove that DIRECTED HAMILTONIAN

CYCLE does not have a generalized kernel of sub-quadratic size, unless NP ⊆ coNP/poly.

(DIRECTED) HAMILTONIAN CYCLE Parameter: The number of vertices n
Input: A (directed) graph G.

Question: Does there exist a (directed) cycle in G that visits every vertex in V(G)

exactly once?

The construction will make extensive use of the path gadget depicted in Figure 8.
Such a gadget has the following property, that will be very useful for giving a cross-
composition.

I Lemma 6.1. If a directed graph G contains a path gadget as an induced subgraph, such that
the remainder of G only connects to the path gadget at vertices IN0 and IN1, then any directed
Hamiltonian cycle in G traverses the gadget via Path 0 or Path 1, as depicted in Figure 8.

Proof. Any Hamiltonian cycle in G′ should visit the center vertex of the path gadget.
Since IN0 and IN1 are its only two neighbors in G′, the only option is to visit them
consecutively, Path 0 and Path 1 are the only two options to do this. J

Path 0
IN0 IN1

Path 1

Figure 8. Path gadget.

The following problem will be used as a starting problem for the degree-2 cross-
composition.

HAMILTONIAN s− t PATH ON BIPARTITE GRAPHS

Input: An undirected bipartite graph G with partite sets A and B such that |B| =
n = |A|+ 1, together with two distinguished vertices b1 and bn that have degree 1.

Question: Does G have a Hamiltonian path from b1 to bn?

It is known that Hamiltonian path is NP-complete on bipartite graphs [16] and it is easy
to see that it remains NP-complete when fixing a degree 1 start- and endpoint.

26

I Theorem 6.2. (DIRECTED) HAMILTONIAN CYCLE parameterized by the number of vertices
n does not have a generalized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. We first define an equivalence relation R on instances of HAMILTONIAN s− t
PATH ON BIPARTITE GRAPHS. Let two instances be equivalent underR, when they have
the same number of vertices. By definition, their independent sets now also have the
same size. It is easy to verify thatR is a polynomial equivalence relation.

Suppose we are given t instances X1, . . . , Xt. Duplicate one of the input instances
until

√
t is an integer. This will multiply the number of instances by at most four and it

does not affect the degree-2 cross-composition. Thereby we can relabel the given input
instances as Xi,j, where i, j ∈ [

√
t].

Each instance Xi,j consists of a graph Gi,j and a partition of its vertex set into inde-
pendent sets A∗i,j and B∗i,j. Let |A∗i,j| = m and |B∗i,j| = n = m + 1 for each i, j ∈ [

√
t]. For

each instance, label all elements in A∗i,j as a∗1 , . . . , a∗m and all elements in B∗i,j as b∗1 , . . . , b∗n
such that b∗1 and b∗n have degree 1.

Using the following steps, we create an instance G′ of DIRECTED HAMILTONIAN

CYCLE that acts as the logical OR of the inputs.

1. First of all construct
√

t groups of m path gadgets each. Refer to these groups as
Ai, for i ∈ [

√
t], and label the gadgets within group Ai as ai

1, . . . , ai
m. Let the union

of all created groups Ai be named A.

2. Similarly, construct
√

t groups of n path gadgets each. Refer to these groups as Bj,

for j ∈ [
√

t], and label the gadgets within group Bj as bj
1, . . . , bj

n. Let B be the union
of all Bj for j ∈ [

√
t].

3. For every input instance Xi,j, for each edge {a∗k , b∗`} in Gi,j with k ∈ [m], ` ∈ [n], do
the following.

• Add an arc from IN0 of ai
k to IN1 of bj

`

• and an arc from IN0 of bj
` to IN1 of ai

k.

If some Xi,j has a Hamiltonian s− t path, it can be mimicked by the combination of Ai
and Bj, where for each vertex in Xi,j we traverse its path gadget in G′, following path
1. The following construction steps are needed to extend such a path to a Hamiltonian
cycle in G′. Therefore, we create a path through each group Ai for i ∈ [

√
t], that traverses

all gadgets in this group from ai
1 up to ai

m, using Path 0. For groups in B, a similar path
is created.

4. Add an arc from the IN1 terminal of ai
` to the IN0 terminal of ai

`+1 for all ` ∈ [m− 1]
and all i ∈ [

√
t].

5. Similarly, add an arc from the IN1 terminal of bi
` to the IN0 terminal of bi

`+1 for all
` ∈ [n− 1] and all i ∈ [

√
t].

27

B1 B2

A1 A2

y1

x2 y2 next

x1start

end

in0 in1

a2
1 a2

2 a2
3

Figure 9. The general structure of the created graph G′ , when given 4 inputs (such that r = 1)
with n = 3 and m = 4. A possible Hamiltonian Cycle is shown in blue.

We create an additional structure that allows us to select exactly
√

t− 1 groups from A
and
√

t− 1 groups from B, for which all gadgets are traversed in order via Path 0. This
leaves exactly one group Ai and one group Bj to be traversed using Path 1.

6. Add a vertex START and a vertex END and the arc (END, START).

7. Let r :=
√

t− 1, add 2r tuples of vertices, xi, yi for i ∈ [2r] and connect START to x1.
Furthermore, add the arcs (yi, xi+1) for i ∈ [2r− 1].

8. For i ≤ r we add arcs from xi to the IN0 terminal of the gadgets aj
1, j ∈ [

√
t].

Furthermore we add an arc from IN1 of aj
m to yi for all j ∈ [

√
t] and i ∈ [r]. When

i > r add arcs from xi to the IN0 terminal of bj
1 for j ∈ [

√
t] and connect IN1 of bj

n to
yi.

9. Add a vertex NEXT and the arc (y2r, NEXT) and an arc from NEXT to the IN1 terminal
of all gadgets bj

1 for j ∈ [
√

t].

10. Furthermore, add arcs from IN0 of all gadgets bj
n to END for j ∈ [

√
t]. So for each

Bj, exactly one vertex has an outgoing arc to END and one has an incoming arc
from NEXT.

This completes the construction of G′. A sketch of G′ is shown in Figure 9.

28

In Steps 4 and 5 of the construction a path through each group of gadgets in A and B
is created. The following lemma shows how this path is used by a Hamiltonian cycle.

B Lemma 6.3. When any Hamiltonian cycle in G′ enters the path gadget of ai
1 at IN0, the

cycle then visits the gadgets of ai
2, ai

3, . . . , ai
m in order without visiting other vertices in between.

Similarly, if any Hamiltonian cycle in G′ enters the path gadget of bj
1 at IN0, the cycle then visits

the gadgets of bj
2, bj

3, . . . , bj
n in order without visiting other vertices in between.

Proof . Consider a Hamiltonian cycle in G′ that enters path gadget ai
1 at IN0. By Lemma 6.1

the cycle follows Path 0 and continues to the IN1 terminal of the path gadget. Since that
terminal has only one outgoing arc leaving the gadget, which goes to the IN0 terminal
of ai

2, it follows that the cycle continues to that path gadget and enters it at IN0. By
repeating this argument, the cycle must continue to traverse gadgets ai

3 up to ai
m using

Path 0 and without visiting other vertices in between. The proof when entering group
Bj at the vertex IN0 of bj

1 is equivalent. C

The following lemma shows that if G′ contains a directed Hamiltonian cycle, the
subpath from x1 to y2r will be used to traverse exactly r− 1 groups in A and r− 1 groups
in B.

B Lemma 6.4. Let C be a directed Hamiltonian cycle in G′, such that its first arc is {START, x1}.
There are indices i∗, j∗ ∈ [

√
t] such that subpath Cx1,y2r of the cycle between x1 and y2r contains

exactly the vertices
Ai∗ ∪ Bj∗ ∪ {xi, yi | i ∈ [2r]}

where Ai∗ contains all vertices of all gadgets in Ai for i 6= i∗ and similarly Bj∗ contains all
vertices of all gadgets in Bj for j 6= j∗.

Proof . We will first show that when the cycle reaches any xi for i ∈ [r], it traverses
exactly one group A` with ` ∈ [r + 1] and continues to yj and xj+1 for some j ∈ [r],
without visiting other vertices in between. Similarly, when the cycle reaches any xi for
r < i ≤ 2r, it traverses exactly one group B` with ` ∈ [r + 1] and continues to yj for some
r < j ≤ 2r. For j < 2r, the cycle then continues to xj+1, for j = 2r the cycle reached y2r,
which is the last vertex of this subpath.

By Step 8 in the construction, all outgoing arcs of any xi for i ∈ [r] connect to gadgets
a`1 for some ` ∈ [

√
t]. So for any xi in the cycle there must be a unique ` ∈ [

√
t] such

that the edge from xi to the IN0 terminal of a`1 is in C. By Lemma 6.3 the cycle visits
all vertices in A`, and no other vertices, before reaching gadget a`m, which is traversed
by Path 0 to get to OUT0 of this gadget. The only neighbors of OUT0 of gadget a`m lying
outside this gadget are of type yj for j ∈ [r]. As such, the cycle must visit some yj next,
and its only outgoing arc goes to xj+1.

The proof for i > r is similar. As such, visiting xi for i ∈ [r] results in visiting all
vertices of exactly one group in A before continuing via yj to some xj+1 without visiting
any vertices in between. Visiting xi for r < i ≤ 2r results in visiting all vertices of exactly

29

one group in B and returning via yj to either the end of the subpath (j = 2r) or some
xj+1.

Every vertex xi for i ∈ [2r] must be visited by C, it remains to show that it is visited
in subpath Cx1,y2r . Suppose there exists an xi for i ∈ [2r] such that xi is not visited in the
subpath from x1 to y2r. As we have seen above, visiting some xi results in visiting all
vertices in some group in A or B, continued by visiting some yj for j ∈ [2r]. Note that no
other vertices are visited in between. Hereby, yj is not in subpath Cx1,y2r . This implies
j 6= 2r and thus the next vertex in the cycle is xj+1. So, for xi not in subpath Cx1,y2r , one
can find a new vertex xj+1 (where j + 1 6= i), such that xj+1 is also not in subpath Cx1,y2r .
Note that we can not create a loop, by visiting a vertex xi seen earlier, as this would not
yield a Hamiltonian cycle in G′. For example, the vertex START would never be visited.
This is however a contradiction since we only have finitely many vertices xi.

Thus in subpath Cx1,y2r , exactly r groups of A are visited and exactly r groups of B
are visited, and no other vertices than specified. This leaves exactly one group Ai∗ and
one group Bj∗ unvisited in Cx1,y2r . C

In the lemma above, one group in A and one group in B remain unvisited. The next
lemma shows that these groups are visited in the subpath between NEXT and END. This
result will be useful to show that one of the input instances must have a Hamiltonian
path if G′ has a Hamiltonian cycle.

B Lemma 6.5. Let C be a Hamiltonian cycle in G′, such that its first arc is {START, x1}. Let
i∗ and j∗ satisfy the conditions of Lemma 6.4. Then cycle C visits bj∗

1 before bj∗
n . Moreover, the

subpath of the cycle C
bj∗

1 ,bj∗
n

between terminal IN1 of bj∗
1 and OUT1 of bj∗

n (inclusive) contains all

vertices of the gadgets in Ai∗ and Bj∗ and no others.

Proof . Vertex NEXT is visited directly after y2r. The arc from NEXT to gadget b`1 must
be in the cycle for some ` ∈ [

√
t], since these are the only outgoing edges of NEXT,

constructed in Step 9. By Lemma 6.4, all gadgets in all Bj for j 6= j∗ are visited in the
path from x1 to y2r, and thus should not be visited after vertex NEXT. Therefore, the edge
from NEXT to gadget bj∗

1 is in the cycle, which also implies that bj∗
1 is visited before bj∗

n .
It is easy to see that {END, START} is the last arc in C. By considering the incoming

arcs of END it follows that some arc from terminal OUT1 of b`n to END for ` ∈ [
√

t] is
in the cycle. Since the vertices in gadgets b`n for ` 6= j∗ are already visited in Cx1,y2r by
Lemma 6.4, it follows that {bj∗

n , END} is in C.
By Lemma 6.4, none of the terminals of gadgets in Ai∗ and Bj∗ is visited in the subpath

Cx1,y2r or equivalently in the subpath CSTART,NEXT. Since C is a Hamiltonian cycle these
vertices must therefore be visited in CNEXT,START, which is equivalent to saying that C

bj∗
1 ,bj∗

n

must contain all vertices in Ai∗ ∪ Bj∗ . It is easy to see that this subpath cannot contain
any other vertices, as all other vertices are present in CSTART,NEXT or CEND,START. C

30

Using the previous lemmas we can now show that G′ acts as a logical OR of the given
inputs.

B Claim 6.6. Graph G′ has a directed Hamiltonian cycle if and only if at least one of the
instances Xi,j has a Hamiltonian s− t-path.

Proof . (⇐) Suppose G′ has a Hamiltonian cycle C. By Lemma 6.5 there exist i∗, j∗ ∈
[
√

t] such that the subpath of C from gadget bj∗
1 to bj∗

n visits exactly the gadgets in
Ai∗ ∪ Bj∗ . Since gadget bj∗

1 is entered at terminal IN1, it is easy to see that all gadgets
are traversed using Path 1. We now construct a Hamiltonian path P for instance Xi∗ j∗ .

Let {a∗k (i∗ j∗), b∗` (i
∗ j∗)} ∈ P if the arc from OUT1 of ai∗

k to IN1 of bj∗

` is in C. Similarly let
{b∗k (i∗ j∗), a∗` (i

∗ j∗)} ∈ P if the arc from OUT1 of bj∗

` to IN1 of ai∗
k is in C, where k ∈ [m] and

` ∈ [n]. Using that every gadget is visited exactly once via Path 1 in C, we see that C is a
Hamiltonian path.
(⇒) Suppose Xi∗ j∗ has a Hamiltonian s− t path P. Then we create a Hamiltonian
cycle C, for each vertex a∗` from instance Xi∗ j∗ in P we add Path 1 in path gadget ai∗

` to C
and for each vertex b∗` we add Path 1 in path gadget bj∗

` to C. Let P be ordered such that
b∗1 is its first vertex. Now if a∗k is followed by b∗` in P, the arc from terminal OUT1 of ai∗

k

to IN1 of bj∗

` is added to C. Similarly, if a vertex b∗` is followed by a∗k in P, the arc from
terminal OUT1 of bj∗

` to IN1 of ai∗
k will be added to C. Now the subpath C

bj∗
1 ,bj∗

n
contains

all terminals in all gadgets in Ai∗ ∪ Bj∗ .

From bj∗
n the cycle goes to END, then to START and to x1. To visit all groups Ai for

i 6= i∗ and Bj for j 6= j∗, do the following.
• From xi where i ≤ i∗, the cycle continues to gadgets ai

1, then to ai
2, ai

3, . . . , ai
m

following Path 0, and continue to yi, xi+1.
• From xi where i∗ ≤ i ≤ r it goes to ai+1

1 , ai+1
2 , . . . , ai+1

n and continues with yi, xi+1.
• Similarly, from xi where r ≤ i < j∗, go through gadgets bi

1, . . . , bi
n and continue to

yi, xi+1.
• From xi where j∗ ≤ i ≤ 2r, go to gadgets bi+1

1 , . . . , bi+1
n and continue to yi, for

i 6= 2r then add the arc (yi, xi+1).
From y2r, continue to NEXT, after which the edge (NEXT, bj∗

1) closes the cycle. By defi-
nition, no vertex is visited twice, so it remains to check that every vertex of G′ is in the
cycle. For vertices START, NEXT, END and all vertices xi, yi, zi this is obvious. All vertices
in Ai and Bj where i 6= i∗ and j 6= j∗ are in the cycle between some x` and y`. All vertices
in Ai∗ and Bj∗ are visited since P was a Hamiltonian path on these vertices. C

The number of vertices of G′ is

3(m + n)
√

t︸ ︷︷ ︸
|A∪B|

+ 4(
√

t− 1)︸ ︷︷ ︸
xi , yi

+3 = O(
√

t · (m + n))

31

v vin vmid

vout

Figure 10. Reduction from DIRECTED HAMILTONIAN CYCLE to HAMILTONIAN CYCLE.

therefore this is a degree-2 cross composition. It is possible to give a linear parameter
transformation from DIRECTED HAMILTONIAN CYCLE to HAMILTONIAN CYCLE, using
the NP-completeness proof by Karp in [19]. Suppose we are given G = (V, A) for
directed Hamiltonian cycle, we construct G′ = (V ′, E′) by V ′ := {vin, vmid, vout | v ∈ V}
and E′ := {{vin, vmid}, {vmid, vout}} ∪ {{uout, vin} | (u, v) ∈ A} as shown in Figure 10. It
is easy to verify that this is a linear parameter transformation. Using Theorems 2.6 and
2.8 we conclude that (DIRECTED) HAMILTONIAN CYCLE does not have a generalized
kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. J

32

7 Dominating Set

In this section, we will show that DOMINATING SET and CONNECTED DOMINATING

SET do not have a kernel of sub-quadratic size, when parameterized by the number of
vertices.

DOMINATING SET Parameter: The number of vertices n
Input: An undirected graph G = (V, E) and integer k ∈N

Question: Does there exist a set S ⊆ V(G) with |S| ≤ k, such that every vertex
v ∈ V(G) \ S has at least one neighbor in S?

We will also consider the CONNECTED DOMINATING SET problem which is defined
similarly except that there is an extra constraint that G[S] is connected.

A set S with the described properties is called a (connected) dominating set in G. We
say that a vertex u is dominated by v (with respect to dominating set S) if u is a neighbor
of v and v is contained in the dominating set.

We will prove the sparsification lower bound using a degree-2 cross-composition,
starting from a variation of the COLORED RED-BLUE DOMINATING SET problem (COL-
RBDS) as described by Dom et al. in [10].

EQUAL-SIZED COLORED RED/BLUE DOMINATING SET (EQ-COL-RBDS)
Input: A bipartite graph G = (R ∪ B, E), where R is partitioned into k subsets
R1, . . . , Rk, such that |R1| = |R2| = . . . = |Rk|.
Question: Is there a set S ⊆ R such that for each i ∈ [k] the set S contains exactly one
vertex of Ri and every vertex in B is adjacent to at least one vertex from S?

We will think of the vertices in set Ri as having color i such that the question is if
there exists a set S ⊆ R that has exactly one vertex of each color and every vertex in B is
adjacent to at least one vertex in S.

I Lemma 7.1. EQ-COL-RBDS is NP-complete.

Proof. It is easy to give a reduction from COLORED RBDS, without requiring that all
color sets have the same size. This problem was proven to be NP-complete by Dom et al.
in [10]. Let an input instance on n vertices for Col-RBDS be given, let the largest color set
have size `. We then add isolated vertices to all color other sets until their size is exactly
`. Since the added vertices are isolated, they do not influence the size of a minimum
RBDS in the graph. Note that both the number of color sets and their size are bounded
by n, as such we have created a graph with at most n2 vertices, which is polynomial. J

Using EQ-COL-RBDS as our starting problem, we can give a degree-2 cross-composition.

33

R B

t01

t11

t21

w
(c1,c2)
1

w
(c1,c2)
2

ID:{1,. . .

ID:{2,. . .

w
(c2,c1)
1

w
(c2,c1)
2

s

s′

B1

B2

R1

R2

Figure 11. A sketch of G, where t′ = 2, m = 6 and n = 5. Thereby K should be 5 and W(c1,c2)

should contain 10 vertices. In this example we show the constructed graph when choosing K = 1
for simplicity. Edges from R to B are left out for simplicity.

I Theorem 7.2. DOMINATING SET and CONNECTED DOMINATING SET parameterized by
the number of vertices n do not have a generalized kernel of size O(n2−ε) for any ε > 0, unless
NP ⊆ coNP/poly.

Proof. We can use the same degree-2 cross-composition to prove both results.
Define a polynomial equivalence relationR by first of all letting all instances where

there is a vertex in B of degree 0 be in the same class, note that these are always no-
instances. Let 2 instances (G = (R ∪ B), k) and (G′ = (R′ ∪ B′), k′) of EQ-COL-RBDS
be equivalent if |R| = |R′| , |B| = |B′| and k = k′. It is easy to see that R indeed is a
polynomial equivalence relation.

Suppose we are given t instances of EQ-COL-RBDS, such that
√

t and log
√

t ∈N

and such that all given instances are in the same equivalence class of R. Let t′ :=
√

t.
If these instances are from the class where B contains a vertex of degree 0, output a
constant size no-instance.

Otherwise, label the given instances as Xi,j with i, j ∈ [t′]. Let instance Xi,j have
graph Gi,j, which is bipartite with vertex set R∗i,j ∪ B∗i,j. Let |R∗i,j| = m and |B∗i,j| = n
and let R∗i,j be partitioned into k color classes R∗p

i,j for all i, j ∈ [t′] and p ∈ [k]. Label all
vertices in R∗p

i,j as r∗p,q(i, j) with p ∈ [k] and q ∈ [m/k], which means that this vertex is
the q’th vertex of color p from instance Xi,j. Label vertices in B∗i,j as b∗1(i, j), . . . , b∗n(i, j)
arbitrarily. We now create an instance (G, k) for DOMINATING SET using the following
steps. A sketch of G can be found in Figure 11.

1. Add vertices ri
p,q for p ∈ [k], q ∈ [m/k] and i ∈ [t′]. The dominating set problem

does not use colored instances, however we will remember the color of these

34

vertices for simplicity. Let vertex ri
p,q have color p, for i ∈ [t′], q ∈ [m/k] and

p ∈ [k]. Define Ri := {ri
p,q | p ∈ [k], q ∈ [m/k]} and let R :=

⋃
i∈[t′] Ri. Give

every set Ri a unique identifier ID(Ri), which is a subset of K := 2 + k + log t′

numbers in the range [2K]. We can construct this identifier by considering the
binary representation b of i − 1, which has length log t. Consider the string bb̄,
where b̄ contains a zero at a certain position if and only if b contains a one in this
position. String bb̄ has exactly log t positions with a 1. Now if the j’th position
contains a 1, let j ∈ ID(Ri). This already ensures that every Ri gets a unique ID
containing log t integers in the range [2 log t′]. Then add k + 2 distinct integers
from the range 2 log t + 1, . . . , 2 log t + 2k + 4 to the ID.

2. Add vertices bj
` for ` ∈ [n] and j ∈ [t′]. Define Bj and B as Bj := {bj

` | ` ∈ [n]} and
B :=

⋃
j∈[t′] Bj.

3. Add edges between the vertices ri
p,q and bj

` for p ∈ [k], q ∈ [m/k] and i, j ∈ [t′] if
r∗p,q(i, j) is connected to b∗` (i, j) in instance Xi,j. This ensures that the graph induced
by Ri ∪ Bj is exactly Gi,j and the coloring of vertices in Ri matches the coloring of
R∗i,j.

4. Add vertices s′ and s and edge {s′, s}. Furthermore, add edges between s and all
vertices in R. The degree-1 vertex s′ ensures there is a minimum dominating set
containing s, which covers all vertices in R “for free”.

5. In a similar way as given by Dom et al. in [10], for every pair of colors (c1, c2) ∈
{1, . . . , k} × {1, . . . , k} with c1 6= c2 we add a vertex set

W(c1,c2) = {w
(c1,c2)
1 , . . . , w(c1,c2)

2K }.

For x ∈ [2K] connect w(c1,c2)
x to all vertices of color c1 in Ri if x ∈ ID(Ri), otherwise

connect w(c1,c2)
x to all vertices of color c2 in Ri. This construction is used to choose

which Ri is part of a solvable input instance Xi,j for some j ∈ [t′]. This idea is
formalized in Lemmas 7.5 and 7.6.

6. Then, add log t′ triangles, with vertices {t0
` , t1

` , t2
`} for ` ∈ [log t′]. Connect t0

` to all
vertices in Bj if the `’th bit of j equals 0, connect t1

` to all vertices in Bj if the `’th bit
of j equals 1. Define T to be the union of all these triangles. By choosing exactly
one of the vertices t0

` or t1
` in a dominating set for each `, all groups Bj except one

are dominated automatically. The non-dominated one should then be part of a
solvable input instance.

7. Finally, add the edges {{s, ti
`} | ` ∈ [log t′], i ∈ {0, 1}}. Note that t2

` is not a
neighbor of s and that t0

` and t1
` are its only neighbors. This final step of the

construction ensures that every vertex in T contained in the dominating set will

35

have s as a neighbor in the dominating set, such that there is always a minimum
dominating set that is connected. This result will be formalized in Claim 7.7.

We now make the following observations.

B Lemma 7.3. If G has a dominating set D, then it also has a dominating set D′ of size at most
|D| that does not contain any vertices from B.

Proof . Suppose we are given a minimum dominating set D of G, where vertex v ∈ B
is present. In any dominating set, s or s′ must be present. If s′ is present and s is not,
we replace s′ by vertex s, and still obtain a valid dominating set of the same size. As
such, all vertices in R are now dominated by s. Vertices t0

` and t1
` with ` ∈ [log t′] are

dominated by s. Since t2
` only has neighbors t1

` and t0
` , at least one of these three vertices

is present in D for every ` ∈ [log t′], hereby every vertex in T has a neighbor in D.
Since B is an independent set in G, the vertex v does not dominate other vertices in

B. Since the polynomial equivalence relation ensures that there are no isolated vertices
in B, vertex v has at least one neighbor u in R. We can safely replace v by u to obtain a
valid dominating set that has the same size as D and does not contain any vertices from
B. C

B Lemma 7.4. Any dominating set of G of size at most k+ 1+ log t′ contains at least 1+ log t′

vertices from {s, s′} ∪ {t0
` , t1

` , t2
` | ` ∈ [log t′]} and thus contains at most k vertices from R.

Proof . In a dominating set D of G, at least log t′ vertices are needed from T, since t2
` only

has neighbors t1
` and t0

` , so one of these three vertices must be in D for each ` ∈ [log t′].
Furthermore at least one of the vertices s′ or s must be present, therefore there are
1 + log t′ vertices in the set that are not from R. C

We obtained that a dominating set of size at most k + 1 + log t′ contains at most k
vertices from R. This result can now be used to prove that such a dominating set contains
exactly one vertex of each color.

B Lemma 7.5. Any dominating set of G of size at most k + 1 + log t′ uses exactly one vertex
of each color from R.

Proof . Suppose a dominating set of G of size at most k + 1 + log t′ uses less than k colors
from R. If at most k− 2 colors are used, there must be two colors c1 and c2 that are not
present in the set. However, this implies that all 2K vertices in W(c1,c2) are not dominated
by vertices in R and must therefore be in the set. This contradicts the maximum size of
the dominating set, since 2K = 2k + 4 + 2 log t′. So, we are left with the possibility of
using k− 1 colors. Consider some color c1 that was not used. Look at another color c2

that is used exactly once, such a color exists by Lemma 7.4. Suppose the vertex of color c2

in the dominating set was from set Ri for some i ∈ [t′]. Then for any x ∈ ID(Ri) we have
that w(c1,c2)

x is not connected to any vertex in the dominating set and therefore must be in

36

the dominating set itself. Since ID(Ri) contains K numbers, there are K > k + 1 + log t′

vertices in W that are not dominated by R, which contradicts the maximum size of the
dominating set. C

The lemma above also implies that there are exactly k vertices from R in any dominat-
ing set of G that has size at most k + 1 + log t′. It then follows that none of the vertices
in W are in the dominating set. We can now show that the vertices chosen from R are all
contained in the same set Ri for some i.

B Lemma 7.6. For any dominating set D of G of size at most k + 1+ log t′, there exists i ∈ [t′]
such that all vertices in D ∩ R are contained in set Ri.

Proof . Suppose there exists two vertices u, v ∈ D such that u ∈ Ri and v ∈ Rj for some
i 6= j. By Lemma 7.5, u and v have different colors. Suppose u has color cu and v has
color cv. Since Ri 6= Rj, there exists x ∈ [2K] such that x ∈ ID(Ri) and x /∈ ID(Rj). By

Step 5 of the construction, this means that none of the neighbors of vertex w(cu,cv)
x are

contained in the dominating set. However, this vertex is not in D and therefore D is not
a dominating set of G, which is a contradiction. C

Using the previous Lemmas, we can prove that G′ acts as a logical OR of the given
input instances, for both DOMINATING SET and CONNECTED DOMINATING SET.

B Claim 7.7.

1. If there is an input Xi∗,j∗ that has a col-RBDS of size k, then G′ has a connected dominating
set of size k + 1 + log t′.

2. If G′ has a (not necessarily connected) dominating set of size k + 1 + log t′, then some
input Xi∗,j∗ has a col-RBDS of size k.

Proof . 1. Let Xi∗,j∗ have a colored RBDS D of size at most k, then we can construct a
dominating set D′ of G in the following way. For any vertex r∗p,q in D, add vertex
ri

p,q to D′.

Furthermore add the vertex s to D′. Then add vertex t0
` to D′ if the q’th bit of j∗ is 1,

add vertex t1
` otherwise. Now s′ is dominated and all vertices in R have neighbor s

in D′. All vertices in Bj∗ are covered by the vertices in the dominating set from Ri∗ ,
since D was a col-RBDS of Xi∗,j∗ . All vertices in Bj for j 6= j∗ have neighbor t0

` or
t1
` in D′ for some ` ∈ [log t′], since the bit representation of j must differ from the

one of j∗ at some position. It now follows from Step 6 of the construction that all
vertices in Bj are connected to a vertex in the dominating set.

It remains to verify that all vertices in W have a neighbor in D′. Consider w(c1,c2)
x

for x ∈ [2K] and c1, c2 ∈ [k]. If x ∈ ID(Ri∗), then this vertex is connected to all
vertices of color c1 and exactly one of them is contained in D′. If x /∈ ID(Ri∗), the

37

vertex w(c1,c2)
x is connected to all vertices of color c2 in Ri∗ and again one vertex of

this color in Ri∗ is contained in D′. So D′ is a dominating set of G and it is easy to
verify that |D′| = k + 1 + log t′. Furthermore, D′ is constructed in such a way that
it is connected. We can show this by proving that every vertex in D′ is a neighbor
of s, since we chose s in D. Vertices in D′ ∩ R and D′ ∩ T are neighbors of s, by
Steps 4 and 7 of the construction of G. The vertex s′ and vertices from W and B are
not contained in D′. Thus, D′ is a connected dominating set.

2. Let D′ be a dominating set of G of size at most k + 1 + log t′. Using Lemma 7.3 we
modify D′ such that it chooses no vertices from B, without increasing its size. By
Lemma 7.5 and 7.6, D′ contains exactly k vertices from R, all from the same Ri∗ for
some i∗ and all of different color. D′ has size at most k + 1 + log t of which k are
contained in R and one in {s, s′}. Combined with the fact that for any ` ∈ [log t′]
vertex t2

` has t1
` and t0

` as its only two neighbors, it follows that exactly one of these
three vertices is contained in D′ for all `. Therefore D′ contains at most one of the
vertices t0

` or t1
` for every ` ∈ [log t′].

We can now define x` ∈ {0, 1} for ` ∈ [log t′], such that tx`
` /∈ D′ for all ` ∈ [log t′].

Consider the index j∗ ∈ [t] given by the binary representation [x1 x2 . . . xlog t′]2. It
follows from the bit representation of j∗ that the vertices in Bj∗ are not connected
to any of the vertices in D′ ∩ T. Since vertices in Bj∗ are only adjacent to vertices
in R and vertices of T, it follows that every vertex in Bj∗ has a neighbor in R that
is in D′. This implies that every vertex in Bj∗ has a neighbor in D′ ∩ Ri∗ . Since
G[Ri∗ ∪ Bj∗] is isomorphic to the graph of instance Xi∗,j∗ , it follows that Xi∗,j∗ has a
col-RBDS of size at most k, which are exactly the vertices in D′ ∩ Ri∗ . C

Given t instances, the graph G constructed above has

m · t′︸ ︷︷ ︸
|R|

+ n · t′︸︷︷︸
|B|

+ 2︸︷︷︸
s,s′

+ 3 · log t′︸ ︷︷ ︸
|T|

+ 2
(

k
2

)
· 2K︸ ︷︷ ︸

|W|

= O(
√

t max |Xi,j|3)

vertices. It is straightforward to construct G in polynomial time. It follows from Claim
7.7 that G has a dominating set of size k + 1 + log t′, if and only if one of the input
instances has a col-RBDS of size k. Furthermore, G has a connected dominating set of size
k + 1 + log t′ if and only if one of the input instances has a col-RBDS of size k. Therefore
we have given a degree-2-cross-composition to (CONNECTED) DOMINATING SET. Using
Theorem 2.6 it follows that DOMINATING SET and CONNECTED DOMINATING SET do
not have a generalized kernel of sizeO(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. J

This lower bound has immediate implications for the sparsification lower bounds of
the dual problems NONBLOCKER and MAX LEAF SPANNING TREE. It is hard to give an
intuition about NONBLOCKER, other than that a graph has a NONBLOCKER of size at
least k if and only if it has a DOMINATING SET of size at most n− k. MAXIMUM LEAF

38

SPANNING TREE seems to be a more natural problem, where we ask whether a given
graph contains a spanning tree with at least k leaves. Using Theorem 7.2 we obtain the
following result.

I Corollary 7.8. MAX LEAF SPANNING TREE and NONBLOCKER parameterized by the
number of vertices n do not have a generalized kernel of size O(n2−ε) for any ε > 0, unless
NP ⊆ coNP/poly.

Proof. By definition, a graph has a Nonblocker of size k if and only if is has a Dominating
Set of size n− k. Thereby it is trivial to give a linear parameter transformation from
DOMINATING SET to NONBLOCKER and use Theorems 7.2 and 2.8 to obtain the lower
bound.

If a graph has a spanning tree with at most k leaves, the non-leaves of this tree
correspond to connected dominating set of G, that has size n− k. Vice versa, given a
connected dominating set of size n− k, we extend it to a spanning tree with k leaves in a
straightforward way. Thus, a graph has a connected dominating set of size n− k if and
only if it has a spanning tree with k leaves. Thereby it is trivial to give a linear parameter
transformation from CONNECTED DOMINATING SET to MAX LEAF SPANNING TREE

and use Theorems 7.2 and 2.8 to obtain the lower bound. J

Both DOMINATING SET and CONNECTED DOMINATING SET are not believed to
be fixed parameter tractable when parameterized by the solution size ([12], [6]), so no
kernels are known. NONBLOCKER and MAXIMUM LEAF SPANNING TREE are however
fixed parameter tractable and both have a linear size kernel. NONBLOCKER has a kernel
of 5

3 k + 3 vertices [7] and MAXIMUM LEAF SPANNING TREE has a kernel of 3.75k vertices
[14]. Since for these problems input parameter k is bounded by n, Theorem 7.2 shows
that we cannot reduce the number of edges of these kernels to O(k2−ε) for any ε > 0,
unless NP ⊆ coNP/poly.

39

8 d-Hypergraph 2-Colorability and d-NAE-Sat

In this section we will give a kernelization lower bound of d-HYPERGRAPH 2-COLORABILITY,
by giving a linear parameter reduction starting from d-NAE-SAT. Furthermore we will
show that both this problem and d-NAE-SAT have a (generalized) kernel consisting of
O(nd−1) edges or clauses.

d-HYPERGRAPH 2-COLORABILITY Parameter: The number of vertices n
Input: A hypergraph G = (V, E), where each hyperedge contains at most d vertices.

Question: Is there a coloring using {Red, Blue} of all vertices in V such that every
edge in E contains at least one Red and one Blue vertex.

d-NOT-ALL-EQUAL SAT Parameter: The number of variables n
Input: A CNF formula F on n variables with at most d literals per clause.

Question: Is there an assignment for all variables, such that each clause contains at
least one true and at least one false literal? If such an assignment exists, we say F if
NAE-satisfiable.

8.1 Lower bound

We can show a lower bound on the kernel size of d-NAE-SAT, which we will later use to
prove a lower bound for the kernel of d-HYPERGRAPH 2-COLORABILITY. The following
result was also shown by Jansen et al. in [18].

I Lemma 8.1. Let d ≥ 4 be an integer. Then d-NAE-SAT parameterized by the number
of variables n does not have a generalized kernel of size O(nd−1−ε) for any ε > 0, unless
NP ⊆ coNP/poly.

Proof. It is easy to give a linear parameter reduction from d-CNF-SAT to (d + 1)-NAE-
SAT. By Theorem 2.8 it follows that if d + 1-NAE-SAT has a generalized kernel of size
O(nd−ε), then also d-CNF-SAT has a generalized kernel of size O(nd−ε). In Theorem 1
in [8] Dell et al. prove an even stronger statement than the result we need here. Their
theorem implies is that d-CNF-SAT does not have a generalized kernel of size O(nd−ε)

So suppose we are given a Boolean formula F of d-CNF-SAT, with variables X =

x1, . . . , xn and clauses C1, . . . , Cm. We will now create an instance F′ of (d + 1)-NAE-SAT

with variables X′ := {x1, . . . , xn} ∪ y and clauses C′1, . . . , C′m, where C′i := Ci ∪ y for
1 ≤ i ≤ m. It follows that every clause C′i has size at most d + 1. It remains to verify that
F′ is NAE-satisfiable if and only if F is satisfiable.

Suppose F is satisfiable, we can extend a satisfying truth S assignment with y := false
to NAE-satisfy F′. Every clause now contains one false literal by definition, and one true
literal since S was a satisfying truth assignment for F.

40

Suppose F′ is NAE-satisfied with assignment S, we can then do a case distinction
on the value of y. If y = false every clause in must F′ contain a true literal not equal to
y. Therefore, we can use the same truth assignment to satisfy F. If y = true then every
clause in F′ contains at least one false literal not equal to y. Therefore, if we invert the
truth assignment by defining x := true if x was false in S, then every clause in F contains
at least one true literal, thus F is satisfiable. J

I Theorem 8.2. Let d ≥ 4 be an integer. There is a linear parameter transformation from
d-NAE-SAT to d-HYPERGRAPH 2-COLORABILITY. It follows that d-HYPERGRAPH 2-
COLORABILITY does not have a kernel of size O(nd−1−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. Here we will use the result from Lemma 8.1 and give a linear parameter transfor-
mation from d-NAE-SAT to d-HYPERGRAPH 2-COLORABILITY. Suppose we are given
a Boolean formula F in CNF-form for d-NAE-SAT, with variables X = x1, . . . , xn and
clauses C1, . . . , Cm. For hypergraph 2-colorability, we now create the set of vertices
V = {y1, . . . , yn} ∪ {z1, . . . , zn}. We create hyperedges ei for i ∈ [m] such that yi ∈ ei
if xi ∈ Ci and zi ∈ ei if ¬xi ∈ Ci. Then the following set of hyperedges is used for
d-hypergraph 2-colorability.

E = {ei | 1 ≤ i ≤ m} ∪ {{yi, zi} | 1 ≤ i ≤ n}
It is easy to verify that every hyperedge in E has size at most d. Suppose F has a
satisfying truth assignment T. Define color function c in the following way. Let c(yi) =

Red, c(zi) = Blue if xi = true in T, and let c(yi) = Blue, c(zi) = Red if xi = false according
to T. The hyperedges of type {yi, zi} ∈ E are now 2-colored by definition. It is easy to
verify that also every hyperedge ei for 1 ≤ i ≤ m is 2-colored, since Ci contains at least
one true and one false literal, resulting in one Red and one Blue vertex in ei.

Suppose there is a proper 2-coloring c : V → {Red, Blue} of the hypergraph. Since
for every i ∈ [n] the hyperedge {yi, zi} is present, the variables yi and zi must have a
different color. Consider the following options
• yi is Red and zi is Blue. Then to satisfy F, we choose xi = true.
• zi is Red and yi is Blue. Then to satisfy F, we choose xi = false.

Since every edge ei contains at least one Red vertex, this implies that every clause Ci for
i ∈ [m] contains at least one true literal using the assignment above. Also, since every
hyperedge ei contains at least one Blue vertex, every Ci must contain at least one false
literal. Therefore F is NAE-satisfied with this assignment.

From the fact that linear-parameter transformations transfer lower bounds (Theorem
2.8) and Lemma 8.1 it now follows that d-HYPERGRAPH 2-COLORABILITY cannot have a
kernel of size O(nd−1−ε) for any ε > 0, unless NP ⊆ coNP/poly. J

8.2 Kernel

To prove validity of our kernel we use the following lemma due to Lovász [21]. This
lemma was originally developed to prove bounds on the number of hyper edges in

41

critical 3-chromatic hypergraphs. We say a hypergraph G is critical 3-chromatic if G is
not 2-colorable, but the removal of any edge from G yields a 2-colorable hypergraph.
Lovász showed that for r-uniform critically 3-chromatic hypergraphs the number of
edges is bounded by (n

r−1) = O(nr−1).

I Lemma 8.3 ([21]). Let H be an r-uniform hypergraph with hyperedges E1, . . . , Em. Let
α1, . . . , αm be real numbers such that for every (r− 1)-element subset A of V(H),

∑
Ei⊃A

αi = 0.

Then for every partition {V1, V2} of V(H) the following holds:

∑
Ei⊆V1

αi = (−1)r ∑
Ei⊆V2

αi.

J

I Theorem 8.4. d-HYPERGRAPH 2-COLORABILITY parameterized by the number of vertices n
has a kernel with 2 · nd−1 hyperedges that can be encoded in O(nd−1 · d · log n) bits.

Proof. Suppose we are given a hypergraph with vertex set V and hyperedges E, where
each hyperedge contains at most d vertices. We show how to reduce the number of
hyperedges without changing the 2-colorability status. Let Er ⊆ E denote the set of edges
in E that contain exactly r vertices. For each Er we construct a set E′r ⊆ Er of representative
hyperedges. Enumerate the edges in Er as er

1, . . . , er
k. We construct a (0, 1)-matrix Mr with

N := (n
r−1) rows and k columns. Consider all possible subsets A1, . . . , AN of size r− 1 of

the set of vertices V. Define the elements mi,j for i ∈ N and j ∈ k of Mr as follows.

mi,j :=

{
1 if Ai ⊆ er

j ;
0 otherwise.

Using Gaussian elimination, compute a base B of the columns of this matrix, which is a
subset of the columns that span the column space of Mr. Let E′r contain edge er

i if the i’th
column of Mr is contained in B, and define E′ :=

⋃
r∈[d] E′r, which forms the kernel. We

will now prove validity of the obtained kernel.

B Lemma 8.5. (V, E) has a proper 2-coloring⇔ (V, E′) has a proper 2-coloring.

Proof . (⇒) Clearly, if (V, E) has a proper 2-coloring, then the same coloring is proper
for the subhypergraph (V, E′) since E′ ⊆ E.

(⇐) Now suppose (V, E′) has a proper 2-coloring. We say a hyperedge is monochro-
matic with respect to some coloring, if all its vertices receive the same color. We will
show that for each r ∈ [d], no hyperedge of Er is monochromatic under this coloring.
All hyperedges contained in E′r are 2-colored by definition. Suppose there exists r ∈ [d],

42

such that Er contains a monochromatic hyperedge. Let Er = er
1, . . . , er

k and let ei∗ be a
hyperedge in Er whose vertices all receive the same color.

By reordering the matrix Mr, we may assume that the basis B of Mr contains the first
` columns, thus i∗ > `. Let mi denote the i’th column of Mr. Since mi∗ is not contained
in the basis, there exist coefficients α1, . . . , α` such that

`

∑
i=1

αi ·mi = mi∗ .

For i ∈ [k], define:

βi :=


αi if i ≤ `;
−1 if i = i∗;
0 otherwise.

From this definition of β it follows that

k

∑
i=1

βi ·mi =
`

∑
i=1

αi ·mi −mi∗ = 0.

Let Aj be any size (r− 1)-subset of V. Since mi,j = 1 exactly when ei ⊇ Aj,

∑
ei⊃Aj

βi =
k

∑
i=1

βimi,j = 0.

By Lemma 8.3 we obtain that for any partitioning V1 ∪V2 of the vertices in V,

∑
ei⊆V1

βi = (−1)r ∑
ei⊆V2

βi. (1)

Consider however the partitioning (V1, V2) given by the 2-coloring of the vertices. Then
every edge ei ∈ E′r contains at least one vertex of each color and is thereby not fully
contained in V1 or V2. As such, these edges contribute 0 to both sides of the equation.
The edge ei∗ is the only remaining edge with a non-zero coefficient and by assumption,
it is contained entirely within one color class. Without loss of generality, let ei∗ ⊆ V1. But
then ∑ei⊆V1

βi = −1 while (−1)r ∑ei⊆V2
βi = 0, which contradicts Formula (1). C

B Lemma 8.6. The obtained kernel contains at most 2 · nd−1 hyperedges.

Proof . Consider matrix Mr for r ∈ [d]. Its rank is bounded by the minimum number
of its rows and columns, which is at most (n

r−1) ≤ nr−1. As such, we get that |E′r| ≤
rank(Mr) ≤ nr−1. Note that d ≤ n, such that

|E′| ≤
d

∑
r=1

nr−1 = nd−1 +
d−1

∑
r=1
≤ 2 · nd−1.

So E′ contains at most 2nd−1 hyperedges. C

43

It follows from Lemma 8.5 and 8.6 that we have presented a kernel consisting of
2 · nd−1 hyperedges and n vertices. Thereby, we can store the representation of a vertex
in O(log n) bits. Since every hyperedge consists of at most d vertices, we can store this
kernel in O(d · log n · nd−1) bits. J

As we have seen in Theorem 8.2, we can give a linear parameter transformation from
d-NAE-SAT to d-HYPERGRAPH 2-COLORABILITY. Suppose we are given an instance of
d-NAE-SAT, we can now obtain a generalized kernel for this problem by transforming
it to an instance of d-HYPERGRAPH 2-COLORABILITY and then applying the kernel
described in Theorem 8.4. This results in an instance of at most O(nd−1) hyperedges.

44

9 Conclusion

We have shown that several well-known graph problems do not have a generalized
kernel of sizeO(n2−ε), unless NP ⊆ coNP/poly. For example, we showed that 4-coloring
does not have a generalized kernel of sub-quadratic size. However, it is left as an open
question whether this also holds for the 3-coloring problem, that is also known to be
NP-hard. We also showed that a kernel of sub-quadratic size for one of the problems
HAMILTONIAN CYCLE, (CONNECTED) DOMINATING SET, MAX LEAF SPANNING TREE,
NONBLOCKER, and FEEDBACK ARC SET would imply that NP ⊆ coNP/poly.

Most graph problems we considered ask a question about the vertices of the graph,
such as 4-coloring which asks if there exists a proper coloring of the vertices. For edge-
based problems, such as the maximum cut problem that asks for a cut in the graph of
size k, it seems harder to find a cross-composition using the same strategy as we used
in this thesis. The approach to select one instance and somehow remove the effect of
all other instances does not seem to work out. Only for FEEDBACK ARC SET, we have
shown a lower bound using a linear parameter transformation.

Furthermore, we showed a lower bound for d-NAE-SAT and d-HYPERGRAPH 2-
COLORABILITY and a nontrivial sparsification to match the lower bound, using a lemma
by Lovász. It is an interesting open question whether there also exist problems defined
on general graphs that allow a non-trivial sparsification, since so far we have only given
examples of problems that do not have such a sparsification.

45

References

[1] Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony Perez,
Saket Saurabh, and Stéphan Thomassé. Kernels for feedback arc set in tournaments.
Journal of Computer and System Sciences, 77(6):1071 – 1078, 2011.

[2] Hans L Bodlaender. Kernelization: New upper and lower bound techniques. In
Proceedings of the 4th IPWEC, pages 17–37. Springer, 2009.

[3] Hans L Bodlaender, Rodney G Downey, Michael R Fellows, and Danny Hermelin.
On problems without polynomial kernels. Journal of Computer and System Sciences,
75(8):423–434, 2009.

[4] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernel bounds for path
and cycle problems. In Parameterized and Exact Computation, volume 7112 of Lecture
Notes in Computer Science, pages 145–158. Springer Berlin Heidelberg, 2012.

[5] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower
bounds by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277–305,
2014.

[6] Marek Cygan, Geevarghese Philip, Marcin Pilipczuk, Michal Pilipczuk, and
Jakub Onufry Wojtaszczyk. Dominating set is fixed parameter tractable in claw-free
graphs. Theoretical Computer Science, 412(50):6982–7000, 2011.

[7] Frank K. H. A. Dehne, Michael R. Fellows, Henning Fernau, Elena Prieto, and
Frances A. Rosamond. NONBLOCKER: parameterized algorithmics for minimum
dominating set. In Proceedings of the 32nd SOFSEM, pages 237–245, 2006.

[8] Holger Dell and Dieter Van Melkebeek. Satisfiability allows no nontrivial sparsifi-
cation unless the polynomial-time hierarchy collapses. In Proceedings of the 42nd
ACM symposium on Theory of computing, pages 251–260. ACM, 2010.

[9] Reinhard Diestel. Graph Theory. Springer, July 2010.

[10] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds
through colors and IDs. ACM Transactions on Algorithms, 11(2):13:1–13:20, October
2014.

[11] Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and com-
pleteness II: On completeness for W[1]. Theoretical Computer Science, 141(1–2):109 –
131, 1995.

[12] Rod G. Downey and Mischael R. Fellows. Fixed-parameter tractability and com-
pleteness I: Basic results. SIAM Journal on computing, 24(4):873–921, 1995.

46

[13] Rodney G Downey and Michael R Fellows. Fundamentals of parameterized complexity.
Springer, 2013.

[14] Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, and Frances A.
Rosamond. FPT is P-time extremal structure I. In Proceedings of the First ACiD
Workshop, pages 1–41, 2005.

[15] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.

[16] Michael R. Garey and David S. Johnson. Computers and Intractability. W.H. Freeman,
1979.

[17] Danny Hermelin and Xi Wu. Weak compositions and their applications to polyno-
mial lower bounds for kernelization. In Proceedings of the 23rd annual ACM-SIAM
symposium on Discrete Algorithms, pages 104–113. SIAM, 2012.

[18] Bart M. P. Jansen and Stefan Kratsch. Data reduction for graph coloring problems.
Information and Computation, 231:70–88, 2013.

[19] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a
symposium on the Complexity of Computer Computations, pages 85–103, 1972.

[20] Stefan Kratsch. Co-nondeterminism in compositions: A kernelization lower bound
for a ramsey-type problem. ACM Transactions on Algorithms, 10(4):19:1–19:16, Au-
gust 2014.

[21] Lásloó Lovász. Chromatic number of hypergraphs and linear algebra. In Studia
Scientiarum Mathematicarum Hungarica 11, pages 113–114, 1976.

[22] Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals.
Operations Research Letters, 32(4):299–301, 2004.

47

	Introduction
	Preliminaries
	Feedback Arc Set
	4-Coloring
	Planar List Coloring
	Hamiltonian Cycle
	Dominating Set
	d-Hypergraph 2-Colorability and d-NAE-Sat
	Lower bound
	Kernel

	Conclusion

